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CANONICAL MODELS FOR INVARIANT SUBSPACES

MICHAEL MCASEY

The invariant subspace structure of an operator algebra
2+ is completely determined. The non-selfadjoint algebra is
constructed from a cyclic transformation acting on a finite set.
There is a distinguished (finite) set of invariant subspaces of
S+ which has been identified elsewhere. These subspaces are
used as canonical models; all other invariant subspaces for 2+

are described in terms of these subspaces. Uniqueness of this
representation is also discussed.

!• Introduction* This paper is a continuation of [5]. While
some acquaintance with [5] would be helpful in reading the present
paper, it is not absolutely necessary. Here we determine completely
the invariant subspace structure of an operator algebra 2+ con-
structed from a cyclic transformation on a finite set. (The defini-
tions of 2+ and an allied algebra 3ΐ+ are given below.) As shown
in [5] there is a distinguished class of subspaces invariant for both
2+ and 3ΐ+. We shall show that the invariant subspaces for 2+
can be completely described in terms of these distinguished subspaces
in much the same spirit as Buerling's theorem describes the invariant
subspaces of the shift.

To define the algebras 2+ and 91+, let X be a finite set with
elements x0, xlf , xn__x and let τ be the permutation of X defined
by τ(xt) — xt+ι(i Φ n — 1) and τ(xn^) = x0. Let Z denote the set of
integers and let 12(ZXX) be the Hubert space of all (complex-valued)
functions / on Z x X such that Σ * Σ* i/O, #)l2 < °° Let / be an
element of Γ(Z x X) and define operators Lδ and Rδ on l\Z x X) as
follows:

(Ltf)(n, x) = f(n - 1, τ"1*); (RJ)(n, x) = f(n - 1, x) .

For a complex-valued function φ defined on X (i.e., φel°°(X)), we
define operators Lφ and Rψ on 12(Z x X):

{Lφf){n, x) = φ(x)f(n, x); (Rφf)(n, x) = φ(τ-%x)f{n, x) .

Let ML = {Lφ\φel™(X)} and mB = {RΨ\φ 6iM(I)}. The algebra 2
(resp. 3ΐ) is defined to be the von Neumann algebra generated by
Lδ and WlL (resp. Rδ and 2)ίΛ). Finally we define the non-selfadjoint
algebra 2+ (resp. ϋt+) to be the weakly closed algebra generated
by L3 and WlL (resp. Rδ and WlB).

The algebras 2 and 3t are crossed products and 2+ and 3ΐ+ are
called non-selfadjoint crossed products. We refer the reader to
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[5,6] for discussions of these algebras including some of their ele-
mentary properties. It should be noted that one of the principal
results of [5] identifies the equivalence classes of S+-invariant sub-
spaces that are unitarily equivalent by a unitary operator in 31.
Each such class can also be described in terms of a multiplicity
function. These functions play an important role in this paper (cf.
§3) for, as we shall see, the multiplicity function will allow us to
identify a canonical subspace in each equivalence class of ^-invar-
iant subspaces.

It is shown in [5] that for certain subsets B of Z x X, sub-
spaces of the form l\B) = {fel\Zx X)\f(n, x) = 0 for (n, x)$B)
are invariant under both the algebras S+ and 3t+. Such a set B
must be invariant under the two maps λ and p defined on Z x X
as follows:

X(n, x) — {n + 1, τx)

p(n, x) = (n + 1, x) .

In case τ is a nonperiodic transformation on a measure space X as
discussed in [5], all £+ V 9if-invariant subspaces have the form
12(B). As shown in § 5 of [5], this is not the case when τ is a
periodic transformation acting on a finite discrete set, as considered
here.

In this paper we shall show that the 8+ V ϊt+-invariant sub-
spaces of the form l\B) are sufficiently plentiful to allow us to
describe all the pure S+-invariant subspaces in terms of these more
elementary ones. (A pure subspace is one that contains no nonzero
subspace reducing S+.) The idea is to use subspaces of the form
l\B) as canonical models for the S+-invariant subspaces. This con-
cept is made precise in the following definition. (For a subspace
i ^ , P^t denotes the orthogonal projection onto ^£.)

DEFINITION. A family of full, pure invariant subspaces
constitutes a complete set of canonical models for the pure £+-
invariant subspaces in case (a) for no two distinct indices i and jl
is P^i unitarily equivalent to P^>. by a unitary operator in 3ΐ; and
(b) for every pure S+-invariant subspace ^£ there is an i in / and
a partial isometry Rθ in dt such that RΘP /nRf = P^.

In particular the last equation implies that ^t — Rθ^i- The
motivation for this concept stems from Beurling's theorem. Recall
that this theorem states that if ^ is a (nonzero) nonreducing sub-
space for the bilateral shift on L2 (of the unit circle), then ^ =
ΘH2 where θ is a unimodular function on the circle. In this case
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the singleton {H2} is a complete set of canonical models for the pure
invariant subspaces of the shift. A similar result is valid if we
consider the non-selfadjoint crossed product determined by a factor
(of a special kind) and an automorphism implemented by a unitary
operator acting on the factor. In this case also a single subspace,
12(Z+, Sίf), forms a complete set of canonical models for the invari-
ant subspaces of the algebra 2+ as shown in [6]. It is shown in
[5], with the particular algebra 2+ as we have defined it here,
that there are pure subspaces ^/ί and Λ^ invariant for 2+ for
which there is no partial isometry Rθ in 9ΐ satisfying RθP^Rβ=P^;
thus a set of canonical models will necessarily consist of more than
one subspace in the situation considered here. In this paper it will
be shown that a finite collection of subspaces of the form l\B)
provides a complete set of canonical models for the (pure) ^-invari-
ant subspaces. Moreover, it will be seen that in this case the
multiplicity function provides the necessary information for explicitly
constructing the subspace from the canonical model.

