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THE ASYMMETRIC PRODUCT OF THREE
HOMOGENEOUS LINEAR FORMS

A. C. Woops

Let L, = >%_;a,%;, t=1,2,8, be three linear forms in
the variables «,, x;, ¥; with real coefficients a;;. A theorem
of Davenport asserts that, if |det (a;;) | = 7, then there exist
integers u;, %., %;, not all zero, such that

3
I~I1 Ly, oy ug) | = 1.

Under the same hypothesis, W. H. Adams has asked
whether, given a positive real number «, there exist integers
%y, Us, Us, Not all zero, such that

— ™t = Ly(uyg, Uoy Wa) Loy, oy Us) | Lis (U, Uey Us) | =%

Our objective is to prove this conjecture.

Davenport gave several proofs of his theorem [3], and other
proofs have been given by Chalk and Rogers [2] and Mordell [8].
Isolation results, notably those of Davenport [6] and Swinnerton-
Dyer [10], show that Adams conjecture is true for real w in some
open interval containing 1.

The set of points (L, L, L,;) in R,, formed as the variables
range over all integral values, is a lattice 4 of determinant d(4) =
|det (a;;)]. In terms of 4, our result is as follows.

THEOREM. If d(A) = 7, then there exists a point (x, x., ) of 4,
other than the origin, such that
—uT = x| S w,
with the equality sign being mecessary only if u = 1.

The method of proof is the projective one due to Davenport [3].
We begin with three lemmas.

LemmA 1. Ifx, y, 2, t are real nuwbers with 1 < ¢ = 1.9, such
that the inequality
(1) —tt<(n+a)(n+yln+zel <1
18 not solvable in integers m, then
(2) p=@—y’+ Yy —2)°+(z—x)>14.
We note that this is a generalization of a lemma due to
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Davenport [3].

Proof. We may assume that none of z, y, z is an integer, for
otherwise inequality (1) is solvable for an integer n. We distinguish
cases according to the comparative sizes of [2], [v], [#].

Case 1. Two of [z], [y], [2] are equal.‘

As z, y, z may be replaced by = + », ¥y + n, 2 + n respectively,
for any integer m, without altering either the hypothesis or the
conclusion of the lemma, we may assume that two of [x], [¥], [#]
are zero. Inequality (1) implies that

(38) [+ 2)(n + y)n +2)] <1

has no solution in integers mn.

If [2]=[y]=0, then xyl — )1 —y)=<1/16. If, further,
leyz(x — )y — 1)(z — 1)] < 1, then (8) is solvable for one of the
values » =0, —1. Hence, we must have |z(z — 1)] = 16, whence
2(z — 1) = 16, so that either 2 < —8.50r 2z >4.5. AsO0<z, y<1,
it follows that | — z| > 3.5 and |y — 2| > 8.5 and therefore also
® > 24.5. Thus, if ¢ < 14¢, then ¢ > 1.75 and ¢* > 1.9, contrary to
hypothesis. Hence @ > 14t.

As (8) is symmetric in z, y, z the other two possibilities follow
by the same argument.

Case 2. Two of [x], [y], [2] differ by 1 and mo two are equal.

Suppose first [z], [y] differ by 1. As we may replace x, y, z by
x+ n, y +n, 2+ n respectively, for any integer n, without altering
either the hypothesis or the conclusion of the lemma, we may assume
that [z] + [y] = —1. Again, we may replace x, ¥, 2 by —z, —,
—z respectively, without alternating the lemma, so we may assume
that z > 0. Finally, by the symmetry of # and y in the lemma, we
may assume that -1 <2 <0<y <1,

If 2 <1 then —1 < a2yz < 0, contrary to inequality (1). There-
fore z > 1. Putting f(n) = (x + =)y + n)(z + »), we have f(1) =1,
JO) < —¢ and f(—1)=1, so that fQ)=1+e, f(0)= —t— e,
f(—=1) =1+ e, where e, e, e are nonnegative real numbers.
Introducing the new variables & = xyz, » =2y + yz + z¢ and { =
x + y + 2z, these equations become

