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CLASSES OF BANACH SPACES WITH UNIQUE
ISOMETRIC PREDUALS

LEON BROWN AND TAKASHI ITO

We introduce several classes of Banach spaces for which
the dual or second dual of each member has a unique isomet-
ric predual. It is shown that these classes are closed under
certain operations. Examples are presented, including those
which show that these classes are different.

A Banach space Y is called an isometric predual, or simply a
predual, of a Banach space X if the dual F* of Y is isometrically
isomorphic to X. A Banach space X is said to have a unique
(isometric) predual if X has a predual and all preduals are mutually
isometrically isomorphic. In general a Banach space does not have
a unique predual even if it has a predual. A simple example of this
is the space I1, because c0 and c are isometric preduals of I1 but not
isometrically isomorphic. A. Grothendieck [5] first noticed that L°°-
spaces have unique preduals, and then S. Sakai generalized this to
von Neumann algebras, see p. 30 of [11]. One of the authors has
shown in [6] that every quotient space of a von Neumann algebra
by a σ-weakly closed subspace, as a Banach space with quotient norm,
has a unique predual. Also T. Ando [1] and P. Wojtaszczyk [12]
have shown that the space H°° has a unique predual. Recently, we
have shown in [2] that the James quasi-reflexive space and all its
successive duals have unique preduals. Evidently, these are the
only known nonreflexive Banach spaces with unique preduals (see
Addendum).

In this paper we introduce several classes of Banach spaces for
which the dual or second dual of each member has a unique isometric
predual. We show that these classes are closed under certain opera-
tions. Throughout the paper, we present examples to show that
these classes are different.

We use the following standard notation. We shall always regard
a Banach space X as a subspace of its second dual X** in the canonical
way. A subspace means a closed linear subspace. For a subset A
of a Banach space X, AL denotes the annihilator of A in the dual
X*. If A is a subset of a dual Banach space X*, then Aτ denotes
the set of all elements in X annihilated by A. For a subset A of
a Banach space X, [A] denotes the closed linear span of A in X, and
I = 4 φ ΰ means that X is the direct sum of subspaces A and B.

If X is a Banach space, then I w = Γ φ I * where X* is norm
1 complemented in X***. That is, the projection from X*** onto

261



262 LEON BROWN AND TAKASHI ITO

X* associated with this decomposition has norm 1. Thus a sufficient
condition for X* to have a unique predual is that X± is the only
norm 1 complement of X* in χ***# This is so because if 7 is a
predual of X* then Y can be identified as a subspace of X** and

χ * * * = χ * φ γi ( g e e Dixmier [3]). Thus X 1 = YL and X = (X1)7 =
(YL)J •= Y. If X1 is the only weak* closed norm 1 complement of
X* in X***, we say that Xis in class (U) (All of the above examples
actually have preduals which are in class (Ϊ7).)

In § 1, we discuss unconditional basis and weak* unconditional
basis with property (z/x) and property (4J. These properties are
used in the direct sum of Banach spaces in later sections. In § 2,
we introduce the classes (Lo), (L), (M) and (P), and discuss their
relationships with each other and with the class (U) (see Addendum).
Sections 3, 4, 5 are devoted to the classes (Lo) and (L), (Λf), and (P),
respectively. In § 6, we examine certain examples, namely, the James
quasi-reflexive spaces, LΓ and if00. We conclude the paper with some
final remarks in § 6.

1* Preliminaries* Let (Z, {eλ}λeΛ, || ||) be a Banach space Z with
an unconditional basis {eλ}λeΛ and a monotone norm ( | | Σ Λ « ^ | | ^

IIΣλiδ^ll if \oίχ\ ^ \βχ\ for all XeΛ). We denote elements z oi Z
by 2 = (aλ), where aλ is the ^-coordinate of z. The dual space
(Z*, {e*}χev, || ||*) ^ s the unconditional weak* basis {e*he > which is
the biorthogonal family of {e^6j, and the monotone dual norm || ||*
We denote elements z* of Z* by z* — (ξλ), where ξλ is the β?-coordinate
of z*. Note that if {eλ}λeΛ is a shrinking basis then {β?he actually
is a basis for ϋΓ* (see [10] for pertinent definitions and notations).

DEFINITION. We introduce two properties denoted by (z/J and

(4).
(1) (Z, W UΛ, I HI) has property (ΛJ) if for any ε > 0 there is

a p = jθ(ε) > 0 such that

whenever (αΛ) and (^) have disjoint support (denoted by (aλ) J_ (βλ))
and | |(α,)| |^^IK/3,)| |.

In a similar fashion one can define that (Z*, {e*}λeΛ, || ||*) has
property (JJ .

(2) (Z, fe};e^, || ||) h a s property (JJ if for any ε > 0 there is
a 7 = 7(ε) > 0 such that

whenever (aλ) 1 (βλ).
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In a similar fashion one can define that (Z*f {e*}λB , || ||*) has
property (4).

For Z = c0 or lp (1 ̂ p^ oo) one can show that cQ and lp(l<p^°°)
has property (ΔJ) with ρeQ(e) = ρloo(e) = 1 and ρlp(ε) = ((g - l)/qe)q-\
where 1/p + 1/q = 1. Also Zp (1 <̂  p < oo) has property (4) with
7h(ε) = 1 and 7zp(ε) = ((p — type)*-1. Furthermore ZL does not have
property. CO and c0 and i^ do not have property (4). Note also
that certain Orlicz sequence spaces have property (Δt) or property
(ΔJ); see the discussion after Proposition 6.

The duality between properties (ΔJ) and (Δλ) can be shown in a
straight forward manner.

P R O P O S I T I O N 1. Let Z and Z* be (Zf{eλ}λBΛ,\\ \\) and (Z*, {ef}λeΛ, || -1|*)
respectively.

(a) Z has property (ΔJ) or property (ΔJ if and only if Z* has
property (Δλ) or property (ΔJ) respectively.

(b) // Z has property (Jro) or property (Δλ) then the basis {eχ}λeA

is shrinking or boundedly complete respectively. Hence if Z has
both property (ΔJ) and property (4), Z is reflexive.

(c) If Z has property (Δ^ then the norm of Z is strictly mono-
tone, that is, \\(aλ)\\ > \\(βλ)\\ if (\aλ\) $ (\βλ\). Conversely, if Z is
finite dimensional and the norm is strictly monotone then Z has
property

Proof, (a) Assume that Z has property (ΔJ). Given ε > 0,
<5 > 0, (&) and (ηλ) in Z% with (ξλ) J_ (ηλ), there are (aλ) and (βλ) in
Z with | |(αi)| | = 11(̂ )11 = 1 such that \\(ξλ)\\* - 3 ^ Σ ^ f Λ and
11(̂ )11* •" ̂  = ΈiλVλβt- Furthermore, we may assume that the sup-
ports of (aλ) and (βλ) are equal to the supports of (ξx) and (ηλ)
respectively. Thus

P(ε)ll(eθll* + II to)II* ^ P ( £ ) Σ ^ + Σviβx + (P& + D*

- Σ (ξx + Vύ(p(e)aλ + βλ) + (^(ε) + 1)3

^ life) + to)IIΊI/o(e)(αa) + (#011 + (/9(s) + l)δ

^ life) + to)ll*(ί>(ε) + ε) + (p(e) + l)δ .

Hence we can conclude that p(e) \ \ (ξλ) 11 * +11 to) 11 * ̂  (^(ε) + ε) 11 (ξλ) + (ηλ) \ \ *
which means that Z* has property (Δx) with γ(ε) = p(e) for all ε > 0.

