PACIFIC JOURNAL OF MATHEMATICS
Vol. 90, No. 2, 1980

CLASSES OF BANACH SPACES WITH UNIQUE
ISOMETRIC PREDUALS

LEON BROWN AND TAKASHI ITO

We introduce several classes of Banach spaces for which
the dual or second dual of each member has a unique isomet-
ric predual. It is shown that these classes are closed under
certain operations. Examples are presented, including those
which show that these classes are different.

A Banach space Y is called an isometric predual, or simply a
predual, of a Banach space X if the dual Y* of Y is isometrically
isomorphic to X. A Banach space X is said to have a wumnique
(isometric) predual if X has a predual and all preduals are mutually
1sometrically isomorphic. In general a Banach space does not have
a unique predual even if it has a predual. A simple example of this
is the space I', because ¢, and ¢ are isometric preduals of I' but not
isometrically isomorphic. A. Grothendieck [5] first noticed that L=-
spaces have unique preduals, and then S. Sakai generalized this to
von Neumann algebras, see p. 30 of [11]. One of the authors has
shown in [6] that every quotient space of a von Neumann algebra
by a o-weakly closed subspace, as a Banach space with quotient norm,
has a unique predual. Also T. Ando [1] and P. Wojtaszezyk [12]
have shown that the space H” has a unique predual. Recently, we
have shown in [2] that the James quasi-reflexive space and all its
successive duals have unique preduals. Evidently, these are the
only known nonreflexive Banach spaces with unique preduals (see
Addendum).

In this paper we introduce several classes of Banach spaces for
which the dual or second dual of each member has a unique isometric
predual. We show that these classes are closed under certain opera-
tions. Throughout the paper, we present examples to show that
these classes are different.

We use the following standard notation. We shall always regard
a Banach space X as a subspace of its second dual X** in the canonical
way. A subspace means a closed linear subspace. For a subset A
of a Banach space X, A' denotes the annihilator of A in the dual
X*. If A is a subset of a dual Banach space X*, then A" denotes
the set of all elements in X annihilated by A. For a subset A of
a Banach space X, [A] denotes the closed linear span of A in X, and
X = AP B means that X is the direct sum of subspaces A and B.

If X is a Banach space, then X*** = X* @ X* where X™* is norm
1 complemented in X***  That is, the projection from X*** onto
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X* associated with this decomposition has norm 1. Thus a sufficient
condition for X* to have a unique predual is that X* is the only
norm 1 complement of X* in X***, This is so because if Y is a
predual of X* then Y can be identified as a subspace of X** and
X*** = X* P Y* (see Dixmier [3]). Thus X* = Y* and X = (X*)" =
(YH)" =Y. If X' is the only weak* closed norm 1 complement of
X* in X*** we say that X is in class (U) (All of the above examples
actually have preduals which are in class (U).).

In §1, we discuss unconditional basis and weak* unconditional
basis with property (4,) and property (4.). These properties are
used in the direct sum of Banach spaces in later sections. In §2,
we introduce the classes (L), (L), (M) and (P), and discuss their
relationships with each other and with the class (U) (see Addendum).
Sections 3, 4, 5 are devoted to the classes (L,) and (L), (M), and (P),
respectively. In § 6, we examine certain examples, namely, the James
quasi-reflexive spaces, L” and H”. We conclude the paper with some
final remarks in §6.

1. Preliminaries. Let (Z, {¢;}:c4 ||-]]) be a Banach space Z with
an unconditional basis {e;};c, and a monotone norm (||3; ae.ll =
130 Baeall if |zl = |B:] for all xed). We denote elements z of Z
by z = (a;), where «a; is the e¢;-coordinate of z. The dual space
(Z*, {ef}iep, ||-1|*) has the unconditional weak* basis {ef};c , which is
the biorthogonal family of {e;},cs, and the monotone dual norm |-||*.
We denote elements z* of Z* by z* = (¢;), where &, is the ef-coordinate
of z*. Note that if {e;},c4 is a shrinking basis then {ef},.: actually
is a basis for Z* (see [10] for pertinent definitions and notations).

DEFINITION. We introduce two properties denoted by (4.) and
(4y).

(1) (Z, {eires, ||*]]) has property (4.) if for any e > 0 there is
a o = p(¢) > 0 such that

(@) + (Bl = [[(@))]] + el (8]

whenever («;) and (3;) have disjoint support (denoted by (a;) L (81)

and [[(a)|l = oll(BII].
In a similar fashion one can define that (Z*, {ef}ics |[:||*) has

property (4..).
(2) (Z, {eres II-1]) has property (4,) if for any & > 0 there is
a v = v(e) > 0 such that

Yl + 1B = (v + &) l(az) + (Bl

whenever (a;) L (82).
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In a similar fashion one can define that (Z*, {ef}:c, |[-||*) has
property (4).

For Z =c,orl, (1 =p= o) one can show that ¢, and I, (1 <p < )
has property (4.) with o, (¢) = p,.(¢) =1 and o, (¢) = ((g — 1)/ge)" ™,
where 1/p +1/g =1. Also I, (1 £ p < «) has property (4,) with
7,(e) =1 and 7,(¢) = (» — 1)/pe)**.  Furthermore [, does not have
property (4.) and ¢, and I, do not have property (4,). Note also
that certain Orlicz sequence spaces have property (4,) or property
(4,,); see the discussion after Proposition 6.

The duality between properties (4.) and (4,) can be shown in a
straight forward manner.

PROPOSITION 1. Let Z and Z* be (Z,{e:}1e 1 ||+ 1) and (Z*,{ef}rc 4| ]|¥)
respectively.

(@) Z has property (4,) or property (4,) if and only if Z* has
property (4,) or property (4.) respectively.

(b) If Z has property (4,) or property (4,) then the basis {€1}ic4
is shrinking or boundedly complete respectively. Hence if Z has
both property (4.) and property (4), Z is reflexive.

(e) If Z has property (4, then the morm of Z is strictly mono-
tone, that is, |[(@)|l > 1B if (aul) = (|B:]). Conversely, if Z is
finite dimensional and the morm is strictly monotone then Z has
property (4).

Proof. (a) Assume that Z has property (4.). Given ¢ >0,
60>0, (&) and () in Z* with (&) L (%2), there are («;) and (8, in
Z with [[(@)|l = ()] =1 such that [[(&)|]* —0 =< 386, and
HII* — 6 < 3 7.8, Furthermore, we may assume that the sup-
ports of (a;) and (B;) are equal to the supports of (&) and (%)
respectively. Thus

p@ I ED* + 1) 1" = o(e) Ejlézaz + ;‘, 7:8: + (o(e) + 1)0
= ; &+ n)ele)ay + B + (o(e) + 1)o

= 1) + I [le(e)(an) + (Bl + (o(e) + 1)d
= 1) + @) I*(o(e) + ¢€) + (o) + 1)d .

Hence we can conclude that o(e) || (&) |+ () ||* = (o(e)+¢) [| (€) + () I*
which means that Z* has property (4,) with v(e) = p(e) for all ¢ > 0.

