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APPROXIMATIONS TO REAL ALGEBRAIC
NUMBERS BY ALGEBRAIC NUMBERS

OF SMALLER DEGREE

JOHN F. MORRISON

If β is an algebraic number of degree n + 1 then the
number of solutions α, with a algebraic of degree at most
n, to the inequalities

(1) \β~a\<φ(H(a)), 1 ̂  H(a) ̂  B

is studied using methods developed by Schmidt and Adams
for counting solutions to inequalities involving linear forms.
In (1) H(a) is a height function which differes slightly from
the usual height and ψ is a function which decreases to zero.

If φ(y)yn+1 ~> °o as y->oo then the number of solutions
is given as an integral plus an error term. If φ(y)yn+1 is
constant then the number of solutions is either bounded or
asymptotic to C log B for some constant C

1* Introduction and statement of theorems* In this paper the
methods of Schmidt [5] and Adams [1, 2], for counting solutions to
inequalities involving linear forms with algebraic coefficients will be
adapted to prove two theorems on the approximation of algebraic
numbers by algebraic numbers of smaller degree.

In what follows β will denote a fixed real algebraic number of
degree n + 1, φ(y) a decreasing function which is positive for y > 0
and which tends to zero, and P(T) a polynomial of degree k ̂  n with
integer coefficients. If

P(T) = qkT
k +...+qιT+qQ

then the height of P is defined by H(P) = maxflgj, , |?*|). This
is not the usual definition of height, but it is more convenient for
technical reasons. In the situation we are considering we will have
g0 uniquely determined by qlf , qk and \qo\ = O(H(P)). If a is an
algebraic number whose minimal polynomial over Z is P(T) then the
height of a is defined by H{ά) = H(P). The number of solutions to

(1) \β~a\<φ(H(a)), l^H{a)SB

with a algebraic of degree at most n will be denoted by Γ(φ, B).
There are two cases in which we will find Γ(φ, 0).

THEOREM 1. Assume that, as y-> <*>, X(y) = φ(y)yn+1 —» °° and
ψ(y)yn+δ —> 0 for some δ > 0. If n^ 2 we have
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Γ(φ, B) = C\ φ(ΏlB.x\yi\)
J max] y%\£B

x \nynβ
n~ι + (n - l)yn^

n~2 + + vA dyt dyn

In the case X(y) is constant we get:

THEOREM 2. 27&erβ e&iste α constant Co such that if C > CQ then
there is a C > 0 with Γ(Cy~{n+1\ B) ~ C" log 5 αwd if C < Co then
Γ(Cy-*+1), B) = 0(1).

2* A related problem* What we will actually count is Δ(φ, B),
which is the number of primitive polynomials of degree at most n
such that

( 2 ) 0 < P(β) < I P\β) \φ{H{P)) , 1 ̂  H(P) £ B

wxere P'(T) is the derivative of P(T). In order to get the theorems
of the previous section we now prove:

THEOREM 3. // X(y) is bounded below and φ(y)yn+δ —.> 0 for some
δ > 0 then

Cy-^ΰ))φ, B) £ Γ(φ, B) ^ A{{1 + Cy~^)φ, B)

where the constant C depends on β and 3.

Before beginning the proof we set up some notation. If P is
any polynomial with P(a) = 0 then we let a = ax and denote the
other roots of P by a2, , ak. We use / < g to indicate / < CQ
where C may depend on β and 3. C will denote a constant whicl
will not always be the same each time it appears.

We will use the following facts:

( 3 ; ) \a - at\ - |/3 - a\ ^ \β - at\ ^\a- at\ + \β - a\ .

If P{a) = 0 then (1) is equivalent to

( 4) I P(β) I ̂  \qk(β - a2) (β - ak) \φ{H{a)) .

(5) Since φ is bounded above there are only a finite number of a
satisfying (1) with H(a) less than a given bound.

We now prove some lemmas.

