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BOUNDS FOR THE PERRON ROOT OF A
NONNEGATIVE IRREDUCIBLE

PARTITIONED MATRIX

EMERIC DEUTSCH

It is well-known that the Perron root of a nonnegative
irreducible matrix lies between the smallest and the largest
row sum of A. This result is generalized to the case when
the matrix A is partitioned into blocks.

1* Introduction and notations* If A = (atJ) is a nonnegative
irreducible n x n matrix, then the Perron root r(A) of A satisfies
the classical inequalities of Frobenius [1, p. 37; 9; 10, p. 63; 21,
p. 31]

(1) min Si ^ r(A) ^ max St ,
i i

where S* denotes the ΐth row sum of A, i.e., Si—^^a^ (£=1, , n).
Moreover, we have strict inequalities in (1) unless all the S4's are
equal.

Other bounds for r(A) have been found by Ledermann [13],
Ostrowski [15], Brauer [2], Ostrowski and Schneider [17], Hall and
Porsching [11], Brauer and Gentry [3; 4], and Deutsch [8]. (In
some of these papers one has assumed that A is a positive matrix.)

The purpose of this paper is to give some simple generalizations
of the inequalities (1), by considering certain partitionings of A.

We introduce a few notations. By Rm we denote the vector
space of all column m-tuples of real numbers and (αs)< denotes the
ith (scalar) component of the vector xeRm. By Rmxm we denote
the algebra of all mxm real matrices and (A)ti denotes the (scalar)
(£, i)-entry of the matrix AeRmxm. For two vectors x9 yeRm, the
inequality x^y (x<y) means (xt) <̂  (y)t ((»)< < (y\) for all £ = 1, , m .
If X19---, XteRmxm, then Λ U X* (VU-Z.) denotes the greatest lower
bound (least upper bound) of the matrices Xlf , Xt in the natural
(i.e., componentwise) partial ordering of Rmxm. In other words,

C ) * ( V . ) - max
s=l, ,ί \s=l / ij s=l,. ,ί

for all £, j = 1, , m.
The transpose of a matrix A (vector u) will be denoted by AΎ

(uΎ) and the Perron root of a nonnegative matrix AeRmxm will be
denoted by r(A).

2. Let
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( 2 ) A =

jAn A12 Al

A A . . . A
Λ 2 1 Λ 2 2 'ί±2

Akl Ak2 Akkj

be a nonnegative irreducible nxn matrix, where Ai5 is an ntxns

submatrix (i, j = 1, , A;). Clearly, wxH f-w* = w.
Let p<y denote the smallest row sum of Aij9 let qiά denote the

largest row sum of AtJ (i, j = 1, , k) and consider the k x k
matrices

(3 ) P(A) = (Pij)iti=lr..,k , Q(A) = (<^)^=i,.-,fc

PROPOSITION 1. We have

( 4 ) r(P(A)) £ r(A) £ r(Q(A)) .

Proof. Let xeRn be a Perron eigenvector of A, i.e.,

( 5 ) Ax = px (x > 0) ,

where p = r(A). We partition x as

where xόeRnJ (j = 1, •••,&). Now, equation (5) can be written

( 6 ) Atlxt+ - + Aikxk = p ^ (i = 1, , A?) .

We assume that (Xi)Mi is the smallest (scalar) component of xi9 i.e.,

(xt)Mi = minf^X, (xt)2f , (x%)^ .

Equating the Λfith components of both sides of (6), we obtain

p(fit)Mt = (Ailx1)Mt+ -+(Aikxk)Mi ,

or

M, = Σ ( îl)jf<,.(»!).+ * * + Σ (AiJjf,,.^), ,
Ίc

s=l

whence, replacing (a;,.), by {xά)Mj and then replacing the row sums of
Ai3 by pij9 we have

( 7 ) p(Xi)Mi ^ 2>i1(

Introducing the vector

i = 1, ' , AO .
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V =

inequalities (7) can be written as

pv ^ P(A)v (v > 0) ,

which implies [1, p. 28; 5; 22, p. 33] r(P(A)) ^ p = r(A).
The right-hand inequality of (4) is proved in an entirely similar

manner.

REMARK 1. Since qiά is the row-sum norm [20, p.180] of Aiif

the right-hand inequality of (4) follows at once also from the theory
of matricial norms [6; 7], (see also [16; 18; 19]).

PROPOSITION 2. Either P(A) = Q(A), or

r(P(A) < r(A) < r(Q(A)) .

Proof. Assume P(A) Φ Q(A). We construct a nonnegative ir-
reducible matrix B e Rnxn by decreasing certain entries of A so that
P(B) - Q{B) = P(A). Then r(B) < r{A) [1, p. 27; 21, p. 30] and, by
Proposition 1, r(β) = r(P(B)). Consequently, r{P{A)) < r(A). Simi-
larly, we construct a nonnegative irreducible matrix CeRnxn by in-
creasing certain entries of A so that P(C) = Q(C) = Q(A). Then

< r(C) and, by Proposition 1, r{C) = r{P(C)). Consequently,

COROLLARY 1. The following statements are equivalent:
(a) P(A) = Q(A);
(b) r(A) = r(P(A));
(c) r(A) = r(Q(A));
(d) r(P(A)) = r(Q(A)).