Taking into account the results of [5], this is what we will
have accomplished: we will have classified the invariant subspaces
of 2+ up to a specific kind of equivalence and we will have identi-
fied a canonical member of each equivalence class. Moreover we
will have done this in a fashion which is identical in spirit with
that exhibited in two other contexts in which reasonably successful
generalizations of the theory of shifts have been found, namely,
the theory of invariant subspaces on multiply connected domains [1]
and the theory of compact groups with ordered duals [4].

2* Alternative representations of 2 and 3ΐ* The algebras 2
and 3t have been discussed in [5] under different hypotheses on
X and τ. One major difference between the algebras 2 and 9ΐ
considered in § 4 of [5] and those in this paper is that in [5] 2
and 3ΐ are factors while here they are not factors. Indeed a com-
putation using the periodicity of τ shows that JJ\ = R* where,
recall, n is the cardinality of the set X Since 2 and 9t are corn-
mutants of one another, it follows that S and 91 have nontrivial
centers and so are not factors. As a consequence of the representa-
tion developed in this section, we show that the center of 2 (and
of 9t) is the von Neumann algebra generated by L*.

In this section we shall show how the algebras 2 and 3ΐ may
be viewed as the left and right regular representations of the
algebra of all n x ^-matrices with entries from L°°(T), the (essen-
tially) bounded functions on the circle. In order to do this, an
isomorphism will be constructed between the spaces l\Z x X) and
L\T) (x) Mn. This second space will be viewed as the set of n x n-
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matrices with entries from L\T).
product

It is a Hubert space with inner

(Ifal = Σ ί
i*3 JT

for elements [ftj] and [gtj] in L2(T)(x)Mn. (The norm on Mn here
is the Hilbert-Schmidt norm.) The algebra S (resp. 31) will be
realized as the algebra Lco(T)(S)Mn acting by left (resp. right)
multiplication on the space L\T) (x) Mn.

The isomorphism mentioned above will be constructed by mapp-
ing one basis to another. The set ^ of indicator (or characteristic)
functions of singletons {l{{n,x)}\neZ, xeX} is an orthonormal basis
for the space l\Z x X). For the other basis, let EiS be the n x n-
matrix whose only nonzero entry is a 1 in the (i, '̂)th position. Let
Xn be the function on the circle defined by Xn(z) = zn. The set ^ =
{XkEti\i, j = 1, 2, , n; k eZ} is an orthonormal basis for the Hubert
space I/2(Γ)(x) Mn. (We assume that the measure on the circle is
normalized Lebesgue measure.)

There are several ways to define the map W from ^ to ^ .
For an easy way, first let d be the function defined on Z x l b y

J \ and define

Wδ =

r an easy

, x) = jj
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DEFINITION. The map W:

elements of the form IKO,
other elements of ^ let

l^ l { (θ,χ o ) } —

is defined first on basis
,Xί)) - Eti(iΦ0). For

Wl
uk,Xi)ι

= Wl
H0,Xί)}

(Wd)k

Observe that the operator Lδ (resp. Rδ) acting on the basis ^
of l\Z x X) is transformed into left (resp. right) multiplication by
Wd on L\T)®Mn.

The action of W on the bases can be extended to a Hubert
space isomorphism from l\Z x X) to L\T)®Mn. The map W has
one other important feature: it is multiplicative on the bases on
which it is defined. Let LI = {fel\Z x X)\f{n, x) = 0 for all but
finitely many n}. For elements / and g in L\, we define a multipli-
cation as follows:
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The bounded elements of l\Z x X) are defined to be those functions
/ such that g i-> f*g is a bounded operation on LI. The set of
bounded elements is denoted by L°°. Note that by definition L°° £
l\Z x X). (Our notation coincides with that in [6].) An example
of a bounded element is the function δ defined above. A computa-
tion shows that gy->δ*g (resp. g\-+ #*§) is simply the operator Lδ

(resp. Rδ) acting on g. It is shown in [5] that the algebra of left
(resp. right) multiplications by elements of L°° is precisely the
algebra S (resp. 91). Accordingly we shall use the notation Lf for
left multiplication by an element / i n L°°. Although slightly tedi-
ous, the proof of the following theorem is not difficult and is left
to the reader.

THEOREM 2.1. The map W is a Hilbert space isomorphism
from l\ZxX) onto L\T)®Mn such that WLfW~ι = Lwf and

ψ-1 == Jtwf for f in L°°.

Since W is an isomorphism, it follows immediately that
is a von Neumann subalgebra of the bounded operators on L2(T) (g)
Mn. This subalgebra is identified in the following corollary. (From
now on, most results will be stated for the left algebra S; corres-
ponding statements for the algebra 31 will be left to the reader.)

COROLLARY 2.2. The algebra W2W~λ is isomorphic to the algebra

n acting by left multiplication on L2(T) (x) M%.