Conversely, suppose that Z* has property (Δt) and we are given
ε > 0, (aλ) and (βλ) in Z with (α;) J_ (βλ). Choose (ξλ) in Z* so that

| | (ί a) | |* - 1 and Σa&to + /3i) - II to) + (/5,)||. Setting ς'x = f, fe' = &)
if λ is in the support of (aλ) ((βλ)), one has fe) = fe) + fe') with
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(£ί) J_ (£') and 11 (aλ) + (βλ) 11 = Σ i (£ + ?") (α, + #,) = Σ i f ί«i + Σ ; f i'/S, ^
IK&II* + II(ft)II IKίϋOII*. If II (a*) II ^ 7(s)IK/3;0ll, we have

+ ii to) ii ii (in ii* ^ iK^iiΓ^^iiXfOir +
K I I

Thus Z has property (iM) with ^(ε) = τ(ε) for all ε > 0.
In a similar fashion one can show that Z has property (4) if

and only if Z* has property (4»). We omit the details of this proof.
(b) Assume that Z has property ( JJ . By part (a) Z* has

property (A,). Given (&) in Z* with \\{ξx)\\* = 1 and ε > 0 there is
a 7 = τ(e) > 0 so that for all finite subsets H of A 7 life) U Γ +
||(ί.)Uc||* ^ 7 + ε or ||(f,)Uc||* ^ 7 (1 - HfeύMl*) + e. Since {e?}2β̂

is a weak* basis for Z* we have 1 = | | (^) | | * = sup^ IKWUIΓ Choos-
ing a finite subset H of Λ so that 7(1 — ||fe)UIΓ) < ε, we have
IKί O W|* < 2ε. Thus the base {β^ej is shrinking.

Assume that Z has property (4). Suppose we have a function
φ on A with sup# ||<p|//|| < +°°, where i ϊ is a finite subset of A.
We need to show that there is an element (aλ) in Z such that
φ(χ) — aλ for all λ 6 A. To see this, it is enough to show that for
any ε > 0 there is a finite subset Hε of A such that ||9>U|| < ε for
all finite subsets FdHε

c. Without loss of generality, we may assume
sup// H^UII = 1. Given ε > 0 there is 7 = τ(ε) > 0 such that

Ύ\MH\\ + \ \ φ \ F \ \ ^ ( Ύ + e)\\φUF\\^7 + e

for any finite subsets H and F with H Π F = 0 . Thus, choosing a
finite subset H ε of A so that 7(1 — II^UH) < ε, we have | |?>|F | | < 2ε
for all finite subsets FaH%

(c) Suppose the norm || || of Z is not strictly monotone. Then
there is a (ax) in Z, a λ0 in 4 and a δ with 0 ^ δ < 1 such that
eλo 1 (aλ) and \\eλo + (aλ)\\ = P ^ o + (α λ ) | | . Since the increasing convex
function f(t) = ||fe0 + (α^)|| for ί ^ 0 is constant for 8 ^ ί ^ 1, /
must be constant for 0 5j ί <; 1 and one has \\eλQ + (α^)|| = | | (^)ll
Choose ε > 0 so that | | ^ J | > ε||(α^)|[. Thus we have, for all 7 > 0,
711 (a*) 11 + I l^o 11 > (7 + e)\\eλo + (aλ)\\ which implies that Z does not
have property (z/J.

Conversely suppose that Z is finite dimensional and the norm
IIΊI is a strictly monotone norm without having property (4). If
in the inequality defining property (Jx) one replaces \ax\ + \βx\ by
aλ and \ax\ by ^ one sees that for some ε0 > 0 there are (a{

λ

n)) and
(/9ί }) in ^ with || ( α ^ ) II = 1, (aiw)) ^ (/Si%)) ̂  0 and 2 ^ || ( α ^ ) - ( ^ ) l l ^
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)ll] + ε0 for all n — 1, 2, . Since Z is finite dimensional
we may choose accumulation points (aλ) and (βλ) of {(αj%)); n — 1, 2, •}
and {(βχn)); n = 1, 2, •} respectively. Then we have (α*) ̂  (/S;) ^ 0
and ||(αa)IΓ=||(/3i)ll = l and \\(aλ)-(βλ)\^ε0>09 which contradicts the
assumption that the norm is strictly monotone. The proof is complete.

Given (Z, {eλ}λeΛ, || ||) and a family of Banach spaces Xλ (XeΛ),
the ^-direct sum of {Xχ}χeA> denoted by (YiχXχ)Z9 is defined to be the
Banach space consisting of x = (χλ), xx eXλ(xe A) such that (|| xx \\x^) e Z
w i t h t h e n o r m of x, \\x\\ = \\(\\xχ\\Xλ)\\z. F o r t h e d u a l (Z*, {eΐ}λeΛ, || | | *)
of (Z,{eλ}χeΛ, ll ll) one can define the indirect sum of {Xλ}λeA in a
similar manner, denoted by QJJ Xχ)z*

Throughout this paper except for § 6, Z stands for (Z, {eλ}λeΛ, || ||)
with an unconditional base {eχ}χeΛ and a monotone norm || ||, Z* stands
for (Z*, {e*}χeΛ, ll ll*) and Z | F or Z* | F stands for the restriction of Z
or Z* onto a subset F oΐ Λ.

2. Definition of the classes* We first introduce the following
class (Lo) of Banach spaces.

DEFINITION OF (LO). A Banach space X is in class (Lo) if the
canonical decomposition X*** = X* 0 χL is of ^-type, namely, we
have for all x * e Γ and feX1

C&o) Ila* + / I I = I I * Ί I + 11/11.

A typical example of a nonreflexive space in class (Lo) is c0. It is
not too difficult to see this, because we can identify c0*** as all regular
Borel measures on the Stone-Cech compactification βN of all positive
integers 'N. Then c0* is the subspace of all measures supported on
JV and c0

L is the subspace of all measures supported on βN\N. Another
interesting example of this class is the Banach space of all compact
operators on a Hubert space. We will discuss this example later;
see Proposition 5.

A dual characterization of (Lo) is the following.

PROPOSITION 2. A Banach space X is in class (Lo) if and only
if in the canonical decomposition Xw = X** 0 (X*)1 we have for
all xeXaX** and <pe(X*)x

| | x + ?>|| = Max {IMUMI}.

Proof. Assume that X is in class (Lo). For a e l c l * * , <ρe
(X*)1, x* 6 X* and / e X1 we have | O* + /, x + φ) \ ^ | (x*, x) I +
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/, <P>\ ^ \\x*\\ \\x\\ + ll/ll II<P|| ^ ( | | s* | | + ll/ll) Max {|M|, \\φ\\) =
\\x* + / | |Max{ | |a? | | , ll^ll}; hence \\x + φ\\ ̂ Max{ | | a? | | , ||?>||}. We wish
to show the reverse inequality; \\x + φ\\ ̂  Max {11^11,11^11}. I t is clear
t h a t \\x + φ\\ ̂  | |α?||. Observe t h a t ( X * ) 1 is the dual of χ * * * / χ *
and t h a t X***/X* is isometrically isomorphic to X 1 in the canonical
way, because X is in class (Lo). Hence ||<p|| = sup {|</, φ)\ | / e X1,
ll/ll ^ l } s u p { | < / , * + ^ > | | / e X \ | | / | | ^ l } ; g | | £ + ̂ | | . Thus we have