REMARK 2. If a nonnegative irreducible matrix A e Rnxn, parti-
tioned as in (1), satisfies the equivalent conditions of Corollary 1,
then it follows from condition (a) that, for each fixed pair i, je
{1, •••, k}, all the row sums of AiS are equal to Pij( = qij). Thus, A
is a so-called block-stochastic matrix [12]. In this case, every eigen-
value of P(A)eRkxk is an eigenvalue of AeRnxn (see [12, Theorem
2]).

EXAMPLE 1. We consider the partitioned matrix

A =
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We have

2 2

5 5

3 3

5 5

and r(P(A)) = 7, r(Q(A)) = 8. Thus, 7 < r(A) < 8. This result is
better than those obtained by several other methods [4; 14, p. 158].

EXAMPLE 2. We consider the partitioned matrix

/3 1 5 1 4\

A =

2 2 5

1 5 3

1 1 3

2 3

1 4

4 1

0 2 3 13 2

We have

P{A) =
9 5

5 5

and thus, in this case Proposition 1 yields the exact value of the
Perron root of A: r(A) = r(P(A)) = r(Q(A)) = 7 + i/29 m 12.38. The
matrix A is block-stochastic (see Remark 2).

3. Let

( 8 ) A =

be a nonnegative irreducible w x n matrix, where each Aiά is a
square fcxfc matrix. Clearly, n =

Denote

( 9 ) , JV) .

PROPOSITION 3. We have

(10) r (A Ri(A)) ^ r(A) ^ r ( V ^

Proof. Let yeRn be a Perron eigenvector of (? = Aτ, i.e.,

(11) Gy — py (y > 0) ,
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where p — r(A). We partition y as

where y3 eRk for all j=l, , N. Denoting Gij=Aji (i, j = l, , N),
equation (11) can be written

(12) Σ G Λ = ^ (i = l, - ;N).
3=1

Summing the equations (12) with respect to i, we obtain

(13) Σ Σ GiiVi = p™ ,
i=l j=ί

where w = Σf=iVi^Rk- Interchanging the order of summation in
the left-hand side of (13), we have

pw = Σ (Λi(A))τ

tfi ,
i=i

from where one has

[A (^i(^)) τ]^ ^ ̂  ^ [£(R,<A))T ~\w .

This, in turn, implies the inequalities (10) [1, p. 28; 5; 22, p. 33].

PROPOSITION 4. Either R^A) = =RN(A), or

r{A) <

Proof. Assume that i?i(A), •• ,22^(A) are not equal. We con-
struct a nonnegative irreducible nxn matrix B by decreasing certain
entries of A so that R,(B)= =RN(B) = Λf=i^(A). Then r(B) <
r(A) [1, p. 27; 21, p. 30] and, by Proposition 3, r{B) = r(hJ=1R5(B)).
Consequently, r (Af=i^ (A)) < r(A). Similarly, we construct a non-
negative irreducible nxn matrix C by increasing certain entries of
A so that Λ1(C)= =Λ2f(C) = VJUΛ^A). Then r(A) < r(C) and,
by Proposition 3, r(C) = r(V7=i^ (C)). Consequently, r(A) <

COROLLARY 2. ΓΛe following statements are equivalent:
(a)
(b)
(c)
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(d) r(Af-i

EXAMPLE 3. We consider the partitioned matrix

A =

I2

0

1

\l

5
0

4

1

1
1

1

0

Ov

2

2

1/

We have

and

2

Λ

3 5
1 2

'2 5

1 2

'2 6

'3 6

1 2

the last two matrices having Perron roots 2 + V 5 and 5, respec-
tively. Thus, 4.236 < r(A) < 5. The classical inequalities (1) yield
only 3 < r(A) < 8.

REMARK 3. The results of § 3 can be obtained from those of
§2, Indeed, if A is the nxn matrix given in (8) and if we arrange
the rows and columns of A in the following positions;

2, N + 2, 2N + 2, , (k - Ϊ)N + 2 ,

N, 2N, ZN,

then we obtain a matrix A! = (Aίy)<fi=1,...ffceiί*x*, where each
an NxN submatrix. It can be easily seen that

is

P{A') = A ') - V Λ*(A) .
i l

Since r(A) = r(A'), Propositions 3, 4 and Corollary 2 follow at once
from Propositions 1, 2 and Corollary 1, respectively.

REMARK 4. It should be noted that the bounds given by Pro-
position 3 (or Proposition 1) are not always better than those given
by the classical bounds (1). For example, considering the partition-
ed matrix
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A =

we have

ARj(A)

p
.0

1

\l

0
3

1

1

0
0

1

1

1\
1

1

1/

3 1

0 4

'2 1

0 2

2

V
3=1

2 2

2 2

3 2

2 4

the last two matrices having Perron roots 2 and J(7 + τ/17), re-
spectively. Thus, 2 < r(A) < 5.562. However, all row-sums of A
are equal to 4 and thus r(A) = 4.
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