Proof Recall that we treat LP(T) (g) Mn as the set of n x n-
matrices with entries from LP(T). Consider the subalgebra So of
2 defined by So = {Lf\f eLl}. Then W2,W~l is the algebra of
n x ^-matrices with "polynomial" entries acting by left multiplica-
tion on the space L2(T)®Mn. So for Lf in So, WLfW~ι is left
multiplication by a matrix [piό\ where for each i and j , pί5 is a
polynomial of the form ^f=^Kaili(aieC). The weak closure of
WZoW-1 is W2W'1 and thus W2W'1 is simply the algebra
I/°°( T) (x) Mn thought of as acting by left multiplication on L2( T) (x)
M%.

Since the algebra 8 is a generalization of the algebra L°°(T)
and since 8+ is designed to generalize H°°(T), the subspace of L°°(T)
consisting of functions whose Fourier coefficients of negative index
vanish, it is tempting to say that W2+W'1 is the algebra fl"°°(Γ)(g)
Mn. However, as the next two results show, this is not quite the
case.
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COROLLARY 2.3. The algebra WS+W'1 consists of the matrices
[aiό] in H°°(T) (g) Mn having the property that di:}(0) = 0 if aiό lies
above the main diagonal. That is,

W2+W-1 =

Ho0

where Ho°° = {feH°°\f(O) = 0}.

Proof. Since 2+ = {Lf\feL°°, fin, •) =0, n<0} and L°°Sί2(Zx
X), any function / such that Lf is in 2+ is also in 12(Z+ X X).
(Z+ = {0, 1, 2, ..-}.) Using the definition of Wd and the form of
(Wδ)k for k ^ 0, it follows that TFS+TF"1 S H°°(T)0Mn.

To see that TFS+W"1 has the stated matricial form, it suffices
to show that if j >̂ 0 and Wl[{jiXι)} = Xfci?«/3 with α < /3 then Λ is
strictly greater than zero. But WluίtXι)} = Epp(Wδ)j where p = I if
Z Φ 0 and ί? = n if Z = 0. For j ^ 0, the nonzero elements on or
above the main diagonal of (Wδ)j are positive powers of %lβ Since
χ\~ χky the result follows.

REMARK 2.4. (1) In view of 2.3, it is clear that the algebras
W2+W'1 and H°°(T)®Mn should not be isomorphic. The follow-
ing proof that they, in fact, are not isomorphic is due to K. R.
Fuller. In this remark, H°° will always be used to denote H°°(T).
Note first that H™ is just the principal ideal zH°°. Let

H

Then J is a (two-sided) ideal in W2+W~ι and
ring

is the

HlF/H

H~/Ho°°_

S H"/Hr

(n summands). Thus W&+W'1 has a commutative factor ring.
Recall that any (two-sided) ideal in H°°®Mn has the form I®Mn

where I is an ideal in H". It follows that H™ (R) Mn has no com-
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mutative factor rings. Hence H°° (g) Mn is not isomorphic to

W2+W-1.
(2) It was noted at the beginning of this section that the

algebras £ and 3ΐ are not factors. We now show how to identify
&(%), the center of 8, as the von Neumann algebra generated by
L*. To do this we first write LMn for the von Neumann algebra
of left multiplications by n x -^-matrices acting on Mnf and similarly
write RMn for the right multiplications. Let CV denote the algebra
of scalar multiples of the identity acting on the space £ίf. Then
Corollary 2.3 shows that % = L°°(T)®LMn and 8' = 3ΐ = L~(Γ)(g)i^v

Hence 3f (8) = 8 n 8' = (L~(T) (x) L,/%) n (L^Γ) <g> 22*J = L-(Γ) ® (LM% Γl

3* Two-sided invariant subspaces and multiplicity functions*
Recall that a subspace that is invariant under both the algebras
8+ and 3Ϊ+ is called a two-sided invariant or 8+ V ?ίi+-invariant
subspace. Under appropriate assumptions on X and r, it can be
shown that for each two-sided invariant subspace ^ there is a
subset B oΐ Z x X invariant for the maps λ and p defined in § 1;
the subspace ^£ consists precisely of those functions in the Hubert
space with support contained in B. As noted previously, this result
is not valid in case X is a finite discrete set and r is a permuta-
tion. However, it is an easy computation to show that for any set
B in ZxX invariant for λ and p, the subspace l\B) is a two-sided
invariant subspace. The following remark collects several pertinent
observations concerning two-sided invariant subspaces of the form
l\B).

REMARK 3.1. Let 12(B) be a (nontrivial) two-sided invariant
subspace.

(1) If the point (k, x) is in B then, by the ^-invariance of
B, (k + Z, x) is in B for any positive integer I.

(2) Let Z(fc) = {k, k + 1, k + 2, •}. There exists an integer
N with the property that the set Z(N) x X contains B. This follows
from the fact that l\B) is not the entire space l\Z x X) and that
B is invariant for both maps λ and p. If N is also chosen to be
the largest such integer, then B contains the set Z{N+n) x X. In
particular l\B) is a full, pure subspace for both the algebras £+
and 21+. (Recall, an S+-invariant subspace ^£ is %>+-full in case the
smallest 8+-reducing subspace containing ^t is l\Z x X).)

(3) There exists a partition fEΆJΣL-oo of X such that B =
\JkezZ{k) x Ek. To construct this partition, let C = B\p(B). Then
Ek = {x 6 X\ (&, x) e C n (W x X)}. Observe that all but finitely many
of the sets Eb are empty. Since B is invariant for λ, the partition
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{Ek}k has the following "order" property: τ(Ek) £ U ^ + i Eά. This
property will be important in our discussion of multiplicity func-
tions in Theorem 3.4.