Conversely, suppose that Z* has property (4, and we are given
e >0, (ay) and (B)) in Z with (a;) L (B;). Choose (&) in Z* so that
[EDI* = Land 3 8(ax + B2) = [|[(a) + (Bo)|. Setting & = & (&) = &)
if » is in the support of (a;) ((B:), one has (&) = (&) + (&) with
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&) L (&) and [[(a)+ (Bl = 2 (& + &) (ay + B) = Suglta+ S &y <
@) EDI* + B INEDI*. If [[(a)ll = 7e)]|(8)]], we have

e + el eI = i [ HEl i + 6]

< @[ Il + i + @i

= [[(a) [l + ell (B! -

Thus Z has property (4.) with p(e) = v(¢) for all ¢ > 0.

In a similar fashion one can show that Z has property (4, if
and only if Z* has property (4.). We omit the details of this proof.

(b) Assume that Z has property (4.). By part (a) Z* has
property (4,). Given (&) in Z* with |[(&)]|* =1 and ¢ > 0 there is
a v =17@E) >0 so that for all finite subsets H of 4 v|[(&)|«||* +
HEDuell* = v + e or [[(EDlaell* = v — [[ED|all*) + . Since {ef}ica
is a weak* basis for Z* we have 1 = ||(&)]||* = supy ||(E)|x]/*. Choos-
ing a finite subset H of 4 so that Y1 — ||(&)|x|]*) <&, we have
1) |gel|* < 26. Thus the base {e;};.. is shrinking.

Assume that Z has property (4,). Suppose we have a funection
@ on A with supy [|®|z]| < +, where H is a finite subset of 4.
We need to show that there is an element (a;) in Z such that
o(\) = a; for all xed. To see this, it is enough to show that for
any ¢ > 0 there is a finite subset H, of 4 such that ||®|;|| < ¢ for
all finite subsets F'c H:. Without loss of generality, we may assume
supy ||@lxzll = 1. Given ¢ > 0 there is v = v(¢) > 0 such that

Y@l + llPlell = (v + ) lIPlaurll =7 + €

for any finite subsets H and F with HN F = ¢. Thus, choosing a
finite subset H, of 4 so that v(1 — ||®@|;|]) < ¢, we have [|@[;|| < 2¢
for all finite subsets F' C H.

(¢) Suppose the norm ||:|| of Z is not strictly monotone. Then
there is a (a)) in Z, a % in 4 and a ¢ with 0 <J <1 such that
e;, L (a;) and [[e;, + (a)|| = [|dez, + (az)||. Since the increasing convex
function f(t) = ||te, + (@p)|| for ¢t = 0 is constant for 6 <t <1, f
must be constant for 0 < ¢ <1 and one has |[[e; + ()l = [[(a))]].
Choose ¢ > 0 so that ||e; [| > ¢|[(a)|[. Thus we have, for all v >0,
@)l + lleyll > (v + ¢)lles, + (y)|] which implies that Z does not
have property (4)).

Conversely suppose that Z is finite dimensional and the norm
[|-]| is a strictly monotone norm without having property (4,). If
in the inequality defining property (4,) one replaces |a;| + |8:| by
o; and |a;| by 8. one sees that for some ¢, > 0 there are (a/”) and
(B™) in Z with [[(ai)|| = 1, (af”) = (Bi”) = 0 and 2 = [[(a”) —(Bi")]| =
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[l — (8] + & for all w = 1,2, ---. Since Z is finite dimensional
we may choose accumulation points («;) and (B3,) of {(a{*);n =1, 2, ---}
and {(8\");n =1, 2, ---} respectively. Then we have (a;) = (8) =0
and [[(a)]|=11(B)]I=1 and ||(a;)—(B8:)|=¢,>0, which contradicts the
assumption that the norm is strictly monotone. The proof is complete.

Given (Z, {ei}ics, ||+]]) and a family of Banach spaces X; (M €4),
the Z-direct sum of {X,};cs, denoted by (3; X;),, is defined to be the
Banach space consisting of # = (x;), ;€ X; (A € 4) such that (||x;[|x,) € Z
with the norm of @, ||z|| = [[(||#:]|x,)|lz;. For the dual (Z*, {ef}ics I-I[*)
of (Z, {ei}ies ||-]]) one can define the Z*-direct sum of {X;},., in a
similar manner, denoted by (C; X3),-.

Throughout this paper except for § 6, Z stands for (Z, {e;}ic4 |1
with an unconditional base {¢,};., and a monotone norm ||-||, Z* stands
for (Z*, {efhiea |- 1I*) and Z|; or Z*|, stands for the restriction of Z
or Z* onto a subset F of A.

2. Definition of the classes. We first introduce the following
class (L,) of Banach spaces.

DEFINITION OF (L,). A Banach space X is in class (L, if the
canonical decomposition X*** = X* @ X* is of [-type, namely, we
have for all z* ¢ X* and fe X*

(L) le* + £Il = lle*[l + |l £l .

A typical example of a nonreflexive space in class (L,) is ¢, It is
not too difficult to see this, bgcause we can identify ¢¥** as all regular
Borel measures on the Stone-Cech compactification SN of all positive
integers 'N. Then c¢f is the subspace of all measures supported on
N and ¢; is the subspace of all measures supported on SN\N. Another
interesting example of this class is the Banach space of all compact
operators on a Hilbert space. We will discuss this example later;
see Proposition 5.

A dual characterization of (L,) is the following.

PROPOSITION 2. A Banach space X is in class (L,) if and only
if in the camonical decomposition X¥ = X** P (X*)* we have for
all xe X X** and @ e (X*)*

[[x + 2|l = Max {|[«]], [[2][} .

Proof. Assume that X is in class (L,). For xe XcC X**, @c
(X*)*, *e X* and fe X* we have |[{z* + f, 2 + @)| < [{z*, 2| +
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<L el = Hle* [ el + (1A el = (le*]] + [ILFID Max {l|z]], @]} =
lle* + f[| Max {||x]|, ||®]]}; hence ||z + @|| = Max{l||z]l, [|#|]}. We wish
to show the reverse inequality; ||z + @|| = Max {||z]], ||®]||}. It is clear
that || + @|| = ||z||. Observe that (X*)* is the dual of X***/X*
and that X***/X* is isometrically isomorphic to X* in the canonical
way, because X is in class (L,). Hence ||@|| = sup {|{f, #>||fe X",
A= 1}sup {|<f, 2+ )|l fe X (| fIl =1} = ||z +o][. Thus we have
|z + @|| = Max {||z|], [|®]|]}.

Conversely assume that ||z + @|| = Max {||z]], ||®]]} for all x¢
Xc X*** and p e (X*)*. For 2*e X* and fe X* we have |[|¢* + f]|| =
sup {[{z*+f, 2+ )| = [{x*, @) + {f, P> || € X with [[z|| =1, pe(X*)"
with [|p|[<1}=sup {|{z*, z) ||z € X, [|z|| < 1}+sup {|{f, P> ||P € (X™)",
llpll =1} = [|a*]| + [|f + X*||. Thus we have [[z* + f|| = [|z*[| +
lf+ X*|| for all z* e X* and fe X*. We conclude the proof by
showing ||f+ X*|| =1|f|]. Given ¢ >0, choose y*e€ X* so that
[l f+y*|l <|lf+ X*|| + & then the inequality proved just above
gives us [ly*|| + ||f+ X*[|= (I f+y* || <[l f+ X*[| +e. Thus we
have [ly*[| <e and [[f+ X*[|>[[f+y*ll —e=[fll—lly*l[ —e>
||l — 2s. This completes the proof.