E+77+C:el
g=—t"—e
5“7]+C=2+63,
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from which it follows that

C:1+t2+‘—;*61_62+%e3
77:—1+%e1—-%63.
Hence
2
%vp—_—cz—?ny:(1+t2+%el+eg+—;—e3) +3(1——;—el+%es>

>(1+ 82 +3
>Tt,

since the last inequality may be written in the form
EC—-1DE++3t—4)>0,

which is true as ¢ > 1. Thus @ > 14¢ as required.

We may therefore assume that [x], [y] do not differ by 1. By
the symmetry of x and y we may suppose that [y], [2] differ by 1.
As before, we may assume that —1 <2 <0<y <1l. Since we are
assuming that the previous cases do not arise, it follows that either
x>2o0r < —1.

Suppose first that > 2. Then f(1) =1 + e, f(0) = —1 — ¢, and
f(—1) = ¢* + e, where e, e, e, are nonnegative real numbers. As
before, solving these three equations for {, » gives

2p = (20 — 6(27) = B + 1 + 6, + 20, + &) + 6(L + ¢ — ¢, + ¢,)
=@+t 4 6(1 + t)
> 28t ,
since the last inequality may be written in the form
t—-—DE +¢+ 18t —15) > 0.

Hence @ > 14t, as required.

Now suppose that < —1. Then f(1) = —&* — ¢, f(0) = ¢* + e,
f(—1) = —1 — e, where e, ¢, e are nonnegative real numbers.
Proceeding as before, we obtain

2¢=(1+3t2+61+2ez+63)2+6(1+t2+61—e3)
= (1 + 33+ 6(1 + )
> 28t ,

since the last inequality may be written as

(¢ — D)9 + 98 + 21t —7) > 0.
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This completes Case 2.

The preceding two cases imply that each pair of [x], [y], [#]
differ by at least 2. If each pair differ by at least 3, then some
two of z, y, 2z differ by at least 5, which implies that @ = 25 > 14¢
since £ < 1.9. Therefore, we may assume from now on that some
pair of [z], [y], [2] differ by exactly 2. The symmetry of z and y
yields three cases.

Case 3. —2<z<—-1,0<y<1, 2<z.
We have f(1) £ —¢, f(0) < —¢t%, f(—1) =1 and f(—2) = 1, i.e.,

(4) f=s—-1—-8—-9—-¢
(5) s —¢

(6) Cz2+9—¢

(7) K=9+2n—¢.

Inequalities (4) and (6) imply that

(8) S ——(+3)

whereas (4) and (7) yield

(9) vg—%(13+4t2+3§).
Assume first that

(10) 2n—-3=z=1,

so that (8) and (10) give

(11) E=—1E+ ).

By (6) and (11),

(12) = %(tz +10) + 7.

Now if » < —1/3(¢* + 10), then

%¢=C2——377gt2+10>11>7t.

Therefore we may assume that

(13) n>~%w+1m.
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Then (12) and (13) imply that

2 i 2 2__
C—8z (7+ 50 +10) — 37
> Tt

provided that the quadratic in 7,

(n+%w+4mf~3n—w,

has nonreal roots, i.e., provided that 4¢* — 28t + 31 > 0. This
inequality holds if ¢ < 1/2(7 — 81/ 2), which is true since #* < 1.9.

Hence we may suppose that (10) is false, i.e.,
(14) n<%a+%y
We may further assume that

9+2p—-£>0,
for otherwise, by (5),

2m<e—-9= —*—-9< —10,

and therefore also

—8p>15>17t.
Thus, by (7),

C—812 0+ 2~ 9 — 3y =g(), say.
The quadratic g(») attains its minimum value at
P=2(+8>21+39) by ().
Hence, by (14),

o) = %(10 + 287 — %(1 +3¢) = (), say.