(4) Recall that if ^ is a left-invariant subspace, then ^ ~
Λ€ θ I*ι*s# is a wandering subspace for Lδ. From Lemma 3.2 of
[5], we know that the projection Pjr onto JF' lies in WL, the
commutant of ΈlL. Hence P^ can be written as Pjr = ^^ex Pipe)
where each P(x) is a projection in J*f(l\Z x {#})). The multiplicity
function of the subspace ^f is the function m on X defined by

m(x) — rank P(x) = dimension of range of P(x) .

PROPOSITION 3.2. Let l\B) be a {nontrivial) two-sided invariant
subspace. Then there exists a set AaB such that 12(A) is the
wandering subspace for the operator Lδ associated with the subspace
l\B).

Proof. The wandering subspace is by definition ά^ = l\B) Q
Lδl\B) = l\B) θ l\MB)) = l\B\X(B)). Let A = B\X(B).

In the terminology of ergodic theory, the set A is a wandering
subset oΐ Z x X for the transformation λ. We have found it help-
ful to represent subspaces of the form l\B) by means of figures.
Since these subspaces consist of functions supported on the set B,
all information concerning such a subspace is codified in the set B.
To graph such a set, one may simply represent the set Z x X in
the obvious way as the set Z x {0, 1, 2, , n — 1} in the plane.
The graphical representation of subsets B in Z x X can be used to
illustrate the items of Remark 3.1 and Proposition 3.2 as well as
provide motivation for proofs of several theorems presented here.

PROPOSITION 3.3. Assume l\B) is as in 3.2 and has the multi-
plicity function m. Then Σ^ex m(x) = n, the cardinality of the set X.

Proof Let A be the wandering set produced in 3.2. For an
element x in X, define the set Ax to be the intersection of the set
A and the "horizontal" slice through the point x: Ax = A Π (Zx {x}).

Let P be the projection onto the wandering subspace l\A). We
may write P— ΣχeχP(%) as in 3.1.4. Clearly P(x) is the projection
onto l\Ax) for each x and so rank P(x) — dim l\Ax) — card As, the
cardinality of the set Ax. Thus it suffices to show that Σ*ex card
Ax = n.

Using Remark 3.1.2, there exists a smallest integer k0 such that
{k0} x X is contained in B. For any x there exists a positive integer
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j = j(x) such that X~j(k0, x) is in B but X~{j+ι)(kθ9 x) is not in B. By
left invariance and the definition of the wandering set A, the point
X~j(k0, x) = (k0 — j , τ~3'x) lies in A. Thus associated with the n
distinct points (kθ9 x), (k0, xj, , (ft0, xn-i)9 we have their pre-images
under λ in A and these pre-images must be distinct. This shows
that Σ*e*card Ax ^ n. But since Lδ is a shift of multiplicity n, it
follows (cf. [7]) that the dimension of the wandering subspace is
no larger than n and hence Σzezcard A,, = n.

It is shown next that if m is any nonnegative integer-valued
function on X whose values sum to n, then m is a multiplicity
function. Moreover we construct [an explicit subspace for such a
function.

THEOREM 3.4. Let m be a function on X having values in the
nonnegative integers. If m has the property that Σ . e j m ^ ) ^ ^ ,
then there exists a two-sided invariant subspace with multiplicity
function m.

Proof. The proof is somewhat lengthy and is broken into three
steps. The first step consists of constructing a partition {Ek}ΐ=-oo of
X, in which all but finitely many of the sets Ek will be empty. We
define the set B to be \JkezZ{k) x Ek. The second step will be to
show that the set B is invariant for the maps λ and p. This
invariance can be translated into a property of the partition which
is then verified. The final step consists of showing that the subspace
Γ(B) has the desired multiplicity function.

Step 1. Let {xXQ, xh, , xiL} be the support of m so that m(x)Φ
0 if and only if x = xik for some k, 0 ^ k ^ L. We will assume
io < i\ < ••• < iL- Define the supplementary function s( ) on the
support by

j 0 k = 0
θ(/γ \ — J

Σ

Let s = min {s(xik)\k — 0, 1, , L}. We can extend the function
s( ) to all of X as follows. For x outside the support of the multi-
plicity function, there exists a smallest positive integer k such that
x = τky with y e supp m. For such x define s(x) = s(τ/) + fc.

Define the sets Ek = {x e X\ s(x) = s + k}, k = 0, 1, , ^. Clearly
{j&A}fc=o is a partition of X where η is the smallest positive integer
such that ULo-S, - X. Let β = (JLo Z{k) x ^ Then
ΣLo l\Z{k) x jSfc) is a subspace contained in 12(Z+ x X).
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Step 2. Clearly l\B) is invariant for the right algebra 3ΐ+. To
show the subspace is invariant for S+, it suffices to show that B
is invariant for the map λ. To accomplish this last objective, it
suffices to show that the partition has the following "order" pro-
perty:

τ(Ek)Q U Eit fc = 0, 1,2... .

Finally, it follows from the definition of the partition that this
property will be demonstrated once we show s(τ{x)) ^ s(x) + 1. The
proof of this inequality depends on whether or not x and τ(x) lie in
the support of the multiplicity function. In case τ{x) is not in the
support of m, the desired inequality follows immediately from the
definition of the supplementary function β( ).

Assume next that both x and τ(x) are in the support of the
multiplicity function. Because τ is cyclic, we shall assume initially
that x = xik where k < L. Then τ{x) = xik+1 = xίk+i- But then

s(τ(x)) = ik+1 - i0 — Σ wfoy)

= ifc + 1 — i 0 — Σ ™>(xis) ~ m(xik+1) .