One easily shows the following result.

COROLLARY. If X and X* are in class (L,) then X is reflexive.
One can consider the following property which generalizes (L,).

DEFINITION OF (L). A Banach space X is in class (L) if in the
canonical decomposition X*** = X* @ X*, for any ¢ > 0 there is a
v = v(e) > 0 such that for all x* ¢ X* and fe X*

L) WA= v(le® + £l = [le*]]) + elle™ + fII .

The following equivalent formulation of (L) may be more under-
standable. For any ¢ > 0 there is a 6 = d(¢) > 0 such that || f|| <e
whenever we have ||z* + f]| =1 and 1 — ||2*|] < 6 for x*e X* and
feX*.

The simplest example of a nonreflexive Banach space in this class
(L) may be the [,-direct sum of ¢, (3 ¢),, for 1 <p < oo. Also
Banach spaces Z with property (4.) are in class (L). These facts
will be shown in a more general setting later; see Theorem 2 and
Proposition 6.

One can give the dual property of (L).

ProroSITION 3. A Banach space X is in class (L) if and only



CLASSES OF BANACH SPACES WITH UNIQUE ISOMETRIC PREDUALS 267

if in the canonical decomposition X = X** P (X*)*, for anye >0
there is a 0 = p(¢) > 0 such that we have

e + @ll = [zl + ¢ll2l|

whenever ||z|| = p||@|| where xe X C X** and ¢ e (X™)*.

Proof. Assume that X is in class (L). Then we have for all
z*e X*, fe Xt and t > v(e), [ ]| = v(l|o* + fll = [la*|]) +ella* + fI] =
tlla* + FIl = llo*|]) + ella* + f]| and thus [[o* + fl| = @/ + &)||a*|| +
1/t + el fll. For ze X< X** and @ € (X*)* with ||z]|/||®]| = t>7(¢)
[<z*+f, x+o) | =[&*, ) +(f, ) I=l=* [ [zl +| Fll Iell=tle]l [|=*]]+
el 1A =llell ¢ +lE/E+enllz*|+@/E+eNll fIISl el E+e)|la* + fll=
(]l + elleDlle* + fll. Thus by setting p = p(e) = v(¢), we have
le + 2|l < 2| + ellell if |lz]] > oll2ll.

Conversely, assume that X satisfies the property stated in the
proposition. For given ¢>0, 2* € X*, fe X*, x ¢ XC X™** with ||z]|=1,
pe(X*)* with ||@]| =1 and p = p(¢/2) we have |pa*, 2) + {f, )| =
|@* + £, oo + 9| < llz* + fllllow + @l < lla* + fllo + (¢/2). By
taking supremum over all x € X with ||z|| = 1 and all @ € (X*)* with
@l = 1, we have plla*|| + [If + X*|| = [|l=* + fI|(o + ¢/2). Hence
@2l =1 fF+ X*|| = olle® + fIl — [lz*|]) + (¢/2)]|]x* + f]l. Thus
we have shown || f|| = v(l|la* + fIl| — ||=*]]) + ¢||=* + f]||, where v =
v(e) = 20(¢/2). This completes the proof.

Proposition 3 suggests the following definition.

DEFINITION OF (M). A Banach space X is in class (M) if there
exists a subspace Y of X* which norms X such that given ¢ >0
there is a o = p(¢) > 0 such that in the canonical decomposition
X*** = X* P X*, we have

(M) ly* + fFIl = lly* Il + ell £
if [[y*|| = ol| f|] where y*€Y and fe X" .

Note that if X is nonreflexive then Y must be a proper subspace
of X* because if Y = X*, then we can choose a net yf (,ed) in Y
such that ||yf|l=1/fIl >0 and ¥y} ﬁ:f in X***, Then we have
0+ DIFI=llof + Fll = supsllowr + fII = sups (loy2 [l + ellfI) =
(0 + ¢ f]l and arrive at a contradiction. Also note that Proposi-
tion 8 can be restated to say that a Banach space X is in class (L)
if and only if X* is in class (M) with the norming subspace Y of
X** chosen to be X.
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DEFINITION OF (P). A Banach space X is in class (P) if in the
canonical decomposition X*** = X* p X*,

(P) ||&*** + «*|| = ||«*|] for all z*e X* implies 2x***eX*.

This property is equivalent to saying that whenever we have a norm
1 projection P onto X* from a subspace Y of X*** then P must
be the restriction onto Y of the canonical projection onto X* from
X***  Hence if X is in class (P), then X* in the only norm 1 com-
plement of X* in X*** and hence X is in class (U). An example
of nonreflexive Banach spaces in class (P) is the [,-direct sum of
s G (X1, ), where 1 < p, <o (n=1,2, ---)and 1= p < eo;
see Theorem 4. Other interesting examples are all successive duals
of the James’ quasi-reflexive space J. This fact has been proved in

[2].
ProPOSITION 4. The class (M) is a subclass of (P).

Proof. Suppose a Banach space X is in class (M) and there is
x** € X*** guch that [|of** + «*|| = [|«*]|| for all x* ¢ X*. We claim
that x¢** is in X*. From the canonical decomposition we have

¥ = —axf — f, where xf ¢ X* and f,€ X*. Thus we have

[l fo + x*|| = ||ag + «*]| for all z*eX*.

Since X is in class (M) there is a norming subspace Y < X* such
that given ¢ > 0 there is a o = p(¢) > 0 such that if y*cY and
lly*Il = pll fol| then

ly* + fill = lly* 1l + ellfoll .

If x7 + 0 then we choose a K so that K||z|| > ol f,]|. The unit

ball of Y is weak™ dense in the unit ball of X*, because Y norms
*

X. There is a net ¥ (L€ 4) in Y with ||y¥|| = K ||« || and ¥ —— Ka

in X*. Thus we have [af + yil| = ||fo +yx|l = [lyfll +ellfill =

K||lxz¥ll + €|l fol]l. By taking the weak™ limit, we have

e + Kag'|] < sups |23 + yi || = Ko || + el fll

which implies that |[|z¥|| < ¢l fs|| for all ¢ > 0. This contradicts
x¢ # 0. Thus we have 2f = 0 and zX** = f, e X" .

We restate the relationships among the five classes we have
defined.

(L) & (L), (L)*< (M), (M)&(P) and (P)&(U), where (L)* =
{(X*| Xe()}. Thus if a Banach space X is in class (L,) or class
(L) them X* is the unique predual of X** and if X is in class (M)
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or class (P) then X ts the unique predual of X*.

