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CONVERGENCE THEOREMS FOR SOME SCALAR

VALUED INTEGRALS WHEN THE

MEASURE IS NEMYTSKII

A. DE KORVIN AND C. E. ROBERTS JR.

One of the main potential applications of Hammerstein
operators is a functional analytic study of nonlinear differ-
ential equations. In fact, some connections have already
been established with equations of the form x(t)=φ[x(t)] or
x(t)=φlx{t), t]. Other applications have been made to
generalized random processes and the theory of fading
memory in continuum mechanics. The main purpose of the
present paper is to establish and study the representation
of Hammerstein operators on continuous functions. A
"nonlinear" integral is introduced for this purpose. Con-
vergence theorems for a.e. and convergence in measure
are established and contrasted. The last result of the
paper relates uniform integrability, a key concept in the
study of martingales, to essential ranges, an important
concept used to establish the differentiability of some set
functions.

1* Introduction* One of the main potential applications of
Hammerstein operators, as stated in [12], is a functional analytic
study of nonlinear differential equations. In fact the properties
of the function φ required to insure the existence of solutions to
the differential equations

x(t) = φ[x(t)] or x(t) = φ[x(t), t]

are closely related to the properties of the kernel φ used to repre-
sent an abstract Hammerstein operator T as in [12]. The repre-
sentation there is given by the formula

Άf) = \φ[f(t), t]dμ(t).

Other applications have already been initiated, we mention two of
these; applications to the theory of generalized random processes in
[9] and to the theory of fading memory in continuum mechanics
in [5].

The above considerations motivated other work on the repre-
sentation of Hammerstein operators over different function spaces.
The reader is referred to [1], [2] and [3] for the cases where the
function space is L\ ME{0) or C(K, X). The representation obtained
in [1], [2] and [3] is of the form
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T(f) = \fdm

where the integral is (necessarily) nonlinear. Here m denotes a
finitely additive set function defined on an appropriate ring with
values in M(X, C) which is a certain space of maps (not necessarily
linear) from X (a Banach space) into C (the scalar field). The
integral is of course suitably defined. These representations should
be contrasted with the representation obtained in [12] where a
kernel function is present and where the integral is the standard
one. The nonlinearity imposed on the operator T in all of the
above works is:

T(f +A+ /2) = T(f + Λ) + T(f + jf2) - T(f)

whenever fλ and /2 have disjoint supports. This condition has been
called the Hammerstein property by J. Batt in [3] and the additive
property by N. A. Friedman and A. E. Tong in [8].

The main purpose of the present paper is to study the proper-
ties of the nonlinear integral as defined in [1], [2] and [3]. The
main interest here focuses on Hammerstein operators that are
scalar valued and defined over C(K, X), the space of continuous
functions over the compact space K under the supremum norm and
with values in the Banach space X. Thus in our study of the

properties of I/dm, / will be defined over K with values in X and

m will be a finitely additive set function with values in M(X, C)
and will satisfy certain continuity conditions. Actually most of
our results can immediately be generalized to abstract Nemytskii
measures (see [2]) since continuity of the functions will not be used
in most of the proofs. It should be recalled that if T is a

Hammerstein operator on C(K, X), then T(f) = \fdmτ where mτ

has values in M(X, C) and moreover mτ is a measure extendable to
&, the Borel field of K (see [3]). Two types of convergence will
be studied here. The first convergence will be sn—>f m a.e. where
{sn} is a sequence of simple X-valued functions. The key property

in this type of convergence will be the requirement that \ sndm be
J( )

uniformly countably additive measures. An important technical
device introduced will be a version of the Egoroff Theorem. The
last theorem obtained for m a.e. convergence states that if T is a
scalar valued Hammerstein operator on C(K, X) that has a G-repre-
sentation (see R. K. Goodrich [10]) with respect to m', then m\-)x
is necessarily uniformly countably additive for ||a?|| ^ a provided
the bounded or the dominated convergence theorem holds for m'.
The second type of convergence to be studied is convergence in
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measure. It is appropriate here to recall that W. V. Smith and
D. H. Tucker [15] and also D. H. Tucker and S. G. Wayment [16]
have constructed examples of X-valued functions converging in
measure but having no subsequence converging m a.e. (and even
an example of a sequence that converges to different functions in
measure and m a.e.!) For convergence in measure we use the
concept of essential range introduced by M. A. Rieffel [13] to obtain
the Radon-Nikodym Theorem for Bochner integrals. Another central
concept is uniform integrability. Uniform integrability is known
to play a key role for martingale convergence theorems, for example
see [4], The last theorem obtained in the present paper states that