Conversely assume t h a t \\x + φ\\ — Max {\\x\\, \\<p\\} for all xe
I c l w a n d < p e ( X * ) x . F o r x * e l * a n d / e X 1 we have | | α * + / | | =
sup { \ ( x * + f , x + φ)\ = \ ( x * , x ) + (f, φ ) \ \ x e X with \ \ x \ \ ^ l , φ e ( X * ) L

with | | 9 >| |^l}=sup{ |<a?*,a?>| |a?eX > | | x | | ^ 1 }+sup {|</, ^> 11^ 6 ( X * ) 1 ,
ll^ll ^ 1 } = I k Ί I + H / + X Ί I . Thus we have \\x* + f\\ ^ ||a?*|| +
| | / + X * | | for all x * e Γ and fsX\ We conclude t h e proof by
showing | | / + X*\\ = \\f\\. Given ε > 0, choose f e Γ so t h a t
I I / + V*\\ < 11/+ -X"*|| + e, then the inequality proved just above
gives us | |2/*|| + | | / + X * | | £\\f+V*\\ < I I / + ^ Ί l + e. Thus we
have | | y * | | < β and | | / + X * | | > | | / + y*\\ - ε ^ | | / | | - | | i/* | | - ε >
ll/ll — 2s. This completes the proof.

One easily shows the following result.

COROLLARY. If X and X* are in class (Lo) then X is reflexive.

One can consider the following property which generalizes (Lo).

DEFINITION OF (L). A Banach space X is in class (L) if in the
canonical decomposition X*** = X * φ X 1 , for any ε > 0 there is a

7 = 7 ( ε ) > o such that for all x* 6 X* and feX1

(10 ll/ll ^ 7 ( | | * * + / | | - | l * Ί I ) + ε p * + / l | .

The following equivalent formulation of (L) may be more under-
standable. For any ε > 0 there is a d = d(e) > 0 such that | | / | | < ε
whenever we have ||x* + / | | = 1 and 1 — | | # * | | < δ for #* eX* and
feX\

The simplest example of a nonreflexive Banach space in this class
(L) may be the indirect sum of c09 (Σ co)ιp, for 1 < p < oo. Also
Banach spaces Z with property (zQ are in class (L). These facts
will be shown in a more general setting later; see Theorem 2 and
Proposition 6.

One can give the dual property of (L).

PROPOSITION 3. A Banach space X is in class (L) if and only
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if in the canonical decomposition X<4) = X** 0 (X*) 1 , for any e > 0
there is a p — p(ε) > 0 such that we have

\\x + φ\\^\\x\\+e\\φ\\

whenever \\x\\ ^ p\\φ\\ where a e l c l * * and φe(X^)1.

Proof Assume that X is in class (L). Then we have for all
x* e X*, fe X1 and t > 7(ε), | | / | | ^ y(\\x* + f\\ - \\x*\\) + e| |s* + / | | ^
ί ( l l « * + / l l - | | » * l l ) + e | | α j * + / | | and thus | | s* + / | | ^ (ί/(ί + e))||a>*|| +

ε ) ) | | / | | . F o Γ ί c e l c Γ * and φ e (X*) 1 with ||a?||/||9>|| = ί>7(ε)

χ\\ + \\f\\M

(\\x\\ + ε\\φ\\)\\x* + f\\. Thus by se t t ing p = p(ε) = y(e), we have
\\x + φ\\ ̂  ll^ll + e||9>|| if | | x | | >/o| |9>| | .

Conversely, assume t h a t X satisfies the proper ty s ta ted in t h e
proposition. For given ε > 0 , x* e X*, fe X 1 , a? e X c X * * wi th ||a?|| = l ,
φe{X*y w i t h | | φ | | = 1 and p = p(ε/2) we have \p(x*, x) + </, <p>| =
|<α;* +ffPX + φy\£ \\x* +f\\\\px + 9 | | ^ ||a?* + /| |ί> + (ε/2). By
tak ing supremum over all xeX w i th | | g | | = 1 and all ^ e C X * ) 1 w i th
\\φ\\ = 1 , w e h a v e p\\x*\\ + \ \ f + X*\\ ^ \\x* + f\\(p + ε / 2 ) . H e n c e
( 1 / 2 ) | | / | | ^ | | / + X Ί I ^ |O(II»* + / l l ~ II&ΊI) + (e/2)\\x* + f\\. T h u s
we have shown | | / | | ^ 7(||α* + / | | - ||x*||) + ε p * + / | | , where 7 =
7(ε) = 2p(e/2). This completes the proof.

Proposition 3 suggests the following definition.

DEFINITION OF (Λf). A Banach space X is in class (M) if there
exists a subspace Y of X* which norms X such that given ε >0
there is a p = p(e) > 0 such that in the canonical decomposition
X*** = X* 0 X1, we have

if \\y*\\ ^ | θ | | / | | where f e ί and / e Γ .

Note that if X is nonreflexive then Y must be a proper subspace
of X* because if 3Γ = X*, then we can choose a net y* (XeΛ) in F

such that ||2/f II - | | / | | > 0 and 2/? >f in X***. Then we have
(,0 + 1)11/11 = \\pf+f\\ ^ suvxWpyϊ + / | | ^ sup,( | | ^? | | + ε | |/ | |) =
(P + ε)\\f\\ and arrive at a contradiction. Also note that Proposi-
tion 3 can be restated to say that a Banach space X is in class (L)
if and only if X* is in class (M) with the norming subspace Y of
X** chosen to be X.
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DEFINITION OF (P). A Banach space X is in class (P) if in the
canonical decomposition X*** = X * 0 X 1 ,

(P) ||α>***+ &*|| ^ ||α>*|| for all x * e Γ implies x w e Γ .

This property is equivalent to saying that whenever we have a norm
1 projection P onto X* from a subspace Y of X*** then P must
be the restriction onto Y of the canonical projection onto X* from
X***. Hence if Xis in class (P), then X 1 in the only norm 1 com-
plement of X* in X***, and hence X is in class (17). An example
of nonreflexive Banach spaces in class (P) is the indirect sum of
(Σ k)ιPn; (Σ (Σ k)ιPn)ιp where 1 ^ pn < oo (n = 1, 2, ) and 1 ̂  p < - ;

see Theorem 4. Other interesting examples are all successive duals
of the James' quasi-reflexive space J. This fact has been proved in
[2].

PROPOSITION 4. The class (M) is a subclass of (P).

Proof Suppose a Banach space X is in class (M) and there is
x*** eX*** such that ||αo ** + x*\\ ̂  | |α* | | for all x* eX*. We claim
that x*** is in X1. From the canonical decomposition we have
x*** = — #* — /0 where x* eX* and / o G l 1 . Thus we have

11 /o + #* I [ ̂  11 #0* + x* 11 for all #* e X* .

Since X is in class (M) there is a norming subspace Γ c l * such
that given ε > 0 there is a p = |θ(ε) > 0 such that if f e ί and

l l 0 * l l ^ H l / o i ι t h e n

If Xo" ̂  0 then we choose a if so that if||£0*li > |θ||/oll The unit
ball of Y is weak* dense in the unit ball of X*, because Y norms

X. There is a net yt ( λ e ^ ) i n 7 with \\yt\\ = K\\xt \\ and 0? — Kx*
in X*. Thus we have ||a?o* + y2*|| ^ ll/o + 1/f II ^ ||l/?ll + e | | / 0 | | =
K\\x*\\ + εII/o||. By taking the weak* limit, we have

||x0* + Kxt\\ ^ sup, \\x* + yϊ\\ ^ K\\xϊ\\ + ε | | / 0 | |

which implies that ||cc?|| ^ ε| |/0 | | for all ε > 0. This contradicts
xt Φ 0. Thus we have xt = 0 and ^ * * = /0 e X1.