In the following separate sections, we will show that each class
(Ly), (L), (M) and (P) is closed under certain operations. More ex-
amples including those showing proper inclusions among the classes
will be supplied in each section.

3. Banach spaces in class (L). One shows that class (L,) is
closed under taking quotients and c¢,-direct sums.

THEOREM 1.

(a) If a Bamnach space X is tn class (L,), then any quotient
space of X is also in class (L,).

(o) If a family of Banach spaces X; (L€ d) is in class (L),
then its cy-direct sum (X X3)., 8 also in class (L,).

Proof. (a) Suppose Y is a subspace of a Banach space X in
class (L,). We have the usual identifications (X/Y)* = Y*, (X/Y)** =
X**/Y** and (X/Y)*** = Y***. Thus the canonical decomposition
(X Y)** = (X]Y)* P (X/Y)" can be identified with Y*'** = Y* P
(X* N Y**+t). This identification completes the proof since for z* e
Y'cX* and feX*NY'**cX* we have from the hypothesis
lfe* + £l = lla*]| + [[FIl.

(b) We only present the proof for the case 4 is countable. The
proof for the general case is similar. Let X = (3}, X,),, and X, € (L)
(n=1,2,---). Weclaim that ||2* + f|| = [[«*|| + || f]| for all z* ¢ X*
and fe X*c X***, Let 2* e X* and fe X*. Since we can identify
X* with (3, X¥),, we have ¢* = 3, «} with [|2*|| = 3, ||} || where
x¥eX¥(n=12--+). Itis sufficient to prove the identify with the
assumption z% = 0 except for finitely many integers, namely, z* =
¥ + -+ + oy for some m. If Y, = (X.on X,),, then we have X* =
(XD PXnDYa) and X*** = (X" DX D--- DX P
Yx**),. We identify the canonical decomposition of X*** with
X*P-- - DXa DY), XD - DX @ Ya), where XJ** =
XrdX, for n=1,2,---,m and Y ** =Y*P Y. Using this
identification, f can be written as f, + --- + f,. + ¢ where f,e X\
n=12 ---,m)andge Y,. Thusa*+ f=af+- ---+25+fi+ -+
fuotg=@+£)+ -« + (@r+ fu) + 9, and we have ||z* + f]| =
o + fill + -+ + llon + full gl and [[fl| =i+ -+ Ffu+9ll=
NFAl+ =+« + | full + llgll, because X*** is the I-direct sum of
Xp**, oo, X** and Ya**. o Since [[af + full = [lax]| + || fall (v =
1,2, .-+, m), we have |[[*+f||=|[ar || +]| fil[+- - +lanl|+]| full+]g]=
HaX|] 4+ -« + llanll + AN+ - + [ fall + gl = lla*]] + || f1l. This
completes the proof.
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As mentioned in §2, ¢, is a typical example of spaces in class
(Ly). In [9], W. B. Johnson and M. Zippin considered the Banach
space C, = (3, G,),, where G, is a certain sequence of finite dimen-
sional spaces. They point out that C., has a quotient space which
fails approximation property. With Theorem 1, one can see that C.,
and this quotient space are in class (I,). Another example of a space
in class (L,) which is different from ¢, is as follows.

PROPOSITION 5. The Banach space of all compact operators on
a Hilbert space with the operator morm is in class (L,).

Proof. Let K(H) be the Banach space of all compact operators
on a Hilbert space H with the operator norm ||-|| and let T(H) be
the Banach space of all operators of trace class on H with the trace
norm [|-||;. Then T(H) can be regarded as the dual space of K(H),
where the duality is given by the trace, (T, K) = tr (TK) for T¢
T(H)and Ke K(H). B(H), the Banach space of all bounded operators
on H with the operator norm, can be regarded as the dual space of
T(H) with the duality also given by the trace, (B, T) = tr(TB)
for BeB(H) and TeT(H). Thus the canonical decomposition
K(H)*** = K(H)* @ K(H)* can be identified with B(H)* = T(H) ®
K(H)*. We need to show that ||T + @|| = | Tl + ||| for all Te
T(H) and pe K(H)*. Given TeT(H), pc K(H)- C B(H)* and ¢ > 0,
we choose K ¢ K(H) with ||K|| =1 and Be B(H) with ||B|| = 1 such
that (T, K> = ||T||.: — ¢ and {p, B) = ||®|| — e. Since T can be ap-
proximated by a finite rank operator in T(H), there is an orthogo-
nal projection P on H with a finite dimensional range such that
NI[—-P)T||.<eand || T(I—P)||.<e. Setting B,=PKP+(I—P)B(I—P),
we have || B,|| £ 1, and {p, B,) = (@, B) because @ annihilates compact
operators. Thus we have T+, B,y ={(T, B, + {p, B,y =tr (TPKP)+
tr (T(I— P)B(I— P)) + {p, B,y = tr (TK) — tr (TPK(I — P)) — tr (T(I —
P)KP)—tr(T(I — P)K{I — P)) + tr (T(I — P)B(I — P)) + {p, B). This
implies

I{T + @, By| = |tr (TK) + {p, B)|

— [ = P)T|l || PK|| — [[TUI — P)||.: || KP||

— |7 — P)||. || KU — P)|| — || T(I — P)||. || Bl
= tr(TK) + {p, B) — 4¢
Z || Tl + @]l — 6e,

and we have [T + @|| = || Tl + ||®|l, which completes the proof.

It is not difficult to see that the space ¢ is not in class (L),
hence C[0, 1] is not in class (L,), because ¢ is a quotient space of
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C[0, 1]. Also note that [, and L“[0, 1] are not in eclass (L,). This
fact will be shown in Proposition 9 in the last section of this paper.

The class (L), which is larger than (L,), is also closed under
taking of quotients and c,-direct sums. In fact it is closed under
more general direct sums: ‘

THEOREM 2.

(a) If a Bamnach space X is in class (L), them any quotient
space of X 1s also in class (L).

(b) If a family of Banach spaces X, (A € A) is im class (L) with
sup; 7x,(e) < +o for all € >0, then the direct sum (3. X3); is in
class (L) for every Z having property (4.).

Proof. (a) As in the proof of Theorem 1, part (a), we identify
the canonical decomposition (X/Y)*** = (X/Y)* @ (X/Y)* with Y*ii=
Y'Y+ nY*t) where Y*c X*C X*** and X' N Y+ € X+t C X***,
Thus X/Y is in class (L) with vy, (e) = vx(e) for all € > 0.

(b) This result follows from Theorem 3 and the duality between
class (L) and class (M). The proof will be presented in §4.

A consequence of Theorem 2 is that Banach spaces with property
(4,) are in class (L). This fact can be generalized as follows:

PROPOSITION 6. Suppose a Banach space X satisfies

(1) There is a net of projections P, (€ A) from X onto reflexive
subspaces of X such that lim,; || P — x|| = 0 for all x € X and || P,|| =
| I — Pl =1 for all ne 4,

(ii) For any & > 0 there is a p = p(e) > 0 such that

lz + yll = ll=]l + ellyll

whenever ||z|| = ollyll, Pax =% and Py =0 for some n€d. Then
X is im class (L). In particular, every Banach space Z with property
(4.) is in class (L).