The quadratic a(¢) attains its minimum value at & = 4.

first that ¢ < —1/34 + ¢t*). Then
97 = h(®) = %(11 — Py %(9 T3 > Tt

since

Suppose
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t* + 32t* — 252t 4+ 283 > 0

when

?<1.9.
Thus we may assume that
(15) £> —%(4 ).

As g(n) is decreasing 7 < 1/2(¢ + 3), and (15) shows that
—LB 4 +3) <2+ ),
so (9) implies that
007) Z o1 - 26— 89 + (18 + 48 + 89 = j(©) , say.
But j(&) has the minimum value 31/4 + t*. Hence
TOREE S

since 4t> — 28t + 31 > 0, as we have already seen. This completes
the proof for Case 3.

Case 4. —2<zx< —-1,0<2<1, 2<y.

Here f(—1) =1, f(—2)=1¢t, f1) —t, f(0)< —¢* and these
imply the four inequalities (4)-(7) of Case 3. Therefore the same
argument applies here.

Case 5. y< -1, 0<2<1,2<2<3.

Here f(1) = —t*, f0) = —¢*, f(—1) =1, f(—2) =1 which yield
the four inequalities (4)-(7) of Case 3. Therefore the same argu-
ment applies here. This completes the proof of Lemma 2.

LemMMA 2. With g(n) = (x + n)(y + n)|z + n|, suppose that —t* <
g(n) < 1 has no solution in integers n. If, further, —2 <z < —1<
<0, 1<y<2then t* < 2.

Proof. Wehaveg2)=1, g1) =1, g(0) < —¢, g(—1) £ —¢ and
g(—2)=1. Now

—39(0) + 29(1) + 9(—2) = 3(1 + ¢,

i.e.,
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. 1 .
(s —10-—-1tyH.
2( )
Also

29(1) — g(0) +9(2) =3 + ¢*,

i.e.,

cz%w—&.

Hence 1/2(¢* — 3) = 1/2(1 — t*) or t* < 2, as required.

LEMMA 3. With g(n) as defined in Lemma 2, suppose that
—t* < g(n) <1 has mo solution in integers n when t* = 1.9. Then,
with X =2 —zand Y =y — 2, the point (X, Y) does not lie in the
plane region given by the two inequalities

XY>—2t2—%, X+ Y| <o,

where 6 =5 of t* > 2 and 0 =4.81 of 1.9 = ¢ < 2.

Proof. Determine an integer =, such that [n, + 2] = 0 and put
A=1m,+ 2, so that 0 <A < 1. Put FQY) = (X + MY + M)A so
that the condition on g(n) becomes

(16) — < FOJ) < 1
has no solutions in real numbers \' = A (mod 1).
Put {=XY and =X+ Y and A =\, A — 1 successively in

(16). It follows that the point (£, 7) does not lie in either of the
two strips given by

P i< L
x N
and
= i =D — 1< —L
11— 1 -

Hence the point (¢, ) lies in one of four regions, giving four cases,
as follows.
Case a.

(ai) C+ap+ 0 < —t
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e

(aii) C+()\.—1)77+()\.——1)2§1_>\'.

Multiplying (ai) by 1 — ) and (aii) by » and adding, we obtain

1—» ©
é—tz( + )-—x+>&.
¢ Y 1—»X

Hence if

—-t2(1"7" + 2 )—7\,+7\7§—2t2—-];
» 1—»x 1

the lemma holds. But this inequality may be written in the form
— _1___ : 2 __ 2
(x 2)(x M4 20,
which is true since 0 <A< 1 and ¢ > 1.

Case b.
—

(bi) CH+wp+ N

1
11—

(bii) C+O—D7+(—-17 2

Subtracting (bii) from (bi), we obtain

1

<+
gy

t2
+=+2x—-1.
A

Hence the lemma holds if

1 %

= — ~Y v+
I—x

i.e., if
(biii) 22— B+ N+ @+ N —12<0.
In case 1.9 < #* <2 and 6 = 4.81, (biii) becomes

2\ — T8I 4+ 6.TIn — 19 < 0,

which is true for 0 < A < 1.
In case t* > 2 and ¢ = 5, (biii) becomes

-8\ +Thw—2<0,
which also holds for 0 < A < 1. This takes care of Case b.