if fn are essential range functions and I fndm converges to 0 uni-
formly for i e ^ then the fn converge to 0 in measure provided
the essential ranges of fn are bounded away from 0 over appropriate
sets and provided they transfer uniform integrability. Of course

it is easy to give an example where I fndm converges to 0 but /Λ
JA

does not converge to 0 in measure, even if m is linear. For
example let m(A)(x, y) — (x(A)x, 0) where (x, y) e R2 and where λ is

the Lebesgue measure and let fn(t) = (0, n). Then I fndm — 0 yet
fn does not converge to 0 in measure. (See W. V. Smith [14], for
example.)

We now present a summary of the results obtained. All of
these results pertain to measures representing Hammerstein opera-
tors T. To stress this we will use the notation mτ in the section
on results. The first result states that if {sn} is a sequence of X-
valued simple functions converging m a.e. to / and if the measures
\ sndm are uniformly countably additive, then there exists a unique
J (•) C

scalar measure r such that r(E) = lim \ sndm, moreover the limit
is uniform for Ee&. This allows us to define the space L\m) as
the space of functions from K into X that are limits m a.e. of a

sequence of simple functions sn with \ sndm uniformly countably
J( )

additive. We then show that {sn} may be replaced by {/J where
fneU(m). The second result is an Egoroff type theorem. The
norm used is of the type s u p ^ n ^ \sn(-)x — f(-)x\ where sn and / are
scalar valued and x is in X. As a corollary to this result we show

that if in addition |\ sn(')xdm\ is uniformly countably additive
U( ) i

(in n and for ||a?|| <; a), then there exists a scalar measure rx such
that sup, l s l,sα

rJJE) — \ sn( )xdm
)E

converges to 0 uniformly for

E e &. The third result shows a version of the bounded convergence
theorem for the nonlinear integral. This result is followed by a
version of the dominated convergence theorem. Our next result
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relates to G-representation as defined by R. K. Goodrich, see [10].
For our second type of convergence we use the α-semi-variation
function to define convergence in measure. We already have discus-
sed the examples obtained in [15] and [16] to point out the rather
striking differences between the two modes of convergence. We
define the function / to be m-integrable if there exists a sequence
{sn} of simple functions that are uniformly integrable (see [4]) and
such that {sn} converges to / in measure. It is then shown that

\ sndm converges uniformly for A e &. Our last result, already
)A

mentioned above, used the essential ranges of {fn} (see [13]) and
the property of uniform integrability to yield a sufficient condition
for the sequence {/„} to converge to 0 in measure.

II* Results* We introduce some basic notations. Let K denote
a compact set, & the Borel sets of K, C(K, X) X-valued functions
that are continuous and defined on K with the topology of the sup
norm. Here X denotes a Banach space. Let u be a function from
X into C. For a > 0 let ua denote the restriction of u to the closed
α-ball of X Let \\ua\\ — sup||w(a?)|| where the sup is over ||α?||^α.
For δ > 0 define

Dδua = sup \\u(x) — w(2/)|| where the sup is over

II a? II ^ α, I11/11 ̂  oc, || x - y\\ ̂  δ. Let M(X, C) denote the space of
all functions from X into C which are bounded on the α-balls of
X, uniformly continuous on bounded sets of X and 0 at 0. Thus
if u e M(X, C) then

u(0) = 0, \\ua\\ < oo, lim Dδua = 0 .