We restate the relationships among the five classes we have
defined.

(L0)S(L), (L)*c(M), (Λf)S(P) and (P)g(C/), where (L)* =
{X*|Xe(L)}. Γtos ΐ/ α Banach space X is in class (LQ) or class
(L) then X* is the unique predual of X** and if X is in class (M)
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or class (P) then X is the unique predual of X*.
In the following separate sections, we will show that each class

(Z/o), (L), (M) and (P) is closed under certain operations. More ex-
amples including those showing proper inclusions among the classes
will be supplied in each section.

3* Banach spaces in class (L)* One shows that class (Lo) is
closed under taking quotients and co-direct sums.

THEOREM 1.

(a) // a Banach space X is in class (Lo), then any quotient
space of X is also in class (Lo).

(b) // a family of Banach spaces Xλ (λ e A) is in class (Lo),
then its co-direct sum (Σa Xx)CQ is also in class (Lo).

Proof, (a) Suppose F is a subspace of a Banach space X in
class (Lo). We have the usual identifications (XIY)* = F \ (X/F)** =
I * * / Γ u and (X/F)*** = Y111. Thus the canonical decomposition
(X/F)*** = (X/F)* 0 (X/F)1 can be identified with Y111 = Y1 0
(X1 Π F 1 1 1 ) . This identification completes the proof since for #* e
Γ c Γ and / e Γ n ^ c Γ we have from the hypothesis

\\x*+f\\ = \\x*\\ + 11/11.
(b) We only present the proof for the case A is countable. The

proof for the general case is similar. Let X = ( Σ n XJCo and Xn e (Lo)
(n = 1,2, •••)• We claim that \\x* + f\\ = \\x*\\ + | | / | | for all x* 6 X*
and / 6 X 1 c X***. Let x* e X* and / e Γ . Since we can identify
X* with (Σ*X:)hf we have z* = Σ a£ with ||a?*|| = Σ ll^ll- where
x* e l * (w = 1, 2 •)• It is sufficient to prove the identify with the
assumption xt = 0 except for finitely many integers, namely, #* =
xt + + #m for some m. If F m = ( Σ Λ > m XJCo, then we have X* =

(X!* Θ Θ xz θ ϊ ^ and x*** = (xr* e χ2*** e θ xr* 0
Y£**)tl. We identify the canonical decomposition of X*** with
(Xi*@ - ®X:®Y£)ιι®(Xi±® --®Xi@Yi)h where X*** =
X; φ l ί for n = 1, 2, -, m and F i * * = F * 0 F i . Using this
identification, / can be written as fx + + /m + # where /n e Xi
(n = 1, 2, - , m) and g e F i . Thus x* + / = a?f + + xt +f + +
/» + 0 = Gtf + /i) + + («2 + /•) + fff and we have \\x* + / | | =
l l * f + / 1 | | + ••• + l l * : + / J | + ||flr|| and | | / | | = \\fλ + . . . + / . + g\\ =
ll/ill + ••• + Il/mll + Ikll, because X*** is the indirect sum of
Xr*,---,Xi** and F***. Since ||a£ + fn\\ = \\χ*\\ + | | / J | (^ =
1,2, .. ,m), wehave | |a j*+/ | | = ||a?1 || + | | / 1 | | + . . +Ί|αj*|| + | | / w | | + ||flr| =
I N i ll + ••• + 11*111 + l l / i l l + ••• + l l / . l l + i b l l = 11**11 + l i / l l T h i s
completes the proof.
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As mentioned in § 2, c0 is a typical example of spaces in class
(Lo). In [9], W. B. Johnson and M. Zippin considered the Banach
space Coo = (Σ» Gn)Co where Gn is a certain sequence of finite dimen-
sional spaces. They point out that C^ has a quotient space which
fails approximation property. With Theorem 1, one can see that CL
and this quotient space are in class (Lo). Another example of a space
in class (Lo) which is different from c0 is as follows.

PROPOSITION 5. The Banach space of all compact operators on
a Hilbert space with the operator norm is in class (Lo).

Proof. Let K(H) be the Banach space of all compact operators
on a Hilbert space H with the operator norm 11 11 and let T(H) be
the Banach space of all operators of trace class on H with the trace
norm |H| t r . Then T(H) can be regarded as the dual space of K(H),
where the duality is given by the trace, <Γ, K) = tr (TK) for Te
T(H) and KeK(H). B(H), the Banach space of all bounded operators
on H with the operator norm, can be regarded as the dual space of
T(H) with the duality also given by the trace, (B, T) =tτ(TB)
for BeB(H) and TeT(H). Thus the canonical decomposition
K(H)*** = K(H)*@K{H)L can be identified with B(H)* = T(H)@
K(H)\ We need to show t h a t | | Γ + φ\\ = \\T\\tΐ + \\φ\\ for all Te

T(H) and φ e K(H)\ Given T e T(H), φ e K(H)1 c B(H)* and ε > 0,
we choose KeK(H) with \\K\\ = 1 and BeB(H) with ||J5|| = 1 such
that <Γ, K) ^ || Γ|| t r - ε and (φ, B) ^ \\φ\\ - ε. Since T can be ap-
proximated by a finite rank operator in T(H), there is an orthogo-
nal projection P on H with a finite dimensional range such that
| |(/-P)2Ίltr<ε and | |Γ(J-P) | | t r <e. Setting B0 = PKP+(I-P)B(I-P),
we have | | β o | | <; 1, and (<p, Bo} — (φ, B) because φ annihilates compact
operators. Thus we have (T+φ, Bo) = <Γ, Bo) + (φ, Bo) = t r (TPKP) +
tr (Γ(J- P)B(I- P)) + (φ, Bo) = tr (TK) - tr (TPK(I- P)) - tr (T(I-
P)KP) - tr (Γ(/ - P)K{I - P)) + tr (Γ( J - P)B{I - P)) + (<p, B). This
implies

φ,B0)\ ^

- \\(I - P)T\\tΐ\\PK\\ - \\T(I - P)\\tΐ\\KP\\

- \\T(I - P)\\tΐ\\K(I - P)\\ - \\T(I - P)\\tΐ\\B\\

^tr (TK) + (φ, B) - 4 ε

and we have || T + φ\\ ̂  || Γ||tΓ + | |^ | | , which completes the proof.

It is not difficult to see that the space c is not in class (Lo),
hence C[0, 1] is not in class (Lo), because c is a quotient space of
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C[0, 1]. Also note that L and L°°[0, 1] are not in class (Lo). This
fact will be shown in Proposition 9 in the last section of this paper.

The class (L), which is larger than (Lo), is also closed under
taking of quotients and co-direct sums. In fact it is closed under
more general direct sums:

THEOREM 2.

(a) // a Banach space X is in class (L), then any quotient
space of X is also in class (L).

(b) // a family of Banach spaces Xλ (λ 6 Λ) is in class (L) with
sup* 7χ;(£) < + °° for all ε > 0, then the direct sum Q^ Xλ)z is in
class (L) for every Z having property (zQ.

Proof, (a) As in the proof of Theorem 1, part (a), we identify
the canonical decomposition (X/Γ)*** = (X/F)* ©(X/Γ) 1 with F 1 1 1 -
P φ ί P Π Y111) where Y1 c X* cX*** and X1 n YLLL aXLaX***.
Thus Xj Y is in class (L) with 7X/Y(e) = 7x(e) for all ε > 0.