Case c.
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(c) O e
(cii) C+>w;+>&_z,-kl—.

If we replace » by 1 — X and » by —7 in (ci) and (cii), we
obtain (bi) and (bii). Hence, by symmetry, 7] > §.

Case d.

(di) C+ANp+ 0=

> |~

1
11—

(dii) C+O0—-17+0N-1y=z

Multiplying (di) by 1 — ) and (dii) by A and adding, we obtain

=24 > L ov—D=1.

¢ A 11—

v

Hence { = XY > 0 and X, Y have the same sign. If X, Y are both
negative we may change them into —X, — Y respectively, replace
A by 1 — X and » by —% which leaves condition (16) unchanged and
turns inequalities (di) and (dii) into each other. Therefore, there
is no loss of generality in assuming that X, Y are both positive.
Again by the symmetry of X, Y we may assume from now on that

0<X=Y,

If X+AMEY+N<2, then one of the values F(\), F(\» — 1) contradicts
(16). Further, if 0 < X + X <1 <Y + A, then F(\ — 1) <0, contrary
to (dii). Thus, we may assume from now on that 1 < X 4+ » and
2<Y + M

Assume first that 1 < X + A <2 < Y + ». Condition (16) with
Al = x — 2 becomes

vos t.‘Z
d ~—-—N—=—2n -0 —2?2= .
(diii) — M —( ) = py—
Addition of this inequality to (dii) yields
1 t*
= 3 — 2\
7= 11— + 2 — 2\ *
. 1 1.9
div = 3 — 2\
(div) 21 + 5 -

v
=~
(o]
-
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if ) =20 — 4190 + 1.47n — .28 < 0. Now f(A) has a local
maximum at )\, where 0 < ), < 1 and

S'() = 6N\ — 8.38%, + 147 =0.

Hence 3f(\) — f'(\) = —4.1903+2.94\,— .84 < 0 since the discriminant
is negative. Thus f(\) < 0, and as f(0) < 0 and f(1) < 0, it follows
that f(\) < 0 and therefore also that 7 = 4.81. Hence, if 1.9 < # < 2,
the lemma holds. Now assume that ¢* > 2. Inequality (div) implies
that
1 2

— 2\ + 8
1— + 2 -\ +
5 if 2 -4+ A=0,

v

7

v

which is true if A2 1— 1/v/2. Thus we may assume that ) <
1-1V2. If 2< Y + <8, inequality (diii) may be written in
the form

2-—NX+N=2(Y+N—2)= -1,

which is clearly false sinece ¢ >2. If 3< Y + A< 4 then, by
Lemma 2, t* > 2. Therefore we may assume that Y+ x > 4. By
(16) with \' =\ — 4, it follows that

L=ty — (v —dyp =L

4 —n
Adding this inequality to (dii), we obtain
2 ° 1
3n = + + 15 — 6) .
7= 4 —© 11—
Hence
. 2 1
=5 if + —6A=0
R W Ry =
i.e., if

—2+ 10— +2=0.

The left hand side is monotone decreasing for 0 <\ < 1/3 and has
the value 1/27 at A =1/3. As1/3>1—-1/V2,s0p=5ifA=1—
1/V/2. Therefore, the lemma is true if 1 < X + \ < 2, and we may
assume from now on that X + » > 2.

Assume next that 2 < X + 2 <38. Incase 2< Y + N <3, con-
dition (16) with A' taken successively as » — 2 and ) — 3 yields

@—"NX+AN-2)(Y+r—-2)=1
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and
B=—NWNX+AN=—3NTY +1x—-3)=1.
Multiplying these two inequalities together and observing that

—%g(x+x—2)<x+x—3), (Y+r—2(Y+r—3) <0,

we obtain a contradiction. Thus we may assume that 3 < Y + \..
Again condition (16) with A\' taken as » — 2 and \ — 3 yields

. 1
AN—2)74+ (W= 2=

CHO -2+ -2z

and
t2
~L——=3n——38r= .