LEMMA 1. If P(a) = 0 then \a\ >
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Proof. If I a | ^ 1 this is clear. If not, since qka
k + + q0 — 0

we get

\QoCC-1\ = \ q k a k - 1 + ••• + ? 1 | < H(P)

which proves the lemma.

LEMMA 2. // P(a) — 0 and \β — a\ is bounded then

ai\<H(P), l ^ i ^ k .

Proof. If lαil 5£ 1 the result is clear. If not, since P(a) = 0
and I β — a | is bounded, then | g01 < H{P) and so

< H{P) as desired.
= | qk^ + +

LEMMA 3. If \β — a\ is bounded and a, au <x5 are roots of P
with at Φ aά then

-(k-1)

Proof. Since the proof is similar to Lemma 1 of [4] we only-
sketch it. The polynomial

has integer coefficients and roots (α* — α̂  )2, so by Lemma 1 we have
\at — ad\

2 > HiQ)"1. By examining the coefficients of Q we see
H(Q) > H(P)2k-2 which gives the desired result.

LEMMA 4. (1) implies

0 < P(β) < \P'{β)\φ{h{P)){l + CH(P)~^δ))

where P is the minimal polynomial for a over Z, which is chosen
so that P(β) > 0.

Proof. From (1), (3) and Lemma 3 we get

β - a
β ~ oίi fr(a)-(*-1} - φ(H(a)) \ H{a)n+δφ{H{a))

< φ(H(a))-{1+δ)

since H(a)n+δφ(H(a)) is bounded above. Thus

xk(β - a) (β - ak)
P\β)

v ff — ft
**i β — OLi - CH(a)-(1+Sί

1 +

Since (1) is equivalent to (4) this proves the lemma.
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From the preceding lemmas we see that each solution to (1) gives
rise to a solution to (2) with φ(H{a)) replaced by (1 + CH(P)-{1+δ))φ(H(P)),
if H(P) is large. To show

Γ(φ, B) S A{{1 + Cy-^)φ, B) + 0(1)

we will show that, if H{a) is large, all these solutions are distinct,
i.e., two conjugates cannot both satisfy (1). Assume this is not true,
then P{aϊ) = P(a2) — 0 where ax and a2 satisfy (1). Thus

I PCS) I ̂  \xk\φ(H(P)YU\β ~ *i\
i>2

which by Lemma 2 implies

I P(0) I « φ(H(P))2H(Pr-1 .

Since β is algebraic of degree n + 1 we also have

\P(β)\>H(P)~n

because the norm of P(β) is bounded below. Comparing these two
bounds gives

which contradicts φ(y)yn+δ —> 0 and so gives the desired inequality.
For the other inequality of Theorem 3 we start with a polynomial

P of degree k ^ n and let a = ax be a root of P nearest to β. Then
(2) is equivalent to

l + Σ
β - at

φ{H(P))

which implies \β — a\ is bounded. Thus (3) and φ(y)yn~9 —> 0 imply
as above

— a
l + Σ CH{py

Also using | β ~ a \ bounded we can show that H{P) can be assumed
to be large.

LEMMA 5. If a is as above then no other root of P can satisfy
\β — OLi I < φ(H(P)) for H(P) large, in particular a Φ at for i Φ 1.

Proof. As above we can use \P(β)\ bounded below and Lemma
2 to get 1 < φ(H(P))H(P)n-m which is a contradiction of H(P) is
large enough.

We now have that each solution to (2) gives at least one solu-
tion to

1/9 - α | ^ (1 + CH(P))-{1+δ)φ(H(P)) .
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We will now show that we get only one solution and that H(P)
can be replaced by H(a). This follows easily from:

LEMMA 6. // H{P) is large then (2) implies that the degree of
a is n and so P is the minimal polynomial for a. Since P(β) > 0
there is only one P giving rise to a.