(b) This result follows from Theorem 3 and the duality between
class (L) and class (Λf). The proof will be presented in § 4.

A consequence of Theorem 2 is that Banach spaces with property
(JM) are in class (L). This fact can be generalized as follows:

PROPOSITION 6. Suppose a Banach space X satisfies
( i ) There is a net of projections Pλ (λ 6 Λ) from X onto reflexive

subspaces of X such that lim^ \\PχX — x\\ = 0 for all x e X and \\Pχ\\ =
| | i - pλ\\ = l for all XeΛ,

(ii) For any ε > 0 there is a p = p(ε) > 0 such that

\\χ + υ\\£\\χ\\ + e\\y\\

whenever \\x\\ ̂  p\\y\\, PiX = x and Pλy — 0 for some XeΛ. Then
X is in class (L). In particular, every Banach space Z with property
(AJ) is in class (L).

Proof. Assumption (ii) together with \\Pλ\\ = \\I - Pλ\\ =
implies the following dual property of (ii) on X*; for any ε > 0 there
is a p — p(ε) > 0 such that

(*) P\\x*\\ + lll/*ll^(iθ + 6)ll** + 2/ΊI

whenever P*x* — x* and P*y* = 0 for some XeΛ. This can be
shown in a similar fashion to the proof of part (a) of Proposition
1. Also, in a manner similar to the proof of part (b) of Proposition
1, one can see that lim^ \\Pχ*x* — x* || = 0 for all x* e X* follows from
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(*) and the assumption l imJ |P^ — αc|| = 0 for all xeX. Note that,
since the range of each projection Pλ is reflexive, an element x***
belongs to X1 in the canonical decomposition X*** = X * 0 X ± if
and only if P?**x*** = 0 for all XeΛ. We claim that

whenever x* e X* a n d / e X 1 . Since, for x* e Γ , limλ\\P?x*~x*\\ = 0,
we may assume / e l 1 and #* e l * with P*ox* = x* for some XoeΛ.
Let {z*} be a net in X* such that #* + / = w* — limuzϊ in X*** and
\\x* + f\\ = \\zΐ\\ for all v. By setting a?* = Pζz* and y* = z* - x*f

we see that x* = PiJ**a?* = PiJ**(a?* + /) = w*-liml,PiJ**ί5* = w*-lim,fljv*
in X*** and / = w* - lim.z* - a* = w* - lim^* in X***. The in-
equality (*) gives us

p\\xΐ\\ + Hi/? || ^ (/o + e)\\xϊ + 2/? 11 = do + e)||αj* + / | |

for all v, and by taking the weak* limit of a subnet, we have

This completes the proof.

Examples of nonreflexive Banach spaces with property ( 4 ) can
be given by certain Orlicz sequence spaces hM where M is an Orlicz
function; see Chapter 4 in [10] for pertinent definitions and properties.
// M satisfies the condition supo<u<Uo2M(u/2)/M(u) = β < 1 for some
u0 > 0, then the Banach space hM has property ( J J . The proof can
be seen as follows: For ε > 0, we need to choose a p = p(ε) > 0 such
that || ( O + (6.) 11 ̂  | | K ) | | + e whenever | | ( α j | | ^ p, \\(bn)\\ = 1 and
(αn) ± (6Λ). We may assume that an ^ 0 and 6W ^ 0. We can choose
an integer j so that supw | cn |/23' < uQ for any (cw) with | | ( O | | =
ΣmM(\cn\) = 1. Let | | ( α j | | = r and k be an integer so that 2k ^
r < 2fc+1. Thus we have

r + 6/ » V + 6

* r + ε
r , •

r + ε
-i ε

- 2k+1 + ε 2k

= 1 — -Γ— + 2 _ _ < 1 if fc ^ I for some Z .
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Thus ||(<O + (δ j | | ^ r + ε = | | ( α j | | + ε if | | ( α j | | ^ <o(β) = 2'. This
completes the proof.

If Λf(%) = (% + 1) In (u + 1) — u then the function complementary
to M is M*(u) = eu — u — 1. Since M* does not satisfy the ^-condi-
tion at zero, both hM and h% are nonreflexive Banach spaces; see
Proposition 4.b.2, p. 148 in [10]. Because \\mu^2M{uj2)IM{u) =
limtt_o 2M*(u/2)/M*(u) = 1/2 both hM and ΛJ have property ( J J and
consequently are in class (L).

By Theorem 2 the Z -̂direct sum of c09 (Σ 0̂)1,, with 1 < p < co
is in class (L), although these spaces are not in class (Lo) The
canonical predual J" 1 of a James quasi-reflexive space J is in class
(L), as will be shown in Proposition 7. Thus (Σ Ĵ "1)* with 1 < p < °°
and (Σ^'Oβo a r e ίn class (L). Note that we will also show that
successive duals of J1 are not in class (L); see Proposition 7.

4* Banach spaces in class (Λf)* One shows that class (M) is
closed under taking of certain direct sums.

THEOREM 3. // a family of Banach spaces Xλ (λ e A) is in class
(M) with sup; pXλ(ε) < °° for all ε > 0 then the direct sum ( Σ
is in class (Λf) /or et βrT/ Z having property (z/2).

Proof. The first step is to prove this result when Z is a finite
dimensional space. Assume that JŜ  and Yt c Xέ* (i = 1, 2, , n) are
given so that each Yt is norming over Xif and given ε > 0 there is
a p = ρ(e) such that ||τ/f + /Jl ^ \\yt\\ + ε\\ft\\ whenever y* e Yi9

ftβXi and WytW^pWAW for each i = 1, 2, •• , n. Setting X =
(Σ?=J -Σi)z then JC* = (Σί=i ^*)^* and Γ=(Σ*V ^)z* is norming over X
Furthermore we have I w = Γ 0 Γ = (Σ?=1 JSΓ,*)z. 0 (Σ?=i Xϊ)z*.

We need to show that given ε > 0 there is a p = p(e) > 0 such that
Il(ll2/i* + / i l l , •••, \\Vn + Λ H ) I U . ^ I K I I i / f l l ,
|| Λ | | ) | U . w h e n e v e r I K I I l / f H , , I I ^ I D I I z ^ ^ I
2/f e Yi9 ft 6 Xi1 for all ΐ = 1, 2, , w. Since Z* has property
we can choose & p = p(e) such that

+ (^)IU ^ ll(f*)IU. + ε U
( £ ) +

if ||fe)IU*^^ll(^)IU* and fe)!^). Finally we let p = p(ε) =
(p(ε) + l)(|θ(ε) + 1) and suppose

Λ I I , ••-, I I / . I D I U .

Without loss of generality we may assume
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and also for some k with 1 S k 5ί n such that

for i = 1, 2, , k ,

for i = k + l,' ,n.

Thus

+ΛII,o ,θ)|U.

- |

,o,\\vϊ+1\\,
, o,

•, \\y:\\)\\g.