If k = 0, it follows that

β(τ(αθ) = ίo ~ io + 1 ~" ^(^ix) ^ 0 = «(»ίo) ^ β(&) + 1

If k Φ 0, then we have

Now suppose that # = xiL and both x and τ(x) are in the support of
m. Then 05<I( must be xn^ and r(α?) = x0 so both «„«! and x0 are in
the support of m. We know s{τ(x)) = s(a?0) = 0, so we need to show
s(xn_ι) + 1 ^ 0 . This is done as follows:

L

8(%n-i) = (n ~~ 1) "" 0 — Σ wfo.) = n — 1 — (w — m(xQ)) ^ 0 .

Thus 8(flc»_i) + 1 ^ 0 and hence s(x0) ^ s(^_i) + 1.
Lastly, assume that x g supp m and τ(x) 6 supp m. In this case

s(χ) = β(y) + A; for some 7/ as in the definition of the function s(«).
A computation similar to the preceding one shows that s(τ(x)) ^
s(x) + 1.

Step 3. The proof will be completed by showing that the
multiplicity function m1 for the two-sided invariant subspace 12(B)
is equal to the original function m. It follows immediately from
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the definition of the partition that the supports of the functions m
and m1 are identical. To show m = mlf it suffices to identify the
λ-wandering set A and show that m(x) — card A,..

We know that the wandering set is B\\(B). Let

A = \J{(1, x), (I + 1, x), •••, (I + m(x)-l, x)\xeEt Π suppm} .J

We shall show A = J3\λ(J5). Clearly A Q B. Suppose A Π
Specifically, we may assume (by invertibility) the point (k + n2f xiq)
in the intersection A Π λ(B) satisfies λα(Z + Wi, a?<p) = (fc + w2, α?c)
where # ί p e i^, α?<β 6 J^., 0 ^ nλ < m(xip)f 0 ^ n2 < m(xig), and a is a
positive integer less than n. Observe that

Γ ^fsy* i «— /γ [ Q Λ "ί"Π5IT ΓV *~~" Γ'J ,

and

Due to the cyclic nature of τ, we are forced into considering sepa-
rate cases. In each case, the point {k + n2, xiq) cannotbe in A D MB)
and hence this intersection will be empty.

For the first case, suppose ίp < iq and ίp Φ i0. We have

V

\ ip' — P "~~ 0 X i '**/\Xij)

and

Thus

= iff - i, - Σ
i+

= a -

Hence & = α + I — Σ i=^+i wK^ ) Φ a + I + nλ — n2 for any ^ , ^2

since nx e {0, 1, 2, , m(xip) - 1} and n2 e {0, 1, 2, , m{xiq) - 1}.
This contradicts (t). So no element in A n \{B) can satisfy the
hypotheses of this case. The remaining cases are all based on the
demonstration of this first case and are left to the reader.

We now have A £ B\X(B). To show A = J5\λ(J5), simply
observe that, by construction, the cardinality of the set A is the
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same as that of the set X. Since the wandering set B\\(B) has
cardinality n, we must have A = B\\(B).

Lastly observe that, by construction, m(x) = card Ax for each
element x in X.

REMARK 3.5. (1) The subspace l\B) constructed in the proof
of the theorem has the property that l\B)^l\Z+xX) but LjΨ(B)^
12(Z+ x X). Such a subspace is said to be left-justified. This is
equivalent of course to the property that B f] ({0} x X) Φ 0 but
sn({-i} x X)- 0.

(2) Clearly a multiplicity function for a two-sided invariant
subspace can be identified with an ordered w-tuple of nonnegative
integers (α0, alf , an_λ) with the property that α0 + αx + f-
α»_i = n. The number of distinct w-tuples with this property (and
hence the number of distinct left-justified two-sided invariant sub-
spaces l\B)) is i^n~ X ) = (2n -l)\/(n -l)lnl9 [8, p. 139]. In §4

we shall show how to use this finite collection of subspaces as
canonical models for all left-pure invariant subspaces for the
algebra £+.

The final theorem of this section illustrates how to obtain a
multiplicity function directly from a two-sided invariant subspace of
the form l\B). Recall that the multiplicity function of such a sub-
space was defined using a decomposition of the projection onto the
wandering subspace.

THEOREM 3.6. Let 12(B) be a (nontrivial) two-sided invariant
subspace with associated ordered partition {Ek}^^ (cf. 3.1.3). Then
the multiplicity function for the subspace l\B) can be formed as
follows: for x in Eh m{x) — minft {nk + k — l\nk is the first positive
integer with the property that xeτnk(Ek); keZ}.

Proof Recall that B = \Jk^zZ{k) x Ek and there is an integer
N such that Ek = 0 , k < N (cf. Remark 3.1). Note next that m
as defined above is a nonnegative-valued function since the partition
{Ek} has the property that τ(Ek) S Uιs*+i^ι We will assume
throughout the proof that the element x is in Et. Let A = B\X(B)
be the wandering set for the subspace and recall that we need
only show that m(x) is the cardinality of the set Ax, the α -section
of the set A.