Let m be a finitely additive function from & into M(X, C). We
set ma{B) — m{B)a and define

sv[maf B] = sup

Here the sup is over finite partitions {B%) of B with | | ^ | | <̂  α. Let

svδ(ma, B) = sup WΣmίBJXi - Σm{Bι)yί\\

where the sup is over finite partitions {JSJ of B and | | # ; | | ^ α ,
Ill/ill ^ ot, \\xt — yt\\ <; d. Unless otherwise stated m denotes a
finitely additive set function from & into M(X, C) satisfying

sv[ma, K] < oo and lim svδ[ma, K] = 0 .
δ-+o

A property will be called true m a.e. if the property is true for
all tίA and if whenever BczA and Be^? then m(B) = 0. Let
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lCj represents the characteristic function of Ct. For disjoint C% we
define

MΠ[C(K, X), C] will denote all scalar valued maps defined on C(K, X)
and satisfying

+ τ(f + f2) - τ{f)

whenever fλ and f2 have disjoint supports

Γ(0) = 0

II T II < oo
II M a II ^

limD3Ta = 0 where DδTa = sup || Txt - Ty,\\ and
<5—>0

where the sup is over \\x\\ ̂  a, \\y\\SLa, \\x — y\\ ^ d. In [3], J.
Batt has shown that if T e MH[C(K, X), C], then T can be written

as T(f) = \fdm where the nonlinear integral is extended from

simple functions to functions in C{K, X). Moreover || Ta \\=sv[ma, K]

and DδTa = 8Vδ[maf K]. If T e Mn[C(K, X), C], mτ will denote the

corresponding measure. We now prove our first result.

THEOREM 1. Let {sn} be a sequence of X-valued simple functions.
Assume {sn} converges to f pointwise and assume that the set func-

c
tions \ sndmτ are uniformly countably additive. Then there

J( )
exists a unique^ countably additive, scalar measure r such that
r(E) = lim^oo 1 sndmτ uniformly for Eeέ@.

Proof. For every E e & we define

sΛmτ
JE

m(E) = n=1 2"Γl + sup ί sndmτ Ί
L Aej? JA J

clearly m is a finitely additive set function on &. It is shown in
[3] that mτ{ )x is countably additive for xe X. In fact it is uni-
formly countably additive for \\x\\ ̂  a. It follows that m is a
bounded countably additive function on &. Since {sn} converges to
/, by Corollary 1 to EgorofΓs Theorem (see [6, p. 95]). there exists
a sequence {Ak} of disjoint sets of & and JV' G ̂  such that {sn}
converges uniformly to / on each Ak, N is a m-null set, and K =

NUU Ak. Thus, \ sndmτ = 0 for all n. Let Bk = \JU Aj9 clearly

Bk j JV' and the convergence is uniform on each Bk. Moreover,
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I (sΛ — sp)dmτ I ίg 11 (sΛ — sp)dmτ \ + \\ (sn — sp)dmτ

^ 8i;rA[mΓα, i f ] + \ β n dm Γ I + |\ s
I J£:nδ!.nΛΓ ' J ί nBήΓiiv'

dm2

where τk = ess sup ||sΛ — sp\\ restricted to Bk and where a = sup [

where ĉ  is a value in Range sn U Range sp where sn and ŝ  are

restricted to E Π Bk. The first term on the right goes to 0 as n

and p get large. The next two terms tend to 0 by uniform count-

able additivity of I sndmτ. Thus \ sndmτ converges uniformly for
J ( ) JE

E ^ and

τ(E) = lim I sndmτ

has the stated properties.

Note. The above proof can be extended to the case in which
pointwise convergence of {sn} is replaced by mτ a.e. convergence.

We now define I fdmτ = lim I sndmτ. The arguments above

S JE JE

fdmτ is well defined. Let L\mτ) denote all functions
E

f: K-^X where / is the limit of a sequence {sn} of simple func-

tions mτ a.e. and where \ sndmτ are uniformly countably additive.
J( )

PROPOSITION 1. // fneL\mτ) and {fn} converges to f mτ a.e.
and \ fndmτ are uniformly countably additive, then f e L\mτ) and

) rS
fn

E

(•) f
r
\ fd
)E

J () r
dmτ converges to \ fdmτ uniformly for Ee.^?. Moreover

)E

IS, fdmτ
^ svUfUE[mTf B] where \\f\\E is

the essential sup of f restricted to E.

