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ON INCOMPLETE POLYNOMIALS. II

E. B. SAFF AND R. S. VARGA

The approximation of xn by incomplete polynomials is
studied, i.e., we consider the extremal problem

En-k,k = inf \xn + Σ djXn-j\\ : (dlt , dk) e Rk I , n^k ,
ό=ι 11 [o,i]

for the supremum norm on [0, 1]. We show that, for k fixed,
nkEn-k)Ίc —• εk as n —> oo, where

ε* = inf -t (fk _ι_ y
\ --o

A generalization of this result for the case of lacunary
polynomial approximation is given, as well as inequalities for
En-kΛ and εk. Furthermore, we prove that for any polynomial
P(t) of degree at most k, there holds for the supremum norm

1* Introduction* In this note, we continue our investigation
[6], [7], [8], [3], of incomplete polynomials, a subject first introduced
by G. G. Lorentz [4]. Following the notation of [7], if πn denotes
the set of all real polynomials of degree at most n, then for each
pair 0, k) of nonnegative integers, πS)k denotes the set of polynomials

(1.1) π s,/ c: = {xsqk(x): qk e πk} ,

so that πStk c πs+k. A polynomial in πS)k is called an incomplete
polynomial of type (s, k). For any set KaR, the norm || \\κ shall
denote the supremum norm on K, i.e., \\g\\κ: = sup{|flr(oί)|: x eK}.
Setting

(1.2) Es,k: = i n f { | | ^ ( ^ - q(x))\\ίOtll:q eπk_λ) , π^: = {0} ,

it is known [7] that, for each pair (s, fc), there exists a unique monic

polynomial Qs,k(x) e πSyk of exact degree s + k, such that ||Q,ffc||[0,i] =

E.,k.
In a recent paper, Borosh, Chui, and Smith [1] established that

for any positive integer k, there exist positive constants ox(k) and
σ2(k) such that

(1.3) σM ^ nkEn_k>k ^ σt{k) , Vn> k .

They also proved that the coefficients of the extremal polynomials

Q»-k,k(®) a r e bounded as n —> oo.
One aim of this note is to derive (cf. (3.3)) explicit upper and
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162 E. B. SAFF AND R. S. VARGA

lower bounds for nkEn_kfk for all n> k. But more importantly, we
prove (in Corollary 2.3) that the limit of nkEn_k)k as n -> °° exists
and is given precisely by

(1.4) lim nkEn_k)k = εk , V& ̂  0 ,

where

(1.5) ek: = inf{||β-'(ί* - P(t))\\[0,+oo): peπ^} .

Since, after suitable normalization, the extremal polynomials for (1.2)
are L°°-analogs of Jacobi polynomials, and the extremal polynomials
for (1.5) are L°°-versions of Laguerre polynomials, our essential con-
tribution is to show, as in the ZΛsetting, that L°°-Laguerre polynomials
can be obtained as the limit of certain L°°-Jacobi polynomials.

A generalization of the inequalities (1.3) to the case of lacunary
polynomials is also proved in [1]. As a consequence of our main
theorem, we derive the best possible result for this case as well (cf.
Corollary 2.2).

The outline of the paper is as follows. In §2, we prove our
main result and deduce as corollaries the limit (1.4) and its analog
for lacunary polynomials. In §3, we derive inequalities for incom-
plete polynomials, and in §4 we study the quantities εk of (1.5).
We also prove in §4 (cf. Theorem 4.2) that for any polynomial
Peπk, there holds

(1.6) llβ-'PCOIL+oo, = llβ- fP(t)IL*].

Moreover, the interval [0, 2k] is best possible in an asymptotic sense,
as k —> °o.

2* The main result and its consequences* Our primary objec-
tive is to prove

THEOREM 2.1. Let the k + 1 integers 0 ^ μλ < μ2 < < μk < m
be fixed, and, for each nonnegative integer n, set

(2.1) En: = inf jl Ax™ - Σ c ^ Λ I : (clf - - , ck) e Rk\ .
U \ 3=1 / I [0,1] )

Then,

(2.2) lim nkEn = J*- Π ( m - μβ) ,
*-«> k\ i=i

where εk is defined in (1.5).
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Before proceeding with the proof, we remark that by Descartes'
rule of signs, the linear space generated by the functions xn+μi, xn+μ2,
• , χn+μ* satisfies the Haar condition on (0, 1], and hence (cf. [5, p.
16]), the extremal problem (2.1) has a unique solution for each n ^
0, i.e., there exist unique constants cf(n), j = 1, , k, such that

(2.3) n(xm - Σi
\ 3=1

Vn ^ 0 .

