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NOTES ON THE FEYNMAN INTEGRAL, I

G. W. JOHNSON AND D. L. SKOUG

We extend somewhat and simplify substantially some of
the recent work of Cameron and Storvick involving the ana-
lytic Feynman integral of certain functions on Wiener space

of the form i*X#)=exp j I θ(t, x(t))dtl; here θ is a Complex-
ly J α )

valued function on (a, b]xR and x is an element of Wiener
space, that is, a continuous function on [a, b] which vanishes
at a.

1* Introduction* In a recent paper [2], Cameron and Storvick
treat a Banach algebra S of functions on Wiener space which are
a kind of stochastic Fourier transform of Borel measures on L2[a, &].
(Precise definitions will be given in the next section.) For such
functions they show that the analytic Feynman integral, defined by
analytic continuation of the Wiener integral, exists, and they give
a formula for this Feynman integral. The work in [2] is related
to Albeverio and Hώegh-Krohn's beautiful theory [1] of infinite
dimensional oscillatory integrals ("Fresnel integrals") as well as to
[5]. Cameron and Storvick's work is highly promising and has some
appealing features. For example, as we will show in a later note,
the existence of the Feynman integral for certain qudratic potentials
can be established without having to construct special spaces, quad-
ratic forms, etc. to fit the particular problem of interest.

The main purpose of this note is to show that a crucial part of
[2] can be substantially simplified. Let R, C denote the real and
complex numbers respectively. Let θ map (α, b] x R to C. Let
C[a, b] denote Wiener space; that is, the space of R-valued continuous
functions on [α, b] which vanish at α. Let m denote Wiener measure
on C[a, &]. Under certain hypotheses on θ, Cameron and Storvick
show that the function

(1.1) F(x) = exp {JV*, x(t))dt J, x in C[a, b] ,

belongs to the Banach algebra S and hence possesses an analytic
Feynman integral. This result depends on some rather elaborate
machinery; for example, their spaces <Λ€', S', ^/έ", S", ^ C " , S",
Sn, ^£n are all part of this picture. We give a simpler proof of
this result avoiding the machinery. We also extend their result
somewhat, but it is the simplification that is the main point. It
should be mentioned that the results on ^£\ S', ^£fϊ\ etc. are
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interesting in their own right and may well prove useful in identi-
fying other functions in the space S and in other ways. However,
it is functionals of the form (1.1) that are of primary interest with
regard to the physical motivation in quantum mechanics.

[2] deals throughout with functions F on C"[a, b]. We will
restrict attention to the case v = 1 for notational simplicity, but
our arguments work just as well for general v.

2+ Preliminaries; Some simple results and comments* A
subset A of Wiener space is said to be scale-invariant measurable
provided pA is Wiener measurable for every p > 0. A scale-invari-
ant measurable set N is said to be scale-invariant null provided
m(pN) = 0 for every p > 0. A property which holds except on a
scale-invariant null set is said to hold scale-invariant almost every-
where (β — a.e.). The class of scale-invariant measurable sets form
a σ-algebra [4]. A function F on C[a, 6] is said to be scale-invariant
measurable if it is measurable with respect to this tf-algebra. We
begin with the definition of the analytic Feynman integral.

Let F be a function which is scale-invariant measurable and
s-a.e. defined and which is such that the Wiener integral

J ( λ ) = f F(X~1/2x)dm(x)
J<7[α,δ]

exists for all λ > 0. If there exists a function J*(λ) analytic in
C+ = {λ in C: Reλ > 0} such that J*(λ) = J(λ) for all λ > 0, then
J*(λ) is defined to be the analytic Wiener integral of F over C[a,
b] with parameter λ, and, for λ in C+, we write

Wλ F(x)dm(x) = J*(λ) .

Let g be a real parameter (q Φ 0) and let F be a function
whose analytic Wiener integral exists for λ in C+. If the following
limit exists, we call it the analytic Feynman integral of F over
C[a, b] with parameter q and we write

F(x)dm(x) = lim I F(x)dm(x)
C[a δ] ;>->—iflf Jσ[α,δ]

where λ approaches — ίq through C+.

REMARK. Equality s-a.e. is an equivalence relation. It is the
appropriate equivalence relation for the analytic Feynman integral.
One can, for example, find functions F and G on C[a, b] which are
Borel measurable and equal m-a.e. but such that the analytic
Feynman integral of F exists but the analytic Feynman integral of
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G does not exist. A detailed discussion of topics related to scale-
invariant measurability can be found in [4].