Proof. Assume the degree of a is at most n — 1, so by a theo-
rem of Schmidt [6, Theorem 2], \β - a\ > H(a)~{n+δ). If Q(T) is the
minimal polynomial for a then P(a) = 0 implies Q \ P and so

H(Q) = H(a) < H(P) [3, page 14] .

Thus, with (2) and Schmidt's Theorem, imply

*+9) <φ(H(P)) < ψ(CH(a))

which contradicts φ(y)yn+δ —> 0. Finally we note that, since P is
primitive and P(β) > 0, P is unique.

To get the desired inequality we let

φ\y) = (1 + Cir(1+l))<P(»)

What we have shown above is

Δ(φ, B) ^ Γ((l + Cy-<1+δ))φ, B) + 0(1) .

This implies

J((l - Cy-{1+δ))φ\ B) ^ Γ(cp\ B) + 0(1)

which finishes the proof of Theorem 3.

3* The proof of Theorem I* Instead of Theorem 1 we prove
the following, from which Theorem 1 easily follows.

THEOREM V. Let 1, /Si, , βn be a basis of a real number field
K of degree n + 1. Assume φ(y) is decreasing and X(y) = φ(y)yn+ί

tends to infinity. Let L(ylf •••, yn) be a linear form and let N(B)
be the number of solutions to

( 6) 0 < qxβλ + q2β2 + + qnβn - p

•••,?»)!, 1 ^ qt ^ B

where p, qu , qneZ are relatively prime. If n ^ 2

N(B) — C I φ(max yt)\L(ylf , yn) \dyx - <%Λ

1 ynφ{y)X{2y)mn+ι) d
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The proof is similar to that of Schmidt [5] and so some of the
details will be omitted. For any ξ e K we let ξ = ξ{0) and denote its
conjugates by ζ{ί\ 1 ^ i ^ n. Let r + 2s = n and let

ξ(£) 0 ^ i ^ r

tii] = R e ( ί ( i ) ) r + l ^ i ^ r + 8

Im (ί ( i ) ) r + s + l ^ i ^ w

w h e r e f(i), 0 ^ i ^ r , a r e t h e rea l conjugates of ζ and if r + 1 ^
ί ^ r + β t h e n f(i) = ξiί+s). If Λf is a module in K t h e n Λ(Λf) =
{(ί*(0), •• , ί * ί n ) ) } is a l a t t i c e . L e t (c0, •• , c Λ M be t h e set of all
(A«o, , ^..) w h e r e

0

iλi — c ί + s λ i + s

i^is — ci+sXi

= (0* sowhere (λ0, , λΛ) 6 A If 0 e J5Γ, let

^ ( M ) = Λ(ΘM).
We first determine M{H), the number of relatively prime solu-

tions to (6) with Hf-1 < max^ ^ H where / > 1 is fixed. Let λ =
<7iθi + + ίΛ̂ S» — p and let ikί be the module consisting of all such
λ, then Λ(M) = {λ*(0), , λ*(%)}. Let A, be the linear transformation
MP, QI, , ?») = (λ, gΊ, , ?Λ) so det (A,) = 1. Let A, = (α<y), 0 ^
if j ^ w, where

a00 — 1 , αOJ = 0 ,

r / 3 ^ - βj

ai5 - R e (βf - /Sί)

Ίm(/9f)

α ί 0 = 0 and

^ 0

Let A = (α€i), 1 ^ ΐ, i ^ w, so det (A2) = det(A2) = ±άet(A(M)) which
is nonzero. Let

A(Qi, , g»)' = (λ* ( 1 ) - λ* ( 0 ), , λ * ( r + s ) - λ* ( 0 ), λ* ( r + s + 1 ) , -, λ* ( % ))

From (6) we see that we wish to count the number of primitive
points of Λ(n) with

0 ^ λ*(0) ^ 9(max A^X)\L{A^ι\)\

— < max (A^X) ^ H .

We call the region of Rn+1 defined by these inequalities D. Its volume
is given by



APPROXIMATIONS TO REAL ALGEBRAIC NUMBERS 409

J
, yn) \ dy, dyn .