Proof. Assumption (ii) together with || P,|| = || I — P;|| = 1(x € 4)
implies the following dual property of (ii) on X*; for any ¢ > 0 there
is a o = p(¢) > 0 such that

") elle*ll + lly*ll = (o + e)lla* + y*||

whenever Piz* = 2* and Pfy* =0 for some aneA. This can be
shown in a similar fashion to the proof of part (a) of Proposition
1. Also, in a manner similar to the proof of part (b) of Proposition
1, one can see that lim, || P¥x* — 2*|| = 0 for all * ¢ X* follows from
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(*) and the assumption lim,||Px — z|| = 0 for all x€ X. Note that,
since the range of each projection P; is reflexive, an element x***
belongs to X* in the canonical decomposition X*** = X* P X* if
and only if PF**x*** =0 for all ne4. We claim that

elle*ll + 171l = (o + o) lle* + £l

whenever #* € X* and fe X*. Since, for #* ¢ X*, lim, || P#a* —a* || =0,
we may assume fe X* and ¢* € X* with Pjx* = 2* for some )\, € 4.
Let {z¥} be a net in X* such that «* + f = w* — lim, 2¥ in X*** and
lle* + fI| = |lzX]|| for all v. By setting 2 = Pjz* and y* = 2} — af,
we see that o™ = P{**¢* = P**(a* + f)=w* —lim, P}**z} =w* —lim, 2}
in X*** and f = w* — lim, 2* — ¢* = w* — lim, y* in X***. The in-
equality (*) gives us

olleX [l + [lolll = (o + ol + yll = (0 + &)lla* + [l

for all v, and by taking the weak* limit of a subnet, we have

elle*|l + |l fIl = (o + &)llz* + f1] .
This completes the proof.

Examples of nonreiflexive Banach spaces with property (4.) can
be given by certain Orlicz sequence spaces h, where M is an Orlicz
function; see Chapter 4 in [10] for pertinent definitions and properties.
If M satisfies the condition SuPc,<.,2M(u/2)/M(u) = 8 < 1 for some
u, > 0, then the Banach space hy has property (4.). The proof can
be seen as follows: For ¢ > 0, we need to choose a p = p(¢) > 0 such
that |[(a,) + 0.)|] = |[(@.)|| + ¢ whenever ||(a,)| = o, [[(b,)]| =1 and
(a,) L (b,). We may assume that a, =0 and b, = 0. We can choose
an integer j so that sup,|c,|/2? <u, for any (c¢,) with ||(c,)|| =
S.M(le,]) =1. Let |[(a,)|] =7 and k be an integer so that 2 <
r < 28!, Thus we have

S0 () + M ()
ST () r3u i)
= (3
§1—2k+15+8+§n]M<%;>
= 2’°+‘6+ bl sz’: -6
—1-_& 4B7 1 if k=1 for some 1.
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Thus [[(a,) + )| =7 + e =|[(a,)|| + ¢ if [[(a,)|| = p(e) =2". This
completes the proof.

If M(uw)=(u + 1)In(w + 1) — u then the function complementary
to M is M*(w) = e* — u — 1. Since M* does not satisfy the 4,-condi-
tion at zero, both h, and h} are nonreflexive Banach spaces; see
Proposition 4.b.2, p. 148 in [10]. Because lim,_,2M(u/2)/M(u) =
lim,_, 2M*(u/2)/M*(w) = 1/2 both h, and A} have property (4,) and
consequently are in class (L).

By Theorem 2 the [,-direct sum of ¢, (3 coh, With 1 <p < oo
is in class (L), although these spaces are not in class (L,). The
canonical predual J—* of a James quasi-reflexive space J is in class
(L), as will be shown in Proposition 7. Thus (3} J™),, with 1 <p < o
and (3,J7"),, are in class (L). Note that we will also show that
successive duals of J' are not in class (L); see Proposition 7.

4. Banach spaces in class (M). One shows that class (M) is
closed under taking of certain direct sums.

THEOREM 3. If a family of Banach spaces X; (A€ 4) is in class
(M) with sup; px,(e) < o for all € > 0 then the direct sum (3.; X;),
1s in class (M) for every Z having property (4,).

Proof. The first step is to prove this result when Z is a finite
dimensional space. Assume that X;and Y;Cc X* (1 =1,2, ---, n) are
given so that each Y, is norming over X,, and given ¢ > 0 there is
a 0 =p(c) such that [ly¥ + £l = |ly*|| + ¢||fi]| whenever ye Y,
fieXi and ||lyX|| = ol| fi]| for each i=1,2, ..., n. Setting X =
G, X)),z then X*=(0%, XJ*),.and Y=, Y,),. is norming over X.
Furthermore we have X*** = X* P X* = G, XJ*),. D G Xb) .

We need to show that given ¢ > 0 there is a 0 = 0(¢) > 0 such that

Wy + Al - lyn + falDlze S ALyl <o, Dz +ellALALL -0y
[ falD 22 whenever [[([[y]l, -« -, lyX DIz« = O A, -+, ([ fulD) ]2z and
yreY, fieX} forall 1 =1,2 ---,n. Since Z* has property (4.)

we can choose a 0 = p(¢) such that

e
(&) + M) llze = [1(ED ]2 + m—l H(®)) |l 2+

if )Mz« = Pll@)]lz« and (&) L (). Finally we let 0= 0(c) =
(o(e) + 1)(o(e) + 1) and suppose

WAyl == Nlyn Dl = AUALEN, <« =5 1 falD ]2 -

Without loss of generality we may assume
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WALALL = 1 faDllze =1

and also for some £k with 1 < &k < »n such that

ly¥ll z ol £ill  for i=1,2 ---,k,
Nyl =pellfill  for i=k+1,---,m.

Thus

HAlys + filly - oyl + fell, 000+, 0) ]
= [yl = Hwally 0, -« oy O lze — WCLAN ===, LAl 0, <+, 0)]]
= [[(lwlly - Hya DIz = 110, <=+, 0, Hykall, « <y llya DIl — 1
=0~ ol -, 0, [ firdll, ==, [ fulDllzx — 1
20—(o+1)=p(+1), and
€0, -+, 0, [[wkss + Sewally ===, o + fulD)|l2e
=@+ DO, <+, 0, [| fiwsll, -+, 1 falDllz S0 + 1

Thus we have

WAl + Al ==y llyg + fll, 0, -+, 0) ]2
= P10, =+, 0, |yies + Fewall, -y Nl 4+ LalDlz- -

Hence, by our choice of p we have

[y + filly <=y lym + FalDIlZ
= ”(”y;e +f1”) Tt ”yl?:e +fk”) O’ Tty 0)”2*

+ —2 10, -+, 0, (gt + Ferll, - llwE 4 FulDll2
o+1

= Al ll + el filly =« Nyl + el fll, 0y« -+, O)][2e + €
= Il(liyflly Tty Hyl.f“) 0’ ) O)HZ* +e+e
= dlgill, - Hya DIz + 2e .