We first show that the equation m(x) = 0 is equivalent to the
equation Ax — 0 . Suppose that m{x) = 0. Then there exists an
integer k such that nk + k = I (so that in particular k < I) and
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hence x is in τnk(Ek). But then τ~nkx is an element of the set Ek

so that the point (ft, τ~nkx) is in B. We now have Xnk{k, τ~njcx) =
(I, x) so that the point (£, x) is not in Ax. Hence Ax must be empty
since if Ax is to be nonempty, it must contain at least the point
(I, x) (along with possibly other elements of the form (I + j , x) for

3 > 0).
On the other hand if Ax is empty then (I, x) is in B but not in

A, Thus (I, x) must be in X{B) and hence X~\l, x) = (I — 1, τ~xx) is
in B. By left-invariance and the definition of the partition, (I — 2,
r"1^) g B. Thus w ^ — 1 so that the smallest positive integer a such
that x is in τ%Eι^ is α = 1. Thus 0e{nk + ft — l\nk is the first
positive integer with the property that x e τ"k(Ek)} and hence m(x) = 0.

Assume now that m(x) is different from zero. Let j be an
integer such that 0 ^ j < m(x) and set nQ = ί + i . Suppose the
point (w0, sc) does not belong to Ax. This means that (nQ, x) = X(n0 —
1, τ"1^) with (n0 — 1, r"1^) in B. Then τ~xx lies in Ek for some ft^
w0 — 1. Hence m{x) ^ nk + ft — i ^ 1 + (w0 ~ 1) " I = i < w(a ). This
contradiction shows that (w0, x) lies in A and hence m(a?) ^ card A,..

Finally the point (I + m(x), x) is in B. Let tιΛ and ft be the
integers as in the statement of the theorem so that x is in τnk(Ek)
and m(x) = nk + k — I. Then (I + m(x), x) = (wfc + ft, x) = λ%A(ft,
τ~nkx) and the point (ft, τ~nkx) is in β since τ~nkx is in JEΛ. Thus
(I + m(cc), a?) is in B but not in A so that (Z + m(x), x) is not in
Ax. This completes the proof that m(x) = cardA^.

4* Canonical models* In this section we show how to use
the finite number of left-justified 8+ V 3ΐ+-invariant subspaces of
the form l\B) as canonical models for the pure S+-invariant sub-
spaces.

THEOREM 4.1. Let ^J? he a nontrivial left-pure invariant
subspace of 12(Z X X). Then there exists a two-sided invariant
subspace of the form 12(B) and a partial isometry Rυ in the algebra
3t such that P = RvPi2{B)R* and hence ^ = Rvl\B).

Proof. Let J^ be the left-wandering subspace associated with
^£(J^ = ^£ QLd^€). The dimension of ^ is less than or equal
to n. Let m( ) be the multiplicity function for ^ t . If Σ«eiw(a;) =
n, then there exists a left-justified two-sided invariant subspace
12{B) with multiplicity function m. The theorem now follows from
Theorem 3.4 in [5] and, in fact, Rv is a unitary operator in this
case.

If L e i # ) < ^ then there exists an element xk in X such
that m(xk) = 0. Define a new function m1 by
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Ϊ
m(x) x Φ xk

n
Then m1 is a multiplicity function for a left-justified two-sided
invariant subspace l\B). Let ^ 7 = 12(B) Q Lδl

2(B), the wandering
subspace associated with l\B), and let P^λ = Σ* Θ -Pi(̂ ) (cf Remark
3.1). By construction rankP^x) = rrφέ). Now let Q = Σ *βJbΘ-Pi(s).
We may also decompose the projection onto the wandering subspace
for Λ€\ PJΓ — Σ*eχθP(#) . It follows that the projection Q is
equivalent to the projection Pjr in WL since the corresponding
dimensions are identical (see [2] for a discussion of equivalence of
projections). Since Q < P^2, it follows that P^r < Pjrχ in WL. So
by Theorem 3.4 of [5], there exists a partial isometry Rυ in 91 such
that Pv/ •= RvPι2{B)R* and this completes the proof.

As a corollary, we are able to show that any two-sided invariant
subspace that is not left-reducing is (left) pure and full. Lemma
4.2 will be useful for the proof. Let Lp and Hp denote the usual
Lebesgue and Hardy spaces on the circle with normalized Lebesgue
measure. Let HQ

P denote the space of Hp-iunctions vanishing at
the origin. Recall that Szego's theorem asserts that if ft) is a

positive integrable function on the circle, T, then the inf I |1—f\2a)dm,

which is taken over all polynomials / vanishing at zero, is precisely

exp (\ logωdrn) where the expression is zero by fiat if logω is not

integrable. It follows from this fact that if / is an U-ίunction

then the distance in U from / to the closed subspace (fH™) is

expΠ log \f\2dm) .

LEMMA 4.2. Let E be a measurable subset of the circle such
that both E and its complement T\E have positive measure. Then
the closure of 1EH2 in L2, 1EH2, equals 1EL2.

Proof. From Szego's theorem we know that the distance from
the indicator function 1E to the space 1EH2 is expΠlog lEdm\ which
equals zero since 1̂  vanishes on a set of positive measure. Thus
1E e lEHo. From this it is easy to see that the subspace 1EH2 is
a reducing subspace for the operator of multiplication by z (i.e.,
the shift operator). Thus by [7] there exists a measurable subset
F such that 1EH2 = 1FL

2. It is easy to show that the sets E and
F differ by at most a null set so that 1EH2 — 1EL2.
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COROLLARY 4.3. Let ^ be a two-sided invariant subspace that
is not left-reducing.. Then Λ€ is (left) pure and full.

Proof. We shall assume first that ^£ is (left) pure and show
that ^ is full. Subsequent to this we shall show how this assump-
tion can be replaced by the assumption that ^ is not left-reducing.