Proof. The first part of the proof follows from the fact that
the proof of Theorem 1 remains true when {fn} replaces {sn}. In
addition it is clear that a sequence of simple functions {sn} may be

found which converges to / and for which \ \ sndmτ \ is uniformly
U( ) )

countably additive. Now:

- 8n)dmτ
sndmΊ

\ (/ ~ sn)dmτ + \ sndmτ + \ sn.
)E I JBkf]E I JE~B'kΓlN'

ndmΊ
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^ sv\\sn\\Bkr!,: [mτ, K\ sndmτ (/ — su)dmΊ

where Bh are as in Theorem 1. As n -~> oo, the first term goes to
s^ll/IU.]/ and the last term converges to 0. As &—>oo the middle
term converges uniformly to 0 in n and the first term converges to

evil/IU

We now prove a version of the Egoroff Theorem which is
suitable for our purpose.

THEOREM 2 (Egoroff). Let {sn} be a sequence of real valued
simple functions, let f be a real valued function and assume that

sup \sn(-)x — f(-)x\ converges to 0 mτ a.e.

Then there exists a sequence {Ak} of disjoint sets of :^9 and N e &
such that

( 1 ) K=NU\JkAk.
(2) supM x M.cα \sn(-)x — f(-)x\ converges to 0 uniformly on A,c.c
( 3 ) I sn(-)xdm — 0 for all n and \\x\\ ̂  a.

Proof. Let

sn( )xdm2

sup
A G ^

\ sn(-)xdmτ
JΛ

For each fixed x with

||x|j ^ a, mx is finitely additive, bounded and since mα( ) is count-
ably additive, it follows that mx{ ) is uniformly countably additive
for \\x\\ tί a. Since m, is uniformly bounded it follows that
{mx\ ||ce|| Ξg α} is weakly sequentially compact (see [7, p. 305]). Thus
there exists a positive measure Xa where lim;^(jE)^0 mx{E) = 0 uni-
formly for ι\\x\\^a. Also Xa may be chosen so that Xa(E) <;
supπ^i^lm^JS?)! (see [7, p. 307].). Since sup,ι,N^ \sn(-)x - /(•)»!
converges to 0 mx a.e. for ||cc|| ^ α, it converges to 0, λ^ a.e. The
proof then proceeds as in Theorem 1.

COROLLARY 1. Let {sΛ and f be as above. Assume \ sΛ( )xdmτ
J (•)

are uniformly countably additive with respect to n and for \\x\\^a.
Then there exists scalar measures rx such that

sup
J

ΛmΊ
converges to 0 uniformly
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for Ee^ and \\x\\ ̂  a.

Proof. Let {Ak} and N be as previously defined. Let

k r

Bk = U A5 S U P I (sn — sp)(-)xdmτ
i=l \\x\\£a JE

<̂  sup 1 (sn — sp)(-)xdmτ + sup I (sn — sp)(-)xdmΊ
| | a ? | l ^ α | jEf)Bk | \x\ \ £a \ J EΠ Bkf)N

^ svβlntP)[mTf K] + sup sn(')xdmτ
l l * | | gα I jEf]BkC\Nf

+ sup I 8P(- )xdmτ
l !* l l^α I JEf\Bkf]Nf

where β(n, p) = supnβ |^α ess sup \\sn(-)xXBk - sp(>)xXBk\\. Hence
limίl_ooί,-.oo β(n9 p) — 0, the last two terms converge to 0 by uniform
countable additivity.

Note. We may write I f( )xdmτ = rx(E).
)E

Let M(K) denote all scalar valued functions on K that are
limits mτ a.e. of simple functions.