For notational convenience, we set

(2.4) p*(χ): = xm - Σ cf(n)xμJ , Vw ^ 0 .

The proof of Theorem 2.1 requires the following lemmas:

LEMMA 1. (Lorentz [4], Saff and Varga [6]). Let P(a?)(^0) δe
α^ incomplete polynomial of type (s, m), where s + m > 0. // | P(ζ) | =

:o,i] with ζ 6 [0, 1], then s2/(s + m)2 ^ ζ ^ 1.

LEMMA 2. jPor each n, the polynomial xnpt{x) (cf. (2.4)) has an
alternation set of k + 1 points in [n2/(n + m)2, 1], i.e., there exist
points {ζi>n}i=0 with

(2.5)

such that

(2.6)

n2/(n + m) 2 ^ ζQ,n < < ζ*,, ^

i = 0, 1, , k .

Consequently, pt{x) has k distinct zeros in (n2/(n + m)2, 1), and, as
n-+ oo, f̂eese & zeros αW ίe^d ίo α? = 1.

Proof. From the fundamental property of Haar system approxi-
mation (cf. [5, p. 20]), xnpt(x) has an alternation set consisting of
k + 1 points in [0, 1] and, by Lemma 1, these points must all belong
to [n2/(n + m)2, 1]. •

LEMMA 3. Set μk+1: = m. Then, for the polynomials pt(x) of
(2.4), we have, uniformly on each compact set of R,

(2.7)

C(μlf 0) , 0)

C(μl9 k-1) C(μ2, k - 1)

C(μk+1, 0)

1, k - 1)
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where C(μj9 i) denotes the binomial coefficient ( j>

det [aiyj], aitj: = C(μj9 i - 1), i9 j = 1, 2, , fc.

where A: =

Here and below, we adopt the usual convention that C(μ, , i) = 0
if ^ < i. -

Proof. Let x{w), α#°, , 4U ) denote the k zeros of p*(a?) in (0, 1)
(cf. Lemma 2). Then, we claim that pi(x) can be expressed as

(2.8) = det

U'2,1

<Ί,2

^2,2

ak,k + l

-Γ- det
^2,1 ^ 2 , 2

where each entry α ^ is the (i — l)-st order divided difference of
the function fά(x)\ = cĉ ' in the points #ί%), ̂ Λ ) , , xln), i.e.,

(2.9) , fc

To see this, the polynomial defined by the right side of (2.8) is
evidently monic, vanishing for x[n\ •• ,αji*), and is thus vt(x) by
uniqueness. Now as n-^ °°, we have from Lemma 2 that xin) —> 1
for each i = 1, , fc, whence

(2.10) lim ft = // \ 1 ; = C(μj9 i-l),i = l, , fc, j = 1, ., k + 1 .

Furthermore, the limit of the denominator determinants in (2.8),
which is A from (2.10), is different from zero because it can be
expressed as a nonzero constant times the Vandermonde determinant
in the distinct points μl9 μ2, , μk(ct. [2, p. 47]). Thus, (2.7) follows
from (2.10) and (2.8). Π

We note from (2.7) that lim^ pϊ{k) (ϊ) = k\ B/A, where B: =
det [bitj] with bifj = C(μh i - 1), ΐ, j = 1, 2, , fc + 1. Since .B equals
ΠiU (iI)" 1 times the Vandermonde determinant in the points /^, μ2, ,
f̂e+i = w, and since A equals ΠJ^oίϋ)""1 times the Vandermonde

determinant in the points μlt μ2j -—9μk, we have that

(2.11)

This fact will be useful in the
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Proof of Theorem 2.1. As stated in Lemma 2, the polynomial
xnpl(x) has k + 1 alternations in [n2/(n + m)2, 1]. Hence on replacing
x by 1 — t/n, the polynomial (1 — t/n)nqn(t), where qn{t): = p*(l — tjn),
has fc + 1 alternations in the interval

(2.12) O£t£n[l- " J < 2 m •
\ (n + m)v

Furthermore, for each fixed p Ξg 2m, we have (cf. (2.3))

(2.13) n»En = nk\\x«p*n(x)||to>1] = ( l - -Ynkqn(t) > e .