Since ^/έ is a pure subspace we can apply Theorem 4.1 and
write ^€" = Rvl\B) where Rv is a partial isometry in the algebra
91 and l\B) is a two-sided invariant subspace.

Let P be the final projection of Rv so that P — RυRf is an
element of 9i. In this proof we shall use the notation U to refer
to l\Z x X). Thus PL2 = RVU = Rv V^o Ul\B) = V^o Ln

δRvl\B)^
V ^ o i J ^ Observe also that P commutes with 91. To see this let
Rφ be an element of TtR. Then RΨPU=Rφy^0 LJ^T = V so L<ϊRφ^€Q
Vŵ o IA^ = PL2. So PL2 is invariant for SK̂  and hence the projec-
tion P is in the commutant of 3fts. To show P commutes with Rδ

observe that RδPRfL2 = RδPL2 £ PL2 so that RδPRf ^ P. But since
the von Neumann algebra 9t is finite and the projections RδPRf and
P are equivalent in 3t, we must have RδPRf = P. Thus P is in
31', the commutant of ϋt. But Sft' = S and so P lies in ^(9t), the
center of 9ΐ (which is also ^Γ(8), the center of S).

By Corollary 2.2 we can represent P as an operator of the
form I s ® / acting on the Hubert space L\T)® Mn. If JS? is almost
all of the circle, we may take P to be the identity and it follows
that Λ€ is full. If μ(T\E) > 0 so that the indicator function 1E

vanishes on a set of positive measure, we show that ^ is not
pure, contrary to our assumption.

First note that P is also the initial projection of RΌ since 3ΐ is
a finite von Neumann algebra and P is a central projection. It is
easy to see that we can choose an integer N > 0 such that
L*!W-\H2®Mn) S l\B) where W is the isomorphism of §2. Thus
we have

PL21

= RvPl\B) (P is the initial projection)

RMW-\WPW-l)(H2 (x) MJ

RvLfW-\ls (X) D(H2 (g) MJ

RvLfW~\lEL2(T) <g) Jf.) (4.2)

RMW-\1E <g> /)(L2(Γ) (x) if.)
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= RVL»PL2

= PRvLfL2

— PL2 (P is the final projection).

But this contradicts the purity of Ίίi since PL2 is a reducing sub-
space. This completes the proof under the assumption that Λ% is
a pure subspace.

Now assume that ^£ is a two-sided invariant subspace that is
not left-reducing. To complete the proof it suffices to show that
^£ is pure. We shall show that if Λ€ is not pure then, in fact,
^ must reduce £+. We may break ^ into its reducing and
pure pieces: Λ€ — ̂ 0 ^ where ^/^ = ΓL^olΊ-^ and ^ g =
Σ«£ 0 . ί ' ϊ^ r ([5], Prop. 3.3; or [7]). If Λ is not a pure subspace
then ^ x Φ {0}. The subspace ^£[ is left-reducing; in addition, ^£x

is right-reducing. To see this we need only show ^/Sx reduces Rδ.
Since ^ g reduces 8, we have ^*C = RPL

2 where Rp is a projection
in at, the commutant of £. (Recall Z,2 = l\Z x X).) But since ^
is invariant for Rδ, RδRpRfL2 = Λ ^ L 2 £ i2pZΛ Thus RδRpRf ^ i?p

and so RδRpRf — Rp as in the first part of the proof. It follows
that Rp commutes with 3t and so Rp e 2 Π 3ΐ = £ Π £' = ^ ( £ ) , the
center of £. The projection Rp may be represented as 1̂  (x) / acting
on L2(T)(g)Mn. Since ^ ^ , the pure part of ^£, is orthogonal to

T F ^ must lie in the range of \Έ, ® J (£" = T\E). Hence
£ L\Er) 0 Mn. Representing W^& as a matrix of subspaces,

U C ], we have ^ ^ y £ L2(£") for each ΐ, j .
Since ^ ^ is invariant under Lδ9 it is easy to see that each sub-

space ^€iά is invariant under multiplication by Xίf the bilateral shift
on L\T). Using the fact that ^f2 is pure, a calculation shows that
the subspaces ^€^ do not reduce the shift, unless ^fti = {0}. Hence
for each i, j , either ^i5 = φ ί i i ϊ 2 (Γ)( |^ ί i | = 1 a.e.) or ^ ^ = {0}.
But since ^t^ £ L\Ef), we conclude that ^€^ = {0} for all i, j .
Hence ^Cί = {0} and so ^fέ is a (left) reducing subspace.

REMARK 4.4. The preceding proof shows that a two-sided in-
variant subspace is either reducing or pure. Thus in the decom-
position ^ f — ̂ x 0 ^ ^ as above, at most one of the spaces ^ u

^ C is a nonzero subspace.