THEOREM 3. Let {fn} be a sequence in M{K). Assume that
{/*(•)#} converges to f( )xmτ a.e. uniformly for \\x\\ ̂  α. Assume
also that {fn} is uniformly bounded by some constant M. Then

|\ fn( )xdmτl converges to 1 f(-)xdmτ

uniformly for

Proof. Without loss of generality assume f% ^ 0. (Note that
f+ and fΰ have disjoint supports.) Let {gΛti} be a sequence of simple
functions such that gn>i f fn. Then

k,

and

I gn idmτ = Σ a*mτ[Et(n)]x .
}E ' *=i

Let Σp and Σ ^ denote sums over positive and negative terms.

)]a I = Σ α?mΓ[J54(w)]a? - Σ α?w

g 2Mv2Lτmτ(E)x .
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Since mτ{ )x is countably additive (uniformly for | |α? | |^α), the

11 Λ,i( ) Λ ί a r ^ uniformly countably additive (with respect to

n, i and for ||sc|| <; a). Hence by Corollary 1, lim^*, 1 ff«,i( ) Λ r =
JF

\ fn( )xdmτ uniformly for Fe& and ||ίc||<£α. Also |\ fn( )xdmΛ

is uniformly countably additive. So again ]\ fn(-)xdmτ [converges
f(-)xdmτ uniformly in E.

E

Of course Theorem 3 is a version of the bounded convergence
theorem for nonlinear integrals. We now obtain a version of the
dominated convergence theorem.

PROPOSITION 2. Let {fn} be a sequence in L\mτ) and assume
that {/J converges to f mτ a.e. Moreover assume

\ fndmτ ^ sup \ gdmτ
I JE FCZE I J F

where g e L\mτ) .

Then feL1(mτ) and \\ f%dmτ\ converges to \ fdmτ uniformly for
{JE ) JE

Proof. Since g e L\mτ)f by Theorem 1, I gdmτ is countably
J( ) r

additive and hence bounded. Since from the hypothesis I fndmτis

S Γ J ( )

gdmτ, \ fndmτ are uniformly
countably additive and by Proposition 1 the result follows.

We now proceed to establish a partial converse to the above
result. In the work of R. K. Goodrich [10] the following ring of
subsets plays a central role. Let R be the ring of all subsets E oί
K for which there exist nonincreasing sequences of continuous
functions {/J, {gn} with fn — gn converging to XE. It is shown in
[10] that R is the ring generated by all compact Gδ subsets of K.
Following [10], if T is a (not necessarily linear) operator from
C{K, X) into scalars we say that T has a G-type representation if

T(f) = [fdmr where m' maps the ring R into M(X, C)

and where m\-)x is countably additive for each fixed x. (Of
course, it is shown in [10] that every continuous linear operator on
C(K, X) has a G-type representation.)

We now consider two conditions related to the previous result.
(A) Theorem 3 is true with m' replacing mτ.
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(B) Let {/„} be a sequence of scalar valued functions converg-
IΓ f

ing m' a.e. to / and assume t h a t \ fndmr ^ s u p ^ ^ I gdm'
I JE JE

for
I JE JE

some geL\m'). Then |\ fn(-)xdm'\ converges to I f(-)xdm' for
[JE ) )E

each fixed x.

THEOREM 4. Let T e MH[C(K, X), C]. Assume that T has a
G-representation with respect to m\ Then under condition (A) or
(B) mr( )x is uniformly countably additive for \\x\\ ^ a.

Proof Suppose (A) holds: Let E^R with 2*7,10. Then

m'(Ei)x converges to 0 for every fixed x. By the Kluvanek exten-

sion theorem [11], m'( )x has a unique countably additive extension

to & and since by [3] T admits the representation T(f) = \fdm

where m(-)x is uniformly countably additive for ||α?|| ^ a and since
m(-)x = m'( )x, it follows that m' has the same property. The same
argument can be made under assumption of condition (B).