Next, we claim that the sequence {nkqn(t)}n=i is uniformly bounded
on compact sets of the real line. Indeed, by Lemma 2, we can write

(2.14) p*(χ) = Pn{x) ΐί(x~ xn ,

where Pn(x) is a monic polynomial of degree m — k, and n2/(n + mf <
xίn) < 1 for each i = 1, , fc. Thus,

(2.15) nkqn{t) = {-l)k

Next, on differentiating &-times the product in (2.14) via Leibniz's
formula, we obtain

lim Pjl - ±) = Jj-lim pf»(l - ±) = ±- lim P:'»(l) ,

uniformly on each compact subset of R, the last equality following
from (2.7). Thus, from (2.11),

(2.16) lim Pn(l - ±) = - L Π (m - /i,) = : 7 ,

so that, with (2.15), and the fact that each tf] e (0, 2m) it follows,
as claimed, that {nkqn(t)}™=1 is uniformly bounded on compact sets of
the real line.

Now, let q*(t) be any limit function of the sequence {nkqn(t)}ζ=1.
Then by (2.15) and (2.16), q*(t) is a polynomial of degree k of the
form q*(t) = (-ΐ)kΎtk + . Since e- fί*(ί)(^0) is a limit function on
[0, p] of the sequence {(1 — t/n)nnkqn(t)}^=l9 and since each function in
this sequence has k + 1 alternation points in [0, p], the same must
be true of e~*q*(t). Consequently, q*(t) must be the unique solution
of the extremal problem

(2.17) 6{p): = inf {||<r'β(t)l|[o.,]: ί(ί) = {~l)kΊtk +...eπh).
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But this implies that {nkqn(t)}»=1 has a unique limit function and, from
(2.13), that

Finally, since (2.18) holds for all p Ξ> 2m, we have with (1.5) and
(2.16) that

e(p) = inf {||β-«β(t)||[0.+oo): q(t) = (-ΐ)"jtk + eπk}

\ 3=1
- μi).

This, coupled with (2.18), gives the desired result of (2.2). •

As applications of Theorem 2.1, we now give the sharp improve-
ments of the results in [1]. For this purpose, let k > 0 be a fixed
integer, and let λn: = (\(n), \(n), , Xk(ri)), where the integers X3 (n)
satisfy

0 ^ \(ri) < X2(n) < < λfc(^) < n .

Then, for the extremal problem

(2.19) gf (λj: = inf {I aj + £ 6 ^ > : (6,, , 6t) 6 Λ* I ,
(I i=i [o,i] )

we have

COROLLARY 2.2. If n — \(n) ^ D and C <,n — Xk(n) for all

large n, where C, D are integers and C ^ 1, then

(2.20)
k

ek ^ lim lim

where εk is defined in (1.5). Moreover, these inequalities are best
possible.

Proof. Since

gf (λj = inf
[0,1]

where ^^ = μs{n): = λ/^) — w + D, then g"(λj is of the form (2.1)
with m — Ό and n replaced by n — D. From the hypotheses on the
\'(ri), we note that 0 <; μx < μ2 < < μk ^ D — C for all w large.
Hence, by Theorem 2.1, the set £f of possible limit points for the
sequence nk<??(Xn) is given by
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: = l-fV Π (£> - Pi): 0 ̂  Λ < ^2 < < μk ^ D -

As the largest possible limiting value occurs when μs = j" — 1, j = 1,
•••,&, and the smallest limit occurs when μ3- = D — C + j — k, j = 1,
• , &, the inequalities (2.20) follow. •

We remark that, under the assumptions of Corollary 2.2, if
bf = 6*(w) denotes the extremal coefficients for (2.19), then Lemma
3 implies that these coefficients are bounded as n —> °°. The precise
statements of these bounds are left for the reader.

For the case when D = k and C = 1, Corollary 2.2 immediately
gives

COROLLARY 2.3. For each fixed positive integer k, the quantities

(2.21) E

satisfy

(2.22)

where εk

'.-».* = inf j

•is defined

lim n"En^

in (1.5).

[o,i]# *'

REMARK 1. If d* = (Z*(n), j = 1, , fc, denotes the extremal
coefficients for (2.21), then since the polynomials #fc + Σί=i d*xk~j

approach (x — l)fc as w —> oo ? we have

(2.23) limdf = (-iy(k) , i = l, •-.,*.
W /

REMARK 2. By using a slightly different method of proof, it
can also be shown that

(2.24) {n - k)kEn_k>k £ εk, for all n ^ k .

3* Inequalities for incomplete polynomials* We now obtain
estimates for the quantities ES)k defined in (1.2).