^ p - ((0 + 1) = pip + 1) , and

ιi(o, •• , o , n » ί + 1 + Λ + 1 | i , •• , ι ι » : +
^ O t ) + l ) | | ( 0 f •••,0, ||

T h u s w e h a v e

\\Q\vΐ+M, •• ,\\yϊ+Λ\\,o, ••

|, •••,\\fn\\)\\z,^p

Hence, by our choice of p we have

Λll, •• ,

f
ρ + Λ I I , θ > •• , 0 ) | | J

We turn our attention to the general case. Assume that Xλ

and Yλ c X? (λ e A) are given such that each Yλ is norming over Xλ.
If Z = (Σa -Za)z, then X* = (Σa -Σ"*)z . Let F be the norm closed
linear span of {Yχ}χeΛ in (Σ*-£?%*> t ^ e n Y is a norming subspace of
X* over X. For a subset F oί Λ we write XF = (Σjej -Xύzij. and
thus (Xp)* = XF = ( Σ ^ F ^ % ι r Furthermore the following iden-
tifications can be made: X - XF 0 XA F, X* = X/ © X/Xi, and χ***^r
(XF)*** Φ(XΛVF)***- Furthermore the canonical decompositions
(XF)*** = X£ ® (XFy and (X^)*** = I ^ θ ( ^ ) x lead to the
canonical decomposition, of X***; X*** - X* 0 X1 = (X# © X^F) 0
((XF) 1 0 (^VP ) 1 ) . Since Z has property (4), Z* has property (4J
implying that for any ε > 0 there is a p = jθ(ε) > 0 such that

* + α2*|| ^ + ε||a?2*|| whenever xf eX/, and
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/θ||cc*||. Since the unit ball of X*(X*\F) is weak* dense in the unit
ball of (XF)***((XA\F)***), this same inequality holds for the decom-
position x*** = (X^)***Θ(X^)***;

\\x*** + a?2***|| ^ \\xϊ**\\ + ε| |α?**||

whenever x*** e(XF)***, £2*** e (XAi,)*** and ||x***|| ^ jό||a2***||. For
a finite subset F of A we have shown that for any ε > 0 there is
a p = p(e) > 0 such that

whenever f e i n Y, fe(XF)
L and \\y* \\ ^ p\\f\\. Note that p and

jθ are independent of our choice of a finite subset F of A.
Given ε with 0 < ε < 1, we set p = /3>(ε) = Max {/?(ε), 1 + p(ε)(ε + 1)}

and we claim that \\y* + f\\ ^ ||?/*|| + 4ε | |/ | | whenever y* G 7 , / e Γ
and 11 /̂* || > A[|/| |. Without loss of generality we assume | | / | | = 1.
We choose a finite subset F a Λ so that y* = τ/f + y*9 yt 6 1 | Π Γ,
l / f e ί ^ n Γ , Il2/i*ll>i5 and \\y?\\^e. Then we have / = f, + /2

with ΛeCX^)1 and / 2 e ( X ^ ) \ Note that \\M, | |/ 2 | | ^ | | / | | - 1,
because the projections from X*** onto (X^)*** and (X^)*** are
of norm 1. Since \\y* + /J | > p - 1 ^ ^(ε)(ε + 1) ^ ^(ε)||τ/? + /2 | |,
we have \\y* + /[[ - \\y? + f, + yt + /2 | | ^ | | ^ + ΛH + ε\\yϊ + /2 | | ^
Ill/i* +/ill + β(ε + l) ^ 112/1* + / J | +2ε. Furthermore since 11 y* \ \ ̂  β ^
p(ε)\\M wehave | |2/ f+/ 1 | | ^ | | 2/ f | |+ε | | /J |^ | | i / 1 | |+ε^| |2/ 1* + 3/2*|| + 2ε.
Thus \\y* + f\\ ^ 111/* II + 4ε and the proof of the theorem is complete.

The proof of part (b) of Theorem 2 is completed by observing
that (i) if Z has property (ΛJ) then the basis of Z is shrinking (see
Proposition 1, (b)), (ii) the norm closed linear span of {X heΛ in
(ΣiλX**)z** is (ΈiλXχ)z = X and (iii) Proposition 3 on the duality
between the class (L) and the class (M).

In § 6, we will show that a James quasi-reflexive space J is in
class (L)* c(ikf). Thus for 1 ^ p < 00, QΓ J)^ is in class (M). We
do not have any example of a Banach space in class (M) which is
not in class (L)*. Note that Theorem 3 will not give us such an
example because if a family of Banach spaces Xλ (λ 6 A) is in class
(L) with sup;. 7χ;(ε) < + 00 for all ε > 0 then (X; X;*)z is in class
(L)* for every ^ with property (4).

5* Banach spaces in class (P) One shows that class (P) is
closed under taking of more general direct sums than class (M).

THEOREM 4. // a family of Banach spaces Xλ (λ e A) is in class
(P) then the direct sum (Σa Xχ)z ίs in class (P) for every Z which
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has property (4) or is reflexive.

Proof, (a) Z has property (4). We will use the notations and
the canonical identifications used in the proof of Theorem 3 (We
replace F by a single point λ0). If X = (Σ* Xχ)z is not in class (P),
there is a nonzero z* e X* and f0 e X1 so that

||/o + a*|| ^ ||3o* + x*\\ for all α * e X * .

Choose λ0 so that z* = 2? + 22* with 2? =£ 0, sf eXjJ and 22* eXj^, .
Furthermore we have fo = fλ+ f2 with /x e (X^)1 and /2 6 ( X ^ O 1 .

Since Z* has property (ΛJ) we have the following property of
the decomposition X* = Xζ 0 1 * ^ : for any ε > 0 there is a p =
p(έ) > 0 such that \\xf + a??|| ^ ||a?*|| + 611̂ *11 whenever x* eXζ,
xϊeXfa^ and ||a? || ^ iό||a?2 ||. Since the unit ball of X? (X/XUo}) is
weak* dense in the unit ball of X*Q** ((XA\{iQ))***)f this same inequality
holds for the decomposition X*** - X,*,***

(1) ||a?*** + ^ * * | | ^ \\xϊ**\\ + ε||a?2 **||

whenever x*** e X%** , x2 e (XΛW)***

and 11̂ ***11 ^ £ | | a ί * * | | .
Since X ô is in class (P) and «f ^ 0 is in Xζ, there is a δ > 0

so that

?\E = {yϊeXζWlf + 2/ || + δ < \\z? + y?

is not empty. If y? is in .B, then one can see that
is also in E for all n = 1, 2, . Thus I? is unbounded.

If /2 = 0, we let yf be any element in E and if f2 Φ 0 we choose
y* e E with sufficiently large norm so that

If /2 ^ 0, then, by inequality (1)

ίl/o + itf l l = ll/» + 2/ί + Λ l l = l l/i + 2/fll + ^ IIΛI
1 1 1 1

Thus we have ||/0 + yt II < 112? + 2/f ||. This inequality clearly holds
when /2 = 0 and y* is in E. We arrive at the contradiction:

ll/o + yf l l < I K + i/fll ^ ||20 + 2/f|| .

The last inequality depends on the fact that the projections associated
with the decomposition X* = Xζ 0 X*\uo} are of norm 1.
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(b) Z is reflexive. If X = (Σλ Xλ)z then one can identify X*
with (Σ*-X?)z and X*** with ( Σ ; ^ * * * ) ^ . We have X*** -
X * 0 X 1 = ( Σ a ^ * ) * θ(Σ2-X"iO* . We need to show that if given
z* - (zf) in X* and / = (fλ) in X 1 so that | | / + a?*|| ^ ||s* + a?*||
for all x* in X*, then 2* = 0. If z* is not zero then we choose
\eΛ so that zf[ Φ 0 and 3 > 0 so that

E = K e X ^ I I I / ^ + x?I! + 8 < \\ztx + x*\\)

is not empty. As observed in (a), E is unbounded in X?r Finally
we choose a finite subset F of A so that λj is in F and

IK/OU II <βδ

where ε > 0 will be chosen later.
We denote F = {Xlf λ2, , λ j , ^* = z* and /^ = /< for i = 1,2, , n.