We now initiate a study of convergence in measure. In the
introduction we mentioned the works of W. V. Smith and D. H.
Tucker [15] and of D. H. Tucker and S. G. Wayment [16]. Their
examples highlight the great difference between convergence a.e.
and convergence in measure. We now define convergence in measure.
Let mτ be as above. We say {fn} converges to / in measure if
svamτ{\\fn( ) — /( )ll ^ <5} converges to 0 as n gets large, for every
a > 0 and δ > 0 fixed. It is obvious, since the semi-variation is
subadditive, that if {/J converges to / in measure then for every
fixed ε > 0, a > 0, and δ > 0, svamτ{\\fni(') - /•,(•) II^}<e provided
Mi ̂  N and n2 ^ N. Of course N depends on ε, a, <?. We now define
an X-valued function to be mΓ-integrable if there exists a sequence
{sn} of uniformly integrable simple functions such that {sn} converges
to / in measure and such that for every ε > 0, a > 0, there exists
a number u (depending on ε and a) such that

sva[mτ, E] < u implies ,.dm7 < ε i.e.,

11 sndmτ [ is uniformly continuous with respect to the semi-varia-

tion. Recall that uniform integrability means that for every ε > 0

there exists K(ε) such that

sndmτ
< ε for all n .

In the introduction we have already stated that uniform integr-
ability has implications for the convergence of martingales. There
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are also strong implications for convergence properties in Lv. For
example {gn} converges in μ measure to g with \gn\

p uniformly
integrable is equivalent to the norm convergence in Lp (see [4, p.
185] where conditions equivalent to uniform integrability are pointed
out).

PROPOSITION 3. Let f be mτ integrable. Let sn be as above.

Then lim I sndmτ exists uniformly for A e ,0?.
J A

Proof. Pick ε > 0, let K(ε) be chosen so that

I sndm2 < ε/4 for all n. Now pick u

so that svK{ε)mτ(E^) < u implies 1 sndmτ

that

< ε/4. Now pick ur so

8Vu\{mτ)K{ε)9 K] < ε/4 .

By the subadditivity of the semi-variation pick N so that

svκωmτ{\\sni(') - sn2(')\\ > u'} < u

for nλ^ N and n2 ^ N.

Let E2 = {\\sn(-)-sn(-)\ ). Then

\ s dmτ — \ 8ndmΊ < ε/2 since

svK(c)mτ(E2) < u. Now

I snidmτ — \ s%

IE? )E'9

dπιτ

Thus for all A e ̂ T,

\)A

Sni m τ ) Λ

S % 2 m τ

Thus lim 1 sndmτ exists uniformly as A
}A

^ svu\mτ, K] + ε/4 + ε/4 < 3ε/4 .

< 2 ε .

Note. If we denote this limit by mf(A), then mf is a measure
on & by the Nikodym theorem (see [7, p. 160]).

Let / be a function from K into X. By the essential range of
/over some set EczK we mean {x e X\mτ[{\\x - /( )| | <ε} Π E]φϋ).
We denote this set by erE(f). f will be called an essential range
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function if erF{f) Π f(F) Φ φ for all Fe^ that are not mΓ-null
sets. The set erE(f) was introduced by M. A. Rieffel in [13]. It is
shown there that if / is the pointwise limit of a sequence of X
valued simple functions and if μ is a positive measure then
erE(f) n f(E) Φ φ provided μ(E) > 0. The separability of f(E) and
the positivity of μ were both used in the proof of this result.
erE(f) is used in [13] as a bound on local average ranges which
in turn play a key role in establishing the vector valued version of
the Radon-Nikodym theorem.

LEMMA. // for every pair (A, B) of nonnull mτ sets of &

erA(f) Π f(A) Φ φ and erB(g) Π g(B) Φ Φ

where f and g are essential range functions and ί/]]/(•) — g(-)\\ <
a then for every x e erE(f) and ε > 0 there exists y e erE(g) such
that \\y — x\\ < a + ε.

Proof mτ[{xeX\\\x ~ /( )|| < e/2} Π E] Φ φ. Now

erE(g) Π g(E) Φ φ so pick y e erE{g) Π g(E)

such that {\\y — g(t)\\ < e} Π {t eE} has nonzero mτ measure. Thus

II» - /O0II < e/2, for some t e E .

||/(t)-flr(t) | | < α
\\y-g(t)\\ < ε / 2 .

Thus || x — y\\ < a + ε.