T H E O R E M 3 . 1 . For any pair (s, k) of integers with s^l,k^09

we have

* »
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Proof. The upper bound for EStk in (3.1) follows directly from
[7, eq. (30)]. To establish the lower bound in (3.1), we consider the
polynomials

12s + 2fc - 1\ -1

Vs,k(x): = ί k ) xsPt1/2'2s~1/2)(2x - 1) ,

where Pk

a>β)(t) denotes, as usual, the Jacobi polynomial. From Szego
[9, p. 63], V8)k(x) is monic of exact degree s + k. It is proved in
Lemmas 3.2, 3.3 of [6] that Vttk(x) attains positive and negative
relative extrema on (0, 1] alternately at k + 1 points ξu with
0 < fo < ζi < " * <h = h and furthermore that mino<^fc | V.,^) | =
|FS)fc(l)|. Thus, on regarding (1.2) as weighted best approximation
from πk-x on (0, 1], the theorem of de la Vallee Poussin [5, p. 82]
implies that ES)k ;> \VS)k(l)\. Again from Szego [9, p. 58], VSfk(l) can
be directly determined, so that

2 s + 2 k - 1 \ - L I k - 1/2\

k ) ( „ }• a
Since ( & ~k^

2) = (2k)\/2ik(kl)s, we obtain, on replacing s by

n - k in (3.1), that

In particular, (3.2) yields

g Λ ^ β _ w ^ (Jfc + D ^ 2 * + 2
(3.3) M L g Λ ^ β _ w ^ (Jfc

which gives explicit estimates for the positive constants o1{k)9 o2{k)
in (1.3).

Concerning bounds for the coefficients of arbitrary incomplete
polynomials, we mention a simple consequence of Proposition 4 in
[7]. For this purpose, we define

(3.4) Ts,k(x): = Qs,k(x)/ES)k = xsΣ a^x* ,

where, as stated in § 1, QSfk(x) e πs>k is the unique extremal polynomial
for (1.2). Furthermore, let ξ^k) < φk) < < ξls'k) = 1 denote the
alternation set for Q8,k(x) in [0, 1] (cf. [7, Proposition 2]). Then, we
have

THEOREM 3.2. Ifp(x) ^tfΣULa^ eπSίk and ΐ
0 ^ ί ^ k}, then
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(3.5) |α« | ̂  M\aίs'k) | , V O ^ i ^ i f c ,

where the als'k) are the coefficients in (3.4).

Proof. In [7, Proposition 4], it is shown that the above hypo-
theses imply

ί| p(aθ I ̂  M| 2WaO |, Vx ί (^'m ), 1), and

(I PM(x) I ̂  M\ TS?h(x) I, V* £ (0, 1), v = 1, 2, .

Since α̂  = p(s+ί)(0)/(s + i ) ! , and since (3.6) in particular holds when
x = 0, the inequalities (3.5) follow. •

4* Inequalities for polynomials on [0, + °o). As a useful
analog of the first inequality of (3.6) for the interval [0, +<*>), let
?*(*) = tk + , be the unique polynomial in πk such that (cf. (1.5))

and let

(4.1) 0 - η™ < V[
k) < - < τjίk)

be the unique k + 1 alternation points for e~*g*(ί) in [0, +°°), i.e.,
e-*\qϊ(t)\ = εk for ί e [0, +oo) only if t = 7]lk) for some 0 ^ i ^ h.
Then, by applying the same reasoning as in the proof of [7, Prop.
4], we have

THEOREM 4.1. If peπk and if M^ max{|e-ηik)p(rjik))|: O^i^k},
then

(4.2) I p(t) I ̂  M\ qi(t) \/ek , vί ί (0, ^& )) .

As a consequence of Theorem 4.1 and the fact (cf. (2.12) with
m = k) that rjk

{k) ̂  2&, we immediately have (cf. [7, Corollary 5]) the
first part of

THEOREM 4.2. Ifpeπk with p ^ 0 , and if \e-cp(ζ)\ = \\e-tp(t)\\ί0)+oo),
then ζ ^ ^ifc) <̂  2fc; m particular,

(4.3) ||e-'p(t)l|[o.+oo> - lle-^OHco^] = l le^Wllco.^] .