We may assume that there is a A with 1 <: k ^ w so that 2? =£ 0 for
i = 1,2, - -,k and «? = 0 for i = k + 1, , n. Since each Xλ is in
class (P) we choose y* e Xξ i = 2, , n so that

Wft + VΐW^ Wzt + VΐW f o r i = 2, .- , f c ,

H/i + 2 / f H ^ ^ + | | 2 / ? | | for i = fc + l , •••,%

where δr = εδ/||(0, , 0, 1, , l)lU*if,. For any x* e Xζ if we set
k '

x* r= (χ*9 y*^ . . . ? Tyj) we have the following inequality:

= IKII/i + * f H , IIΛ + i/?H, •••, I I / . + K I

We claim that

if a;* is in £" with sufficiently large norm and 2ε < (1 — s)||e?JU.
where e^ is the element of Z* with the λi-coordinate = 1 and λ-
coordinate = 0 for all λ Φ λlf This can be seen as follows. The func-
t i o n φ(t) = \\(t, \\z? + y * \ \ , •••, \\z* + yZ\\)\\z*iF i s a c o n v e x f u n c t i o n

for t ^ 0. Thus we have (φ(t2) - ^(ίχ))/(ί2 - ίx) ^ (φ(ίt) - 9'(0))/(ί1 - 0) >
(1 - ε)||(l, 0, , 0)|U.!jF ^ 2ε for sufficiently large tx and t2 > ίt. This
implies that

φ(t2) ^ (ί2 - i,)2s
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The result follows by putting tx = \\fx + xt || and t2= \\z? + z?| | for
an element x* eE with sufficiently large norm. We have shown that
\\f+x*\\<\\(zϊ,-- ,zϊ) + x*\\£\\z*+x*\\. This contradicts our

assumption and completes the proof.
An example of a Banach space in class (P) is X = (Σ XPn)ι

where XPn = ( Σ l ^ and 1 ^ p, pn < oo. Note that if pn—>°° then
X is not in class (I/)*. In a previous paper [2] we have shown that
the James quasi-reflexive space J and all its successive duals are in
(P). In the next section we will show that all of the successive
duals of J are not in class (M).

6* Some examples*
( i ) The James quasi-reflexive Banach spaces. The James space

(J, || ||) is defined in [7] to be the space consisting of all complex
sequences x = (x(n)) such that

where the supremum is taken over all choices of disjoint finite in-
tervals Ilf I2, •••,/* of positive integers. James [8] also introduced
an equivalent norm ||| ||| on J for which (J, ||| |||) is isometrically
isomorphic to (J, ||| |ll)** (see [2], Theorem 3).

In this section, J will always stand for (J, |( ||). The space J
has the natural normalized basis {en}; for every xe J we have x =
ΣSU x(ri)en, where e% = (en(j)) = (8n>j) for n, j = 1, 2, . Let {e*}
be the biorthogonal sequence with respect to {en} and let Y be the
closed linear span of {et}. Since {en} is a boundedly complete mono-
tone basis of J, J is isometrically isomorphic to the dual Y* of Y
by the canonical mapping (see p. 9 of [10]). We introduce the linear
functionals <pn on J by φn{x) = XJU *(i) for # e J and w = 1, 2,
As proved in [7], (φn} forms a normalized basis of J* and we have

We define / 2 eJ** as follows; /2(9χ) = 1 and /2 annihilates Γ. Then
we have J** = [/J φ J. More generally, denote Jn {n = 0, 1, 2, •)
as the w'th dual of J, then we have

J - J 0 c J 2 c . - c J 2 w c . . , and

J* = J 1 c J 3 c - - c J2n+1 c - - .

For n^S, fneJn is defined as follows: ΛCΛ-O = 1 and fn annihilates
Jn~\ Thus the one dimensional space [/J is a norm 1 complement
of Jn~2 in J% and we have

J* = [/J 0 Jn~2 for n = 2, 3, - .
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For even n ^ 2, {/Λ, /n_2, , /4, /2, ex, e2, •} forms a basis of Jn and
for odd w ^ 3, {/Λ, /n_2, , /5, /3, ^ , βf, e2*, •} forms a basis of J \

In Theorems 1 and 2 of [2], we have shown that Jn, n =
— 1, 0, 1, ••• are in class (P), where J" 1 = Y is the unique predual
of J = J°, we also showed that (J, ||| |||) and (/, ||| | | |)* are in class

PROPOSITION 7.

(a) J^ 1 is in class (L) and Jn is not in class (L) if n Φ — 1,
(b) J is in class (M) and Jn is not in class (M) if n~Φ 0.

Proof, (a-1) J 1 is in class (L). Proposition 3 implies that it
is sufficient to show that in the canonical decomposition J*** =
J * 0 j± = J* 0 [/3], for any ε > 0 there is a p = p(ε) > 0 such that
P * +ΛII ^ ||a?*|| + e whenever ^* e Γ = J- 1 and ||a?*|| ^ p. If α* =
ΣS=iiS*β*» then because /3 = ^ * - l i m i ^ in J***, we have

IN* + / 8 | | ^sup I > n | |Σϊ=i/3*ef + <Pι\\

If x = Σ?=i αfcefc is in J , then x = xι + a?2 where ^ = Σf=i αfcβ* a n ( i
^2 = Σ ϊ U + i α A Thus |(α?* + φι)(x)\ = \x*(xλ) + 9>!(α?2)| ^1^*1111^11 +

^ ^ d l ^ i r + I I ^ H 2 ) 1 / 2 ^ (l l^^ir + l) 1 / 2 ! !^ ! ! . Hence
f l>n, and we have ||aί* + /F | | ^ (||x*||2 +1) 1 / 2 .

This inequality holds for all x* in J-1 by the continuity of the norm.
One can see that, for any ε > 0, if x* is in J " 1 and ||&*|| is suf-
ficiently large then

(a-2) J% is not in class (L) if n Φ — 1. If J% were in class (L)
then for a given ε > 0 there is a δ = δ(ε)>0 such that if | | / n + 8 + β»+ill = 1
and 1 — \\xn+1\\ < δ for xn+1eJn+1 then | | / Λ + 8 | | < ε. For n ^ 0, we
will choose xn+1 in Jn+1 so that \\fn+3 + ajΛ+1|| = ||»»+i|| = 1. Thus we
have a contradition, 1 <; | | / n + 8 | | < ε. Let x2 = —f2 and x2n+2 =
-/2»+2 ~ »2n for w ^ 1. Let x, = -φλ and x2n+1 = -f2n+1 - x2n^ for
n ^ l . Then we have fn+B + &n+1 = — xn+z for all w ^ 0. We complete
the proof of this part by showing that \\xn\\ — 1 for all n ^ 1. In
Lemma 2 of [2], we showed | | / 2 | | = 1, thus we have | |x2 | | = 1. As-
sume | |a 2 w | | = l , t h e n l = | | α ? 2 n | | ^ | | / 2 w + 2 + aj2Λ|| = ||a;2Λ+2||. Since / 2 w + 2 = w * -
limfc ( — x2n + ( — l)nek) in J 2 ί l + 2 (see [2], Lemma 1, (a)), we have Hawaii =
IIΛ +2 + »2»ll ^ sup, || -x 2 w + ( - l ) X + a?2Λ|| = supfc | | ( ~ l ) χ | | = 1. The
proof is completed for even n. For odd n, the proof is completed
in a similar fashion by using the facts the f2n+1 = w*-limfc {x2n-x +
( - l ) V i + i-ϊ)n+1(Pk) in J2n+1 (see [2], Lemma 1, (b)) and \\φk - φ.W = 1
for all k > 1. Thus we have shown that J n is not in class (L) for
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all n ^ 0.
(b-1) J~x = Y is not in class (Λf). This can be seen by observing

that J** = Γ*** = r 0 Γ = / 0 [ / 2 ] and showing that if Z is a
subspace of J which norms Y then Z — Y. Since ^ norms F,
Z±ΠY= {0}. It ZΦJ then ^ x ^ {0} and J* = ZL 0 Γ since
dim J*/Y= 1. For any x * e ^ x and y* e Γ, | |α* + y*\\ ^ sup{|(α;* +
y*)(x)\\xeZ, \\x\\ £ 1} = sup{!»•(*)||seZ, IMI £ 1} = ||y*l|. Thus Y
has a norm 1 complement in J*. This contradicts the fact that Y
is not norm 1 complemented in J* (see the proof of Theorems 1, 2)
of [2]. Thus J has no proper subspace of J = Y* which norms Y.
This implies that Y is not in class (Λf). See the remark after the
definition of class (Λf) in § 2.