We turn our attention to the general case. Assume that X,
and Y; C X (L e 4) are given such that each Y, is norming over X,.
If X=_CnX); then X* =5 X*),. Let Y be the norm closed
linear span of {Y3}ies in (2 Xi*),+ then Y is a norming subspace of
X* over X. For a subset F' of 4 we write X; = Xlicr X2)z, and
thus (Xp)* = X = Slier X¥)zv,. Furthermore the following iden-
tifications can be made: X = X, @ X, r, X* = X7 D Xir and X***=
(X)*** @ (Xpp)***. Furthermore the canonical decompositions
(Xp)*** = XF D (Xp)* and (Xpp)*™** = X5, D (Xpr)*t lead to the
canonical decomposition of X***; X*** = X* P X+ = (XF P X}, D
(X' B (Xar)t). Since Z has property (4,), Z* has property (4..)
implying that for any &> 0 there is a p = g(¢) > 0 such that
e 4+« || < o ]| + ella|| whenever o} € X7, o € X} and [[z)|| =
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ollzs]|. Since the unit ball of X*(X},) is weak* dense in the unit
ball of (X;)***((X4r)***), this same inequality holds for the decom-

position X*** = (Xp)*** @ (X,p)***;

o™ + 2™ < et || + el |

whenever x7** € (Xp)***, xf** ¢ (Xp)*** and ||xf**|| = p||23**||. For
a finite subset F' of 4 we have shown that for any ¢ > 0 there is
a 0 = p(¢) > 0 such that

™ + Fll = lly*ll + el £l

whenever y*e XF NY, fe(Xy" and ||y*|| = 0||f||. Note that p and
0 are independent of our choice of a finite subset F of 4.

Given e with 0 <& <1, we set 5 = ﬁ(s) = Max {0(¢), 1 + g(e)(e + 1)}
and we claim that ||y* + f|| =< |[y*]| -+ 4¢||f|| whenever y*e Y, fe X*
and ||y*|| > @/ f|l. Without loss of generality we assume || f| = 1.
We choose a finite subset FFC 4 so that y* = yF + y¥, yreXinY,
yreXiyNY, [lyfll >0 and [[yX||<e. Then we have f=f +f,
with f e(Xp)* and f,€(Xqnr)*. Note that ||fA], LI =|fll=1,
because the projections from X*** onto (X,)*** and (X,z)*** are
of norm 1. Since [[yFf + fill >0 —1=p) e+ 1) = pE)|ys + fll,
we have {|y* + fll = [[yf + fi+ v + Ll = lyr + All +ellyr + Ll =
ly* + fill + ele + 1) < |lyF + f.]| + 2¢. Furthermore since ||y¥|| = § =

0(e) || f1l] we have ||y + Al S |yl +el|l Al = llyfll+e = [y +y ] +2e.
Thus ||y* + fI| < |ly*|| + 4e and the proof of the theorem is complete.

The proof of part (b) of Theorem 2 is completed by observing
that (i) if Z has property (4.) then the basis of Z is shrinking (see
Proposition 1, (b)), (ii) the norm closed linear span of {X};., in
CLu X 18 S X)), = X and (iii) Proposition 3 on the duality
between the class (L) and the class (M).

In §6, we will show that a James quasi-reflexive space J is in
class (L)* c(M). Thus for 1 < p < o, 5 J), 18 in class (M). We
do not have any example of a Banach space in class (M) which is
not in eclass (I)*. Note that Theorem 3 will not give us such an
example because if a family of Banach spaces X; (. € 4) is in class
(L) with sup,vx,(¢) < +oo for all ¢ >0 then (3, X}), is in class
(LH)* for every Z with property (4,).

5. Banach spaces in class (P). One shows that class (P) is
closed under taking of more general direct sums than class (M).

THEOREM 4. If a family of Banach spaces X, (€ 4) is im class
(P) then the direct sum (O X)), 1s in class (P) for every Z which
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has property (4,) or is reflexive.

Proof. (a) Z has property (4,). We will use the notations and
the canonical identifications used in the proof of Theorem 3 (We
replace F' by a single point \,). If X = (3; X)), is not in class (P),
there is a nonzero zFf ¢ X* and f,e X* so that

I fo + a*|| = ||z + «*] for all z*e X*.

Choose A, so that z = 2] + 27 with 2f # 0, 2f e X7 and z’e XX,,.
Furthermore we have f, = f, + f, with f,e(X;)* and f, e (X4;)"-

Since Z* has property (4.) we have the following property of
the decomposition X* = X* @ X1,,: for any ¢ > 0 there is a p =
() > 0 such that [|of + [ = ||| + ¢f||| whenever e X7,
xf € XXuy and [|o¥[| = plla||. Since the unit ball of X7 (Xi,,) is
weak™ dense in the unit ball of X7#** ((Xu,)***), this same inequality
holds for the decomposition X*** = X7** & (X)) **;

(1) e 4+ 2™ = [l || + ella™* ||
whenever x** e X7**, € (Xpnu)**™
and [|@f**[| = o]l

Since X, is in class (P) and 27 # 0 is in X, there is a 6 >0
so that

E={yf e XZ|IIfi + ylll + 0 <[l + v}

is not empty. If yf is in E, then one can see that (n+1)(zF +y*)—y7,
is also in K for all n =1,2, .-, Thus E is unbounded.

If f,=0, we let y¥ be any element in E and if f, = 0 we choose
y¥ € E with sufficiently large norm so that

15+ w2l > 6 (720) 1A

Il £l
If f, #+ 0, then, by inequality (1)

oty =lA+y +LI=1A+y] +— Hfll 1l

=||fi+ykll + 0 <|lzF + yr|| .

Thus we have || f; + y7|| < ||2F + y¥|l. This inequality clearly holds
when f, = 0 and y{ is in E. We arrive at the contradiction:

1o + yrll <llzf + y¥ll = |l + vl .

The last inequality depends on the fact that the projections associated
with the decomposition X* = X @ X%, are of norm 1.
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(b) Z is reflexive. If X = (3; X)), then one can identify X*
with G X#), and X*** with (&, X#**),.. We have X*** =
X*P X =CuX B X),. We need to show that if given
2= (2f) in X* and f=(f) in X* so that ||f+ «*| = ||z* + z*||
for all »* in X*, then 2* =0. If 2* is not zero then we choose
N €4 so that zf 0 and 0 > 0 so that

B = {ar e Xilllfi, + afll + 0 <|l2f + 2F]}

is not empty. As observed in (a), E is unbounded in Xj. Finally
we choose a finite subset F' of 4 so that )\, is in F and

(D lnrll < eo

where ¢ > 0 will be chosen later.