Let {fn} be a sequence of functions from K into X. We say
that er(fn) are bounded away from 0 over the sets {||/J| ^ a} if
for every ε2 > 0 there exists ε: > 0 and a partition {A%) such that
for all L > 0

I Σ W Λ n {II/JI > a}](yitn)\ > e, imply

8v[mLf A Π {||Λ|| > a}] < ε2, where A = | J At .

Here Σ ' denotes the sum over yttn € X satisfying

\\yi>n\\ < L and yi>%eerA.{fn)

If X denotes the scalar field the above condition will be
true if 0 < δ < y%tn < L. That is, if the yι>n are bounded away
from 0.

Finally we say that er(h) transfers uniform integrability if
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for every ε2 > 0 there exists ε1 > 0 and constants Ko > 0 and u > 0
such that if | Σ ^ ( i ? , ) ^ | < ε i where | | ^ | | ^ iΓ0 and {.BJ is a parti-
tion. Then I Σ w&r(£<)2/<I < ^ provided \\xt — y%\\ < u and yieerBi(h).

Note. The above condition may be rewritten

sdmτ < ε, where s = Σ ^B^%

implies I s'dmτ < ε2 where 8' = Σ ^ - ^ and yieerB.(h) (in
J Mβ'-βlKw * *

particular |] ̂ /< || ^ Ko — u). Roughly speaking uniform integrability
is transferred to s'.

THEOREM 5. Let {fn} be a sequence of mτ integrable functions
we assume

( 1 ) fn is an essential range function.
( 2 ) er(fn) are bounded away from 0 on sets of the form

{IIΛII ><*} {for all α > 0 ) .

( 3 ) Each er(fn) transfers uniform integrability.

If \\ fndmΛ converges to 0 uniformly for A e J ^ , then {fn}

converges in measure to 0.

Proof. Let ε > 0. Then < ε for all A e ^ and for\ f»dmτ

n large enough. Let {sn,k} be a sequence of simple functions uni-
formly integrable with {snyk} converging in measure to fn as K goes
to infinity. By (1), for n fixed, we can pick a constant M such that

is sn,kdmτ
{\\snjjc\\>M-l}QA

< ε for all k and

Now choose §' so that 0 < 5' < 1/2 and δ' < u/2 and svMj2δ,[mτ, K]<ε.
Let

Since {sntk} converges in measure,

svMmτ[At(δ')] converges to 0 as k —> oo .

Choose k large enough so that

8VMmτ[A%(δ') (Ί Ei,n,k] Φ 0 where

AJ'(δ') denotes the complement of A5(δ') and where 8»,fc = Σi-̂ <,»,*#<,»,fc
Condition (1) implies IS'^rC-E'i^^)^^^! < ε where Σ ' is the sum
over || ^,w,fc|| > M — 1. Since sΛffc is a simple function #,,»,*€
erSnk[Ei)%yk Π AJ'(δf)]. By the previous lemma choose yitntkβ



342 A. DE KORVIN AND C. E. ROBERTS JR.

erfJEi>n>kAi'(δ')] w i t h \\yif%>k - xi>n,k\\ < 2δf<u. L e t < f c = Σ** < f l l , t &*,..*.
Then by condition (3)

\sn> dmτ — sn>kdmτ S s'%>kdmτ\\\s'nik\\^M)

+ \ sn,kdmτ — \ s'n,kdmτ

h\\sn>k\\<M) h\\s'n>k\\<M)

^ 2ε + svM)2δ>[mτ, K] .

Thus the right side is less than 3ε. Now choose n large enough so
that

IS, fndmτ < e for all L
J { i ι / W ι ι > δ ' } n ί i i ί

(This can be done since jl fndmτ\ converges to 0 uniformly for

Ae^λ Let A = {\\fn\\ > ί'} Π {||<fc|| ^ L}, then shrinking δ' if

necessary

J s'n>kdmτ ^ j^/»dm

1 sn>kdmτ — t s'n>kdmτ

(The second term on the right is less than ε since by Proposition 3

11 sn>kdmτl converges to I fndmτ uniformly asAe^.j The rest of

the proof follows from condition (2).
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