5* Uniqueness* In this last section, we comment on the degree
of nonuniqueness in the construction of canonical models. Theorem
4.1 not only states that if ^ is a left-pure invariant subspace then
^£ = Rυl\B), but its proof and the proof of Theorem 3.4 actually
construct the two-sided invariant subspace 12(B). Since ^£ also
equals RJRjH\p\B)) = RJ2(C), the subspace l\B) is not unique.
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However we can choose a specific subspace as follows.
For any multiplicity function such that Σ m(x) — n, construct

the left-justified two-sided invariant subspace l\B) as in the proof
of 3.4. In case Σ m{x) < w, extend the function to another multi-
plicity function mt by defining m ^ J = n — Σ**** m(%), where xk is
the element of X outside the support of m with the smallest index
k. Now construct the subspace l\B) for this multiplicity function
as in 3.4. Using this procedure, any given multiplicity function
will yield a unique left-justified two-sided invariant subspace of the
form l\B). It remains only to consider the partial isometry in the
expression ^ = Rυl\B). The following proposition is a reformula-
tion of a corollary found in [3, p. 64],

PROPOSITION 5.1. Let U be a bilateral shift on a Hilbert space
έ%f, let £$f+ be a full, pure invariant subspace for U, and let ^/ί
be a pure invariant subspace for U. If Vx and V2 are partial
isometries on £%f which commute with U and satisfy ViP^+Vf =
P^>, then there is a partial isometry W on 3$f such that: (1) the
initial space of W is the initial space of V2', (2) the final space of
W is the initial space of VΊ', (3) W commutes with U; (4) W is
reduced by <%%; and (5) V2 = VΊW.

Proof Let J^ = <%f+ Q U^% and gf = ^/S Q U^t. Then

UP^U* = P&. Thus when restricted to J?", each Vt is a partial iso-
metry mapping onto gf. For i = 1, 2, let ^ be the initial space of
Fil^v Then ^ is a subspace of ^ and Vt maps ^ isometrically
onto gf. Because Vt commutes with U and ^ 7 is contained in the
complete wandering subspace ^ ^ , it is easy to check that the initial
space of Vt is Σ~=-~ θ U^J^. Since V^ = gf, we can find a
partial isometry Wo mapping ^ to J^ such that the initial space
of TFo is J^ς, the final space of Wo is ^Γ, and (Vι\^)W0

Define W on all of JT7 = Σ"=-oo Un^ by the following formula

where {ej»=_oo is a sequence in ^ satisfying Σ l i ^ H 2 < °° (For
details on this definition see the proof of Theorem 3.4 in [5]. It is
helpful to note that if the spaces ΌnJ^ are identified and operators
on Sίf are written as operator matrices, W is diag ( , Wo, Wo,
Wo, •••)•) It is immediate that W satisfies the conclusions of the
proposition.

Our uniqueness theorem is a simple translation of Proposition
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5.1. We include a precise statement for completeness.

COROLLARY 5.2. Let ^ be a left-pure invariant subspace and
let l\B) be a two-sided invariant subspace. If RVl and Rv% are
partial isometries in 9t which satisfy Rv.Pι2{B)Rf. = P^9 then there
is a partial isometry Rw in 9ΐ whose initial space is the initial
space of RV2, whose final space is the initial space of RVl, which is
reduced by 12(B)9 and which satisfies RV2 — RHRW.

Proof. Let W be the partial isometry obtained from Proposition
5.1 for the bilateral shift Lδ. We need only show that W is in 3ΐ.
But since the initial space of RV1 is the final space of W, we have
R%Rυι = R\RVιW = W and hence W is in 3*.

The preceding corollary does not answer completely all questions
of uniqueness. In particular, it does not describe the partial isome-
tries in 3t that are reduced by a canonical model. A satisfactory
description can be given in case the subspace of Corollary 5.2 is
both full and pure. In this case ^ •= RJ2(B) where Ru is a unitary
operator in 3ΐ. The task is to describe those unitary operators in
3ΐ that are reduced by a particular canonical model. Expressing
Ru in its matricial form as discussed in § 2, we can show that Ru

has a specific form, which depends on the canonical model reducing
it. The following two examples illustrate this.

EXAMPLE 5.3. Consider the subspace l\Z+ x X) and let P be
the projection onto the subspace. It is easy to show that ΊfϊΠiPY —
ίSt+ Π Sftί = WlR. The image of mR in L°°(JΓ) (X) Mn is the algebra of
(right multiplications by) diagonal matrices with constant entries
along the diagonal. Thus the unitary operators in 9ΐ that reduce
l\Z+ x X) can be represented as right multiplications on L\T)0Mn

by matrices of the form

a, 0

with \at\ = 1.

EXAMPLE 5.4. A more typical example can be obtained by con-
sidering the case that X has cardinality 3. Let B = {(0, a?2), (1, #o)>
(1, x2)} U (Z(2, x X) and consider the subspace 12(B). The image of
this (two-sided invariant) subspace in U(T) (g) Mn (under the isomor-
phism discussed in § 2) is



CANONICAL MODELS FOR INVARIANT SUBSPACES 395

(Recall Ή.% = IJi2 and Hi = X2H
2.) A computation shows that if Ru

is a unitary operator in 91 reduced by 12(B), then Ru must be right
multiplication by a matrix of the form

'21 ^22 ^ 2 3 ^ 1

_ ^ 3 l X l ^32%1 &33

with the constants ai3 chosen so that the matrix is unitary (recall

This second example exhibits the general characteristics of the
form of a unitary operator reduced by a canonical model. In general
if we represent Ru as right multiplication by the matrix [φtj] on
I/(T) (x) Mn, one can show that each <piS has the form ci3 Xk where
ci3 is a complex constant and k is — 1, 0, or 1. In particular <pit can
be shown always to be a constant; if i > j , φi3 = cί5 ZΛ and k = 0 or
1; and if £ < j" then 9><y = ĉ Z* and k — 0 or —1. Moreover one can
construct a simple algorithm, based on the form of the canonical
model for deciding the value of k. Although we feel that these
results are of value, their [statements and proofs are notationally
cumbersome and so are omitted.
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