We denote F'={\, sy -+, N}, 25 =27 and fy, = f; for i =1,2, -+, m.
We may assume that there is a & with 1 < %k < n so that z* == 0 for
1=1,2,---,kand 2 =0 for ¢ =k + 1, ---, »n. Since each X, is in

class (P) we choose y; € X 1 =2, ---, n so that
Wfi + il = llef +yfll for i=2,---,k,
i+l =0 + [yl for i=k+1,---,m
where o' =¢0/[[(0, +-+, 0,1, -+, 1)[[«,. For any xe X; if we set
k

= (af, y¥, ---, y¥) we have the following inequality:

W+ ol S (Fy o0 fu) + 2% + €0
= IUfA A+l e+ wdlly - U + ud Dz, + €0
= IALA + arll e + wll, -y 2l + widl,
O + kil -+ 0" + llyd DIz, + €0
= LA + 2l el 4+ w2l -5 llzn -+ v IDllge, + 280 .

We claim that

WALA 4+ @l 2 + vl - ll2n + ya Dz
+ 2¢0 < |[(llz + @i ll, -+, 122 + ¥ Daeip

if 2f is in E with sufficiently large norm and 2¢ < (1 — ¢)||ef ||,
where e} is the element of Z* with the \-coordinate =1 and -
coordinate = 0 for all » == A,. This can be seen as follows. The funec-
tion @(t) = ||(¢, ||z + yll, -+, l|z5 + yx|Dllz, is a convex function
for ¢ = 0. Thus we have (@(f,) — @(¢)/(t, — t.) = (P(,) — (0))/(t, — 0) >
1—-29)(,0,: -, 0|, = 2 for sufficiently large ¢, and ¢, > ¢,. This
implies that

@(tz> = (tz — tl)zs + (p(tl) .
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The result follows by putting ¢, = || fi + || and ¢, = ||2F + 27]| for
an element xf € £ with sufficiently large norm. We have shown that
Nf+ x*| < ||(zF, «--, 2%) + a2*|| < ||]z* + 2*||. This contradicts our
assumption and completes the proof.

An example of a Banach space in class (P) is X = (3 X, ),
where X, = (X 1), and 1 < p, p, < . Note that if p, — o then
X is not in class (I)*. In a previous paper [2] we have shown that
the James quasi-reflexive space J and all its successive duals are in
(P). In the next section we will show that all of the successive
duals of J are not in class (M).

6. Some examples.
(i) The James quasi-reflexive Banach spaces. The James space

(J, ||-]]) is defined in [7] to be the space consisting of all complex
sequences ¢ = (x(n)) such that

l2]] = sup (35, | Sner; ®(m)[)* < + o0

where the supremum is taken over all choices of disjoint finite in-

tervals I, I,, - --, I, of positive integers. James [8] also introduced
an equivalent norm [||-]|| on J for which (J, [||-]||) is isometrically
isomorphic to (J, |||-||)** (see [2], Theorem 3).

In this section, J will always stand for (J,||-|]). The space J
has the natural normalized basis {e,}; for every xeJ we have & =
S a(n)e,, where e, = (e,(§)) = (9,,;) for m,j=1,2,---. Let {ez}
be the biorthogonal sequence with respect to {e,} and let Y be the
closed linear span of {e}}. Since {¢,} is a boundedly complete mono-
tone basis of J, J is isometrically isomorphic to the dual Y* of Y
by the canonical mapping (see p. 9 of [10]). We introduce the linear
functionals @, on J by @,(x) = 3, 2(j) for xeJ and n=1,2, ---.
As proved in [7], (,} forms a normalized basis of J* and we have

J*=[p]DY.

We define f, e J** as follows; f,(,) = 1 and £, annihilates Y. Then
we have J** = [f,] @ J. More generally, denote J* (n =0,1,2, ---)
as the n’th dual of J, then we have

J=J'cJ*Cc--.cJJmrC -, and

Jt=JcJlc...cJmrC ..,

For » = 8, f,eJ" is defined as follows: f.(f._,) = 1 and £, annihilates
J*'. Thus the one dimensional space [f,] is a norm 1 complement
of J*=* in J* and we have

J* = [f.] D J? for n=2,8, --.
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For even n = 2, {f., fusy ** ") Joy Jo» €1, €, +++} forms a basis of J* and
for odd = = 3, {fm fn—Z’ ) fs; fs; Py 6?; 6;, ot '} forms a basis of J".

In Theorems 1 and 2 of [2], we have shown that J*, n =
—1,0,1, --- are in class (P), where J-! = Y is the unique predual
of J =J° we also showed that (J, |||-]||) and (J, ||]-|])* are in class
(P).

PROPOSITION 7.
(a) J* 1s in class (L) and J"* is not im class (L) 1f n += —1,
(b) J s in class (M) and J™ is not in class (M) if n '+ 0.

Proof. (a-1) J~' is in class (L). Proposition 3 implies that it
is sufficient to show that in the canonical decomposition J*** =
J*PJ =J*P[f], for any ¢ > 0 there is a p = p(¢) > 0 such that
l|z* + fi]] £ ||2*|| + ¢ whenever 2* € Y = J! and ||2*|| = p. If a* =
Sir-. Buer, then because f, = w*-lim, @, in J***, we have

le* + fill = supis. ||25- Bueid + il -

If x =37, ae, is in J, then © =, + 2, where z, = >i_, a,e, and
T, = Siprs @8, Thus [(@% + @)@)] = [2*(x,) + @u@.)| = [|2*]| ||« ]] +
ol el = (o™ [P+ 2[5 @, ||+ |2 )72 = (J|2* [P+ 1)"||»||. Hence
l* 4+ || = (||a*|*+1)"* if [>n, and we have ||2*+ fi|| = ([|a*[* + D"
This inequality holds for all 2* in J~' by the continuity of the norm.
One can see that, for any ¢ > 0, if x* is in J~' and ||«*|| is suf-
ficiently large then ‘

le* + fill = (la* [P + D = [|2*] + ¢

(a-2) J* is not in class (L) if n = —1. If J" were in class (L)
then for a given ¢>0 there is a 6 =0d(¢)>0 such that if || f,.s+ 2, ]| =1
and 1 — ||z, <6 for x,.,€J*" then || f.ll <e. For n =0, we
will choose x,4; in J*™ so that || f,4s + ®p4i|| = [|%,4.]| = 1. Thus we
have a contradition, 1 =< || fusll <e. Let z,= —f, and 2,4, =
—fonts — Xy fOr m = 1. Let = —o, and Bontr = —Sonts — Pone for
n = 1. Then we have f,; + %,:, = — 2,45 for all nw = 0. We complete
the proof of this part by showing that ||z,||=1 for all = 1. In
Lemma 2 of [2], we showed || f,|| = 1, thus we have [|z,|| = 1. As-
sume ||&,,||=1, then 1=|]a,, ||| fonro T Xeul| = |02 ]| Since foro=w*—
lim, (—x,, + (—1)"e,) in J*** (see [2], Lemma 1, (a)), we have ||2,,.,|| =
| fonte + 50| = sUDL || — %20 + (—1)"€; + @ || = sup; [[(—1)", || = 1. The
proof is completed for even n. For odd =, the proof is completed
in a similar fashion by using the facts the f,,+. = w*-lim, (%,,_, +
(=)@, + (—1)"*'p,) in J*** (see [2], Lemma 1, (b)) and ||@, — @.|| =1
for all £ > 1. Thus we have shown that J* is not in class (L) for



280 LEON BROWN AND TAKASHI ITO

all n = 0.