The lattice will be transformed as in [5].

LEMMA 7. Let M be a module in K. Then there are θίy

in K with θf] > 0, 1 £ i, j ^ r + s with det (log \θf \) Φ 0

Proo/. See [5].

We let u = cp(i ϊ)- 1 / m i ) . Define ft, , ft.+. by

w - \θ[i]\^ | ^ β | ^ + , l ^ i ^ r + s

and m, by \mi - ft| ^ 1/2. S o / r - Λ:(0) = ^Γ1 Θ™US is a unit of K
and there exists a <? such t h a t

u , 1 ̂  i ^ n

Define c% by /c*(0) = u~nc0 and Λ:*(i) = uciy 1 ̂  i ^ n. So c0 c r(c'+1 +
c2

r+s+ί) (cϊ+β + cl) - 1 and |c, | ̂  e\ Let ̂ ' - (c0, , cn)Λ(M) then
det y4' = det Λ{M) and Λ:^(M) = Λ(M) is the set of all (u-*i>0, uvlf ,
uvn) where (v0, , v je^l ' . We therefore wish to count the number
of primitive lattice points of A' with

0 < vQu~n < (max A2"
1λ)L(A2~

1λ)

if/-1 < max A-Xλ ̂  H

where λ = (uvx — u~nv0, , uvn — u~nv0). Let A2

-1λ = uy — u~nv0%
where 7, 70 e J?%. Since u~nvQ is bounded, if we count the number of
solutions to

(0<V0U~n <φ(uj)\L(uΎ)\

\jHf-1 < max

instead of (8) we will get an error term which is a constant times
the volume of the boundary of the region given by (9), which can
be absorbed into the error term we will get. The actual counting
is done in the next lemma.

LEMMA 8. Let A be a lattice, D a bounded set in Rn+1, ε the
minimum diameter ef all fundamental parallelepipeds of A and D(ε)
the set of all points with distance at most ε from the boundary of
D. Ifn^2 the number of primitive lattice points of D is given by
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Proof. The proof follows easily from Lemma 4 in [5].
We now let π(y) = yφ(y)1/n+1 and from (9) we can check that

Vol (25(e)) = 0{π{H)n) and

G uff \

H/f2y
nφ(y)Άf2y)'mn+1)dy).

If Ho > Γ is fixed and if Hof < B we get

N(B) = M{B) + M(B/f) + M(B/f2) + • + itf(#0) + 0(1) .

From Lemma 8 and (7) we then get

N(B) = C 1 ^(max yx)\L(ylf , yJ |rf^, --,dyn

G
B/f \

ynφ(y)ΆΓy)-inn+1) dyj
with C - Σ ? = 1 μ(k)/kn+1 and this proves Theorem 1'.

To prove Theorem 1 we must count solutions for each possible
choice of sign for (p, qίf , qn) which can be done by letting βt =
±β\ We must also check that the error terms from Theorems 1'
and 3 give the desired error.

4. The proof of Theorem 2* Instead of Theorem 2 we prove
the following from which Theorem 2 follows.

THEOREM 2'. Let 1, βlf , βn be as in § 3. The number of solu-
tions to

(10) 0 < qφ, + + qnβn - p < ( g c,g,)(max g,)~u+1) , 1 ^ g, ^ B

where ct 6 JB, is either 0(1) or asymptotic to Clog B, for some C > 0.