Let L2 = L2[a, b] denote as usual the space of Lebesgue measur-
able, /ί-valued, square-integrable functions on [α, &]. Throughout
[2], Cameron and Storvick work with the σ-algebra Jϊf of subsets

of L2 generated by sets of the form j v in L2: \ v(t)φ(t)dt < r \ where
Φ is in L2 and r is in R. Since L2 is a separable Banach space, Jϊf
is actually just the Borel class of L2, that is, the σ-algebra &(L2)
generated by the norm-open subsets of L2. This fact seems to be
quite well known, and one finds it stated in a variety of places,
for example [6; p. 115], The fact that J%f = &(L2) allows one to
simplify some of the arguments in [2] and will be helpful to us in
this paper.

The definition of the Banach algebra S with which we will be
concerned throughout involves the Paley-Wiener-Zygmund (P. W. Z.)
integral [7], a type of stochastic integral which we now define.

Let {φj} be a complete orthonormal set of iϊ-valued functions of
bounded variation on [α, &]. For v in L2[a, b], let

= Σ [j
The P. W. Z. integral is defined by

S b „ Γb

v(s)dx(s) = lim \ vn(s)dx(s)
a n-+oo j a

for all x in C[a, b] for which the limit exists. It can be shown [7]
that this integral exists for m-a.e. x and that it is essentially
independent of the choice of the sequence {φn}; further, if v is of
bounded variation, the P. W. Z. integral is m-a.e. equal to the

Ϊ
b

v(s)dx(s).
a

Now let ^ — ̂ £{L2) be the collection of C-valued countably
additive measures on &{L2). ^ is a Banach algebra under the
total variation norm where convolution is taken as the multiplication
in ^'.

The Banach algebra S consists of functions F expressible in the
form

(2.1) F(x) = [ exp|i jV*)«te(ί) \dσ(v)

for s-a.e. x in C[a, b] where σ is an element of ^£'. Cameron and
Storvick show that the correspondence σ —> F is one-to-one [2;
Theorem 2.1] and carries convolution into point wise multiplication.
Letting | |i^| | = | |σ | | we have that S is a Banach algebra of func-
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tions on Wiener space. Cameron and Storvick show that the analytic
Feynman integral exists for every F in S. Further they show that
if {Fj} is a sequence of elements from S such that Σj°=ill^ill < °°>
then F = ΣF=i Fj is i n S a n ( i t ^ e analytic Feynman integral of F is
the sum of the analytic Feynman integrals of the F/s [2; Theorem
5.4]. Some further results about S are established in [2], but we
have summarized the main facts that we will need.

REMARK. The s-a.e. equivalence is needed in the definition of
S. For example, the theorem that every F in S has an analytic
Feynman integral would be false if one tried to use the usual m-
a.e. equivalence.

Cameron and Storvick introduce another Banach algebra S' of
functions on C[a, b] and they show that S'aS [2; Theorem 3.0].
They ask whether S' is a proper subset of S. We finish this section
by showing that it is.

Let BV = BV[a, &] be the space of j?-valued, right continuous
functions of bounded variation on [α, 6] that vanish at b. We con-
sider S F a s a subset of L2. Hence the Borel class &(JBV) of BV
is just ^ ( L 2 ) Γ\BV. Let Λ* be the class of C-valued countably
additive measures on &(BV) and regard ^£rr as equipped with the
total variation norm. S' consists of functions F expressible in the
form

F(x) =

for s-a.e, x where σ' is an element of ^£ri\ Given σf in ^ ^ ' , define
Iσf = σ as follows: σ(E) = σ'(E Γι BV) where E is in ^ ( L 2 ) . It is
easy to check that / imbeds Λf in ^£ and that the question as
to whether S' is a proper subset of S is equivalent to the question
as to whether J L * C is a proper subset of ^£'. It is not hard to
show that it is; we include the rather simple proof of this result.

PROPOSITION 1. Let ^tx = {σ in ^€\Έ,F in ^ ( L 2 ) and E f)
BV= Ff]BV implies σ{E) = σ(F)}. Then

Proof. It is clear from the definition of / that I ^ C c ̂ /£x.
Let σ be in ^£[. Define σ' on ^(BV) = ̂ (L2)nBVby σ\EnBV) =
σ(E). σf is well-defined by definition of ^ J . Now we show that
σ' is countably additive. Suppose E1 Π BV, - , En n BV, is a
pair wise disjoint sequence from ^ ( 5 7 ) . Then

U (EnΠBV)) - σ' (( Q En) n Bv) = σ( U ^
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= σ{E, U (Et\EJ U U (#.\(#i U UE..J) U •)

= σ(E0 + σ(Et\Ed + ••• + σ(JS.\(^i U U #.-0) +

= σ'iE, f]BV) + a'{(E^Ed nΰF)
+ + σ'dE^E, U U ί U ) ) Π BF) +

- σ\Eί Π BV) + σ'(#2 n BV) + + σ'(#M Π £F) +

where the last equality holds since (^n\(£Ί U U En^))
5 F . Thus σ', defined as above, is in ^ ' . Finally (Iσ')(E)=σ'(EΓ)
BV) = σ(E) and so σ is in I^/έ' as desired.