(b-1) J-' = Y is not in class (M). This can be seen by observing
that J** = Y*** = Y*@P Y* = JP|[f,] and showing that if Z is a
subspace of J which norms Y then Z =Y. Since Z norms Y,
Z*NY={0}. If Z=+J then Z* +#{0} and J*=Z'@ Y since
dim J*/Y = 1. For any z*eZ* and y*eY, ||z* + y*|| = sup {|(@* +
y)@)||zeZ ||x]] =1} = sup{|y*@)||z e Z, |[z]| =1} = ||y*||. Thus ¥
has a norm 1 complement in J*. This contradicts the fact that Y
is not norm 1 complemented in J* (see the proof of Theorems 1, 2)
of [2]. Thus J has no proper subspace of J = Y* which norms Y.
This implies that Y is not in class (M). See the remark after the
definition of class (M) in §2.

(b-2) J is in class (M). From (a-1), J* is in class (L). Hence
J = (J)* is in class (L)* which is contained in class (M).

(b-8) J* is not in class (M) if » > 0. This can be seen by
observing that J"*° = J"" @ (J*)* = J** D[ f.+s] and showing that
if Z is a subspace of J**' which norms J” then Z = J*+'or Z = J*%.
Thus if J* were in class (M) then Z = J*' and Proposition 3 says
that J"! is in class (L). This contradicts part (a-2). Since Z norms
Jr, Z*NdJ" = {0}. If Z -+ J**', then we have J*** = Z* @ J". Again
one sees that Z* is a norm 1 complement of J* in J***. We have
shown in [2] that [f,:.] is the only norm 1 complement of J” in J"*%
see the proof of Theorem 1, (1) of [2]. Hence Z* = [f,+.], 80 Z =
(ZY)" = [furzly 80 Z = (Z*)" = [fosel” = J**. The proof is complete.

The following proposition is proven in a manner similar to
Proposition 7 and we omit the proof.

ProrosiTION 8. (J, |||-]l) and (J, |||-]I)* are meither in class (L)
nor im class (M).

Note that the Banach spaces (J, ||-|))* for = >0, (J, |||-]]]) and
J, II-1Ih* are in class (P) but they are not in class (M).

(ii) The Bamach spaces L* and H=. As noted in the introduc-
tion, the Banach spaces L® and H” on the unit circle have unique
preduals, namely, L' and L'/H{. This fact is actually proved by
showing that L' and L'/H: are in class (U); see [1], [6] and [12].
The purpose of this part is to point out the following:

ProprosiTION 9. (a) L' and L'/H} are mot in class (P).

(b) L), where pt is a o-finite measure, is in class (P) if and
only if p is purely atomic.

(e) The dual of C(2), where 2 is a compact Housdorff space,
18 wn class (P) if and only if 2 has no perfect compact subset.
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Proof. (a-1) L' is not in class (P). The following proof is a
modification of our proof suggested by P. Wojtaszezyk which also
enables one to prove L'/H; is not in class (P).

We have the usual identification of L = C(2), where 2 is a
compact Housdorff space and (L~)* = M(£2), the space of all finite
Randon measures on 2. Furthermore M(2) = M, @, M, where M,(M,)
is the set of all measures absolutely continuous (singular) with respect
to the measure on 2 associated with Lebesque measure on the unit
circle, and L' is identified with M,. The canonical decomposition
(LHY*** = (LH* @ (LY)* can be identified with M(2)* = C(Q)P M..
We claim that for any f, in C(Q) there is a ¢ in M} such that

le +Fllzllfi +fII  forall fel(Q).

Let P be the projection onto M, associated with the decomposition
M(Q)=M,P M,, then P* is a norm 1 projection from M(2)* onto
M;. For given f, in C(2) c M(2)* let @ = P*f,. Then for any fin
C(2)

I[fo + Fll = sup {| fu(w) + fw)| [|we2}

= sup {|[p(fe + Dllpee M, o]l = 1)

= sup {[Pe(fo + Dllpe M, |1l = 1}
|P*fy + P*f| = [| P*(P*fo + NIl = [|1P*f, + [l
=lle+ fI.

This completes the proof of part (a-1).

(a-2) LYH} is not in class (P). This is proved in a manner
similar to part (a-1) by using the decomposition (LYH})** =
L'/H; @, M,/M, N (H~)" (this decomposition follows from the abstract
F. and M. Riesz Theorem; see theorem 7.6 on p. 44 in [4]) and the
projection P of (LYH})** onto M,/M,N (H*): associated with this
decomposition.

(b) If g is purely atomic then L'(z) is isometrically isomorphic
to I/, which is in class (P) since ¢, is in class (L,). If g has no atoms
then a trivial modification of the proof of part (a-1) shows that
L'(p) is not in class (P). The proof is completed by showing that
if a Banach space X is the [/-direct sum of Banach spaces Y and Z
and Y is not in class (P) then X is not in class (P). Sinece X*** =
Y** @, Z*** =(Y*+ YD, (Z* ) Z*), the canonical decomposi-
tion of X*** is X* X' =(Y*@D, Z*)D(Y* D, Z*). If Y isnot
in class (P), there is a nonzero % in Y* and f, in Y* so that
f +v*Il = |ly* +vy*|| for all y*eY*  Thus we have for y*
in Y* and 2* in Z% |[[fi+y* + 2% = Max{||fi + y*], [|*[l} =
Max {||lys" + v* I, [2*|l} = llys’ + y* + 2*|| and we have ||f, + 2*|| =
lly + «*|| for all #* in X* which says that X is not in class (P).

Il
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(¢) The proof of this part follows from the argument given in
part (b) and the fact that the dual of C(2) contains a non-atomic
measure if and only if 2 contains a perfect compact subset.

(iii) Remark. A von Neumann algebra has a unique predual
which is in eclass (U). This was pointed out in the introduction.
It is known that the second dual of a von Neumann algebra is a
von Neumann algebra; see Theorem 1.17.2, p. 43 of [11]. This raises
the question if a Banach space X has a unique predual, does X**
have a unique predual? This problem remains open. We do not
even know if X is in class (U) must X** be in class (U). However,
all other classes we have defined are not invariant under taking of
the second dual. Examples: ¢, is in class (I,) and (L) but ¢¥* = [,
is not in class (L) because (I.,)* is not in class (P); see Proposition
9, (¢). The James quasi-reflexive space J is in class (L)* and in class
(M) but J** is not in class (M); see Proposition 8. [, is in class
(P) but I}** = (I.,)* is not in class (P).

Addendum: In a recent paper by G. Godefroy (Espaces de
Banach: Existence et unicité de certains préduax, Ann. Inst. Fourier,
Grenoble, 28, no. 3 (1978), 87-105) several different conditions are
presented; each of which imply that a Banach spaces is in the class
(U) defined in this paper. Many of the examples of Banach spaces
which delineate the classes (L,), (L), (M) and (P) mentioned in this
paper satisfy one of these conditions. However, it is an open
question as to the relationship between Godefroy’s result and these
classes.
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