C- =3 - =3P
Adding these two inequalities together gives
dv) p=—Lt 4+ T 45 g\,

2 -2 3— X\
If ¢ > 2 then 7» = 5 provided

ie.,
A—-—MNT—=-8+22)=0,

which is true since 0 <\ < 1. On the other hand, if 1.9 < <2,
inequality (dv) implies 7 = 4.81 provided

1, 19 L5 _on=481

2= 3—X

1.e.,
—2)\° + 10.192\* — 15.85\, +7.94 =0,

which is true for 0 < » < 1, since the left hand side is monotone
decreasing in this range.

We are left with the case 8 < X + N, Y + a. Here, if 7 <5,
then

X+ Y+2x<T

SO
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X+r=D+ (¥ +r—3 _1
2 2

hence, by the arithmetic-geometric mean inequality,

(X+>»——3)(Y+7m—3)<—i—

and therefore also

(3—x)(X+x—3)(Y+x—3)<%

contrary to condition (16) with A' = A — 3. This proves Lemma 3.

Proof of the theorem. Denote by A* the set of points of 4
other than 0. We may assume that w < 1, for otherwise, apply the
transformation T:x, — —a, so that, if T(4*) has a point in the
region

—U = Xy, | ] <1
u

then 4* has a point in the region

-1 0,25 = u .
(1

Put ¢ = inf x,x,|x,| extended over all points (z,, «,, #;) of 4 for which
2%, | 25| > 0. Then, either the theorem is true, or g = u. If p=>1,
the theorem follows immediately from Davenport’s result. Hence,
we may assume that ¢# < 1 and that 4* has no point in the region
given by

—% XAV ARS L.

Put ¢ =+ By a classical argument, using Mahler’s compactness
theorem (5), there is no loss of generality in assuming that A*
contains the point (v, 7, 7).

The projection of A* onto the plane x, + z, + 2, = 0, parallel to
the vector (1, 1, 1) is a two-dimensional lattice, 4’ say, of determinant
d(4") = 7V 8v. [By the classical theory of quadratic forms, there
is a point of 4’, other than 0, within a euclidean distance V/14/37 of
0. Hence there is a point (x, y, 2) of A*, linearly independent of
(v, 7, 7), such that

(w—y)2+(y—z>2+(z—w)zé%.
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Taking ¢ = 1/7%, if 1 < ¢* =< 1.9, then by Lemma 1, there is an integer
n such that

—t2<<n+%><n+—g>}n+§—l <1,
i.e.
_% < (wr + @)y + )y + 2l < fe

which proves the theorem for the case when 1 < ¢* < 1.9.

If ¢ > 1.9, the projection of A4* onto the plane x, = 0, parallel
to the vector (1, 1, 1), is a two-dimensional lattice A" of determinant
d(4”y ="7)y. Taking 6 =5 if 2>2, 6 =4.81 if 1.9<# <2, by
Minkowski’s theorem on linear forms, there is a point (X, Y, 0) of
A", other than 0, such that

| X — Y| < 2vV28 + 1/4

and
X+ Y| <oy,

since

49¢ < af<2t‘~' + %) .

Therefore, by the arithmetic-geometric mean inequality, there is a
point (X, Y, 0) of A", other than 0, such that

XY > —(26 + %)
and

X+ Y[ <ov.
We have X =2 —2, Y=y —2 for some point (x,y,2) of A%
linearly independent of (v, v, v). Applying Lemma 3, there is an
integer n such that
-—t2<<n+i><n+i>,n+ﬁ, <1,
v 7 v
i.e.,

_}1,? < (my + x)ny +y)|ny + 2] < 4,

and the theorem is proved.
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