(b-2) J is in class (Λf). From (a-1), J" 1 is in class (L). Hence
J = (J"1)* is in class (L)* which is contained in class (Λf).

(b-3) Jn is not in class (Λf) if n > 0. This can be seen by
observing that Jn+d = J % + 1 0 (J")1 = Jn+10 [/w+8] and showing that
if Z is a subspace of J% + 1 which norms J% then Z = Jn+1 or Z = J*~\
Thus if Jn were in class (Λf) then Z = J ^ 1 and Proposition 3 says
that J^-1 is in class (L). This contradicts part (a-2). Since Z norms
Jn, ZL ftJn = {0}. If Z Φ Jn+\ then we have Jn+2 = Z x 0 J%. Again
one sees that Z 1 is a norm 1 complement of Jn in Jn+2. We have
shown in [2] that [/Λ+2] is the only norm 1 complement of Jn in Jn+2;
see the proof of Theorem 1, (1) of [2]. Hence ZL = [/W+J, so Z =
(Z1)7 = [/n+2], s o Z = (Z x ) τ - [/.+2]

τ - J*-1. The proof is complete.

The following proposition is proven in a manner similar to
Proposition 7 and we omit the proof.

PROPOSITION 8. (J, ||| |||) and (J, || | | | |)* are neither in class (L)
nor in class (Λf).

Note that the Banach spaces (J, || | |)Λ for n > 0, (J, ||| |||) and
(J> III'III)* a r e ίn class (P) but they are not in class (Λf).

(ii) The Banach spaces L°° and H°°. As noted in the introduc-
tion, the Banach spaces L°° and H°° on the unit circle have unique
preduals, namely, L1 and U/Hί. This fact is actually proved by
showing that L1 and fr/Hi are in class (U); see [1], [6] and [12].
The purpose of this part is to point out the following:

PROPOSITION 9. (a) L1 and Lλ\Ή.l are not in class (P).
(b) L\μ), where μ is a σ-finite measure, is in class (P) if and

only if μ is purely atomic.
(c) The dual of C(Ω), where Ω is a compact Housdorff space,

is in class (P) if and only if Ω has no perfect compact subset.
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Proof, (a-1) L1 is not in class (P). The following proof is a
modification of our proof suggested by P. Wojtaszczyk which also
enables one to prove UjHl is not in class (P).

We have the usual identification of L°° — C(Ω), where Ω is a
compact Housdorff space and (L°°)* = M(Ω), the space of all finite
Randon measures on Ω. Furthermore M(Ω) = Ma ®h Ms where Ma(Ms)
is the set of all measures absolutely continuous (singular) with respect
to the measure on Ω associated with Lebesque measure on the unit
circle, and L1 is identified with Ma. The canonical decomposition
(L1)*** - (L 1 )*θ(£ 1 ) 1 can be identified with M(Ω)* = C(Ω) ®Ma

ι.
We claim that for any f0 in C(Ω) there is a φ in Ma such that

\\<P + f\\^\\f* + f\\ for all feC(Ω).

Let P be the projection onto Ms associated with the decomposition
M(Ω) = Ma 0 Ms9 then P* is a norm 1 projection from M{Ω)* onto
Λft-. For given f0 in C(β) c M{Ω)* let £> - P*/o. Then for any / in
C(Ω)

f)\\μeMSf \\μ\\ ^ 1}

£sui>{\Pμ(fo+f)\\μeM,\\μ\\£l}
= | |P*/0 + P /ll - l|P*(P*/o + /)ll £ IIP*/o + /il

This completes the proof of part (a-1).
(a-2) L^HQ is not in class (P). This is proved in a manner

similar to part (a-1) by using the decomposition (LιIHi)** —
LyH} φ ^ Ms/Ms Π (H°°Y (this decomposition follows from the abstract
F. and M. Riesz Theorem; see theorem 7.6 on p. 44 in [4]) and the
projection P of (LViϊo1)** onto MJMS n (H°°)L associated with this
decomposition.

(b) If μ is purely atomic then L\μ) is isometrically isomorphic
to Zj which is in class (P) since c0 is in class (Lo). If μ has no atoms
then a trivial modification of the proof of part (a-1) shows that
L\μ) is not in class (P). The proof is completed by showing that
if a Banach space X is the ̂ -direct sum of Banach spaces Y and Z
and Y is not in class (P) then X is not in class (P). Since X*** =
Γ***θioo^*** = <T* + i^1) θ*co CZ* θ ^x)> the canonical decomposi-
tion of X*** is X* © X1 = (Y* © ^ Z*) 0 ( F 1 © ^ Z1). If Γ is not
in class (P), there is a nonzero y* in F* and fQ in F 1 so that
ll/o + 2/*ll^lll/o* + l/*ll for all f e Γ , Thus we have for y
in Γ* and ^* in Z*, | |/0 + »* + β*|| = Max{||/0 + »*||,||«*||}
Max{||tfo* + »*|U|2*||} = ||i/o*+ »* + «*|| and we have | |/0 + α*||
111/? + »*|| for all x* in X* which says that X is not in class (P).

*
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(c) The proof of this part follows from the argument given in
part (b) and the fact that the dual of C(Ω) contains a non-atomic
measure if and only if Ω contains a perfect compact subset.

(iii) Remark. A von Neumann algebra has a unique predual
which is in class (17). This was pointed out in the introduction.
It is known that the second dual of a von Neumann algebra is a
von Neumann algebra; see Theorem 1.17.2, p. 43 of [11]. This raises
the question if a Banach space X has a unique predual, does X**
have a unique predual? This problem remains open. We do not
even know if X is in class (17) must X** be in class (17). However,
all other classes we have defined are not invariant under taking of
the second dual. Examples: c0 is in class (Lo) and (L) but c** = L
is not in class (L) because (IJ)* is not in class (P); see Proposition
9, (c). The James quasi-reflexive space J is in class (L)* and in class
(Af) but J** is not in class (Af); see Proposition 8. Zx is in class
(P) but £?** = (U* is not in class (P).

Addendum: In a recent paper by G. Godefroy (Espaces de
Banach: Existence et unicite de certains preduax, Ann. Inst. Fourier,
Grenoble, 28, no. 3 (1978), 87-105) several different conditions are
presented; each of which imply that a Banach spaces is in the class
(Z7) defined in this paper. Many of the examples of Banach spaces
which delineate the classes (Lo), (L), (Λf)'and (P) mentioned in this
paper satisfy one of these conditions. However, it is an open
question as to the relationship between Godefroy's result and these
classes.
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