Moreover, the quantity 2k is asymptotically best possible as k —> co,
m ίfce sewse ίfeαί there exists a constant μ = 2.945 820 for which

(4.4) 2k - μ-k1/s + o(&1/3) ^ ηΐ] £ 2k , as & -> oo .
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Proof. To establish the result of (4.4), consider the Laguerre
polynomial Lk~

1/2)(x) for each fe^l. It is known (cf. Szegδ [9, p. 176])
that |I^-1/2)(0)| and the successive relative maxima of e~t\L\rm){2t)\
for t ^ 0 form an increasing sequence for each k. Calling the
abscissa of the last relative maximum ζfc, then

(4.5) e-^\Ll-^(2ζk)\ = \\e-tLt1/2)(2t)\\ί0i
+oo)

which, from Theorem 4.2, implies that ζk <; Ύ]k

{k). Now, it is evident
that 2ζk exceeds xk9 the largest zero of Lk

{~m){x), where xk is known
(cf. [9, p. 132]) to satisfy

(4.6) xk = Ak - ωkm + o(km) , a s i - ^ o o ,

with ω = 5.891 639 . But then, the inequalities xk/2 <ζk^ τjk

{k) ^
2k, coupled with (4.6), give (4.4). •

For reference purposes, the numerical values of η{

k

k) of (4.1) are
given in Table I below for 1 <; k ^ 11.

We now consider estimates for the quantities εk. Since nkEn_k>k —•
εk as n->°°, we deduce from the inequalities (3.2) the result of

(A
(4

THEOREM 4.3. For each integer k^

< 2k

For A; large, this implies, via Stirling's formula, that

(4.8) - J L ^ lim inf i/7Γ—ek , while lim sup — εk ^ 1 .

However, the upper bound in (4.8) can easily be improved. For this
purpose, let Lk

a)(t) denote, as usual, the Laguerre polynomial in πk

with respect to the weight function e~*ία on [0, +°o) (cf. [9, p. 100]),
where a > - 1 . Since Lk«\t) = (-l)Hk/kl + eπk, and since

we have, by definition of εk, that

(4.9) | U t ^ l l^lLrωiL+oo), Vα > - 1 .

Now, in the case when a — —1/2, it is known [9, p. 240] that
asymptotically

(4.10) \\e-^Ll-^\t) ||[0,+eo) ~ i ^ L , as
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where τ is the maximum of the Airy's function A(t) for teR. Thus,
from (4.9), we have

(4.11) lim sup k1' ^ (18)1/6r/π = 0.6017

In (4.8) and (4.11), lower and upper estimates for 2kεk/kl are given
which do not have the same asymptotic behavior as i-^oo, It is
an open question if there exist constants a with 1/3 ^ α ^ 1/2 and
Q > 0 f or which

(4.12) l i m ka( •
h->oo \

2%
kl

= Q

Finally, we include the results of numerical computations of ek

(cf. (1.5)), using the Remez algorithm. Tabulated below in Table I
are 2kεk/k\ and η{k) (cf. (4.1)) for 1 ^ k ^ 11, rounded to six decimal
places.

TABLE I

k

1

2

3

4

5

6

7

8

9

10

11

2kεk

.556

.433

.369

.327

.298

.275

.257

.242

.230

.219

.210

lk\

929

831

345

863

228

655

698

958

569

959

735

Vk2kεkfk\

.556

.613

.639

.655

.666

.675

.681

.687

.691

.695

.698

929

530

724

726

859

215

806

190

706

570

930

km2kε

.556

.546

.532

.520

.509

.500

.492

.485

.479

.473

.468

929

593

688

450

963

899

959

917

602

886

671

vίk)

1.278

3.009

4.827

6.684

8.565

10.462

12.370

14.287

16.211

18.141

20.075

466

706

187

493

402

169

440

471

473

145

554

(2k - 4

0.721

0.785

0.813

0.828

0.838

0.846

0.851

0.856

0.859

0.862

0.865

fc)\/L.l/3
J/lυ

534

997

183

717

958

301

865

265

834

804

316

Since π~m = 0.564 190 , we note that the third column of
Table I is in numerical agreement with the first inequality of (4.8),
while the fourth column of Table I is in numerical agreement with
(4.11). Moreover, since the entries of the third and fourth columns
of Table I are respectively strictly increasing and strictly decreasing,
it would appear that 1/3 < a < 1/2 if (4.12) were valid. Also, as a
consequence of (4.4), we have

(4.13) 2.945 820 + o(l) > (2k - ηlk))/km ^ 0 , as k > oo ,

which again is in agreement with the last column on Table I.
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Added in Proof. Using a different method the authors have
recently extended Theorem 2.1 to the case of iZ-norms, q ^ 1, on
[0, 1].
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