The proof of the theorem is similar to those of Adams in [1, 2]
and so it will only be sketched. Let λ = qtβt + q2β2 + + qnβn — p,
K, M be as before. Let θ be the associated order, i.e., θ = {aeK:
aM(Z.M}. By Dirichlet's Unit Theorem there exists units ζlf •••,
ζ r + s > l such that the unit group is U={±ζϊι& C/Λ1} = {±ζo} where
v = (vu , v r + s). We say Xx is equivalent to λ2 if X1 = ζλ2 for some
ζ e U. This is an equivalence relation. We note that the λ e J l ί cor-
respond to the possible solutions of (10). As in [2] it is easy to see
that we need only count the number of solutions in a fixed equiva-
lence class and we let Xv = ζSλ0 with λ0 > 0, since by (10) we must
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have λy > 0. Write

\ = ffiv/Si + + qnuβn - pv

and let δiu = qivxl/n. If max qiv is large we can assume qiu Φ 0, for
all i, since otherwise we would contradict Schmidt's theorem [6],
We have (10) is equivalent to

(11) 0 < 81 < min ( Σ ckδklfδjδjA ,
/

Let R be the region defined by (11), then one can check that R
is bounded. Let A3 be the matrix (βf — βj), 1 <Ξ i, j <S n. As is
nonsingular since (det A3)

2 is the discriminant of 1, βl9 , /3Λ. Define
A4 = (a€i) by

(0 it iφ j

Then

is near

Since the last s coordinates of Qv are the complex conjugates of the
preceding s coordinates we can omit them to get a nonsingular
transformation

Rn > Rr x C 2 s > Rr x Cs >Rn .

We can now apply the uniform distribution theory to count the
number of Qv in the region Rr = A^R. This is done exactly as in
Lemma 4 of [2] and so we omit it. The result is:

LEMMA 9. The number of Qv in Rr with 1 ^ vx ^ N is asymp-
totic to CN or 0(1) and the same is true for 1 :g —vx^N.

To show it is alright to count the Qv instead of the Pv we prove
two lemmas.

LEMMA 10. // PveRf then maxg^ = max |λ^ | where A = B
means A < B and B < A.

Proof. Since λv is small
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implies max#iv < maxlλί'M Since A4AS is invertible we also get the
reverse inequality.

LEMMA 11. // P, or Qv are in Rf then

logmax|λ^| = Cp + 0(1)

where Cx Φ 0.

Proof. If we let X, = (log |ζ}' ζ<» |, , log | ζ W + s ) |) then as in
Lemma 5 of [2] we get

( Σ (-I) ' " 1 det (Xlf . . . , £ , . . . , Xr+S)(log |ζf I))
log |λί« I = » > * ^ Z

X2, •••, Xr+S)
+ 0(1) .

The denominator is nonzere as in [2] and, for any choice of i, the
numerator is 1/n times the regulator and so nonzero and independent
of i, which proves the lemma.

Thus we have that as | vλ | —> oo we must have max | Xli] \ —> °o and
so λv —> 0 which implies | Py — <?„ | —• 0.

The proof is now finished as in [2]. The number of P in iϋ' with
1 ^ I VjI <^Nis shown to be asymptotic to CN. Letting N=\C1\~1 logB
this gives 1 <: gίw ^ 5 is equivalent to 0(1) ^ Id^l ^ log J5 + 0(1).
The number of solutions to (10) is then asymptotically the same if
1 <̂  qiu <; B is replaced by 1 ^ \vx\ ̂  ICJ-MogB and this is CiSΓ or
C'logJ? as desired.

To prove Theorem 2 we must show that adding the restriction
that the coefficients of P be relatively prime does not change the
form of the result. To do this we note that there is a Co such that
0 < P(β) < C0\P'(β)\H(P)-{n+1) has only a finite number of solutions.
Thus if d divides all the coefficients of P and 0 < P(β) <
C\P\β)\H(P)-(n+1) then dn+1 < Cό'C, and so the set of all such d is
finite. Let dQ be the largest such integer, then it is not hard to show
that if the number of soultions to 0 < P(β) < Cd-{n+1)\P'(β)\H(P)~{n+1)

is asymptotic to Cd log B then the number of primitive solutions with
d = 1 is asymptotic to (Σ*U Kd)Cd) log B. Theorems 2! and 3 can
then be combined to give Theorem 2.
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