PROPOSITION 2. Z^T' = ^ C S ^ and so S' g S.

Proof. Let σ be the unit mass concentrated at an element v0

of L2\BV. σ is in ^£ clearly. To see that σ is not in ^^ let vx

be another element of L2\BV. Then the singleton sets E = {v0} and
F = {vΊ} have the property that E Π BV = ί7 Π 5 F but σ(E)Φσ(F).

Is B F in .^(L2)? This question is open as far as we know.
The Banach algebra S' will not concern us throughout the rest

of this paper.

ί fb )
3* Proof that exp ] \ θ(t, x(t))dt [is in S. We begin by consider-

ing the following map from (α, 6] x R into Z/2[α, &].

(v9 a < s < t
(3.1) Φ(ί,t;)(8) = ' - j:h

(0, ί ^ s ̂  6 .
Φ is easily seen to be continuous and so is Borel measurable. We
begin with two easy measurability lemmas.

S b ^

φ(t, v){s)dx(s) is a Broel measurable function of (t,
a

v, x) on (a, b] x R x C[α, 6]. Further, for any Borel measure μ on

S b „

Φ(t, v)(s)dx(s) is defined except on a μ x m-null Borel
a

set.

Proof. Let {φn} be a complete orthnormal set of functions of
bounded variation on [α, 6] in terms of which the P. W. Z. integral
is defined. Now

\\bφ(t,v)(s)φn(s)ds]\bφn(s)dx(s)
{ } Γ f« ΊΓ Γδ Ί

= [vjβ^(β)dβj[# (6)»(&) ~ \x{s)dφn(s) J .
Thus the left hand side of (3.2) is a continuous and hence Borel
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S b „

Φ(t, v)(β)dx(β) is defined as

lim

whenever this limit exists, we see that I Φ(t, v)(s)dx(s) is a Borel
Ja

measurable function of (t, v, x).

S b „

ψ(s)dx(s) exists for
S α

Φ(t, v)(s)dx(s) exists for m-a.e. x.
a

Now let a Borel measure μ on (α, 6] x R be given. Then clearly
b „

Φ(t, v)(s)dx(s) is defined except on a μ x m-null Borel set in (α, b] x

R x C[α, 6].LEMMA 2. Le£ /̂  δe α ^ Borel measure on (α, 6] x R. Then

S b

Φ(t, v)(s)dx(s) and the P. W. Z.
S α

Φ(£, v)(s)da5(s) are equal except on a μ x m-null Borel set
a

in (a, 6] x JB x C[a, &]. Hence for m-a.e. a? ίfeê / are eĝ aZ except on
a μ-null Borel set in (a, 6] x i?.

Φ(t, v)(s)dx(s) is Borel measurable by Lemma 1, and
S α

Φ(t, v)(β)dx(β) = vίc(t) is clearly Borel measurable, and so, the set
a Γb Γb _

where they are unequal is a Borel set. Now I ψ(s)dx(s)=\ ψ(s)dx(s)

for m-a.e. α? for any function ψ of bounded variation. Hence for

S b Γb

Φ(t, v)(s)dx(s) = \ Φ(ί, /y)(s)cίcc(s) for m-a.e. x. The result
α Jα

follows.
The next lemma is a key step.
LEMMA 3. Let μ be a Borel measure on (α, b] x R. Define G

on C[a, b] by

(3.3) G(x) = ί exp {ίt;α(t)}cijκ(t, v) .

G is in S.

Proof. We need a measure σ on &(L2) such that for every

G(px) = I expjii u{s)dpx{s)\dσ{u) for m-a.e. α; .
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We claim that the Borel measure σ — μoφ-1 works.
u(s)dx(s) is a

a

L) x &(C[a, b]) measurable function of (u, x) which is σxm-a.e.

defined. Using this fact, the trivial fact that constants involved in

the integrator can be taken outside of both the Riemann-Stieltjes

and P. W. Z. integrals, the change of variables theorem [3; p. 163]

and Lemma 2, we can write

• exp ] i I u(s) dpx(s) \dσ (u)

L2 \ Ja )

= I exp-um u{s)dx{s)\dσ(u)

exp ]ip\ Φ(t, v)(s)dx(s) \dμ(t, v)

(α,6]xΛ I Ja )

= \ exp|ΐ|θl Φ(t, v)(s)dx(s)\dμ(t, v)
J(α,&]xΛ \ Ja )

= I exp {ipvx(t)}dμ(t, v) = G(px) as desired.
J ( α , 6 ] x Λ

Next we give the main result.

THEOREM 1. Let Θ: (α, 6] x R^> C be a function which for each
t in (α, δ] is the FourierStieltjes transform of a C-valued countably
additive Borel measure σt on R; that is,

(3.4) θ(t, u) = \ exp {iuv}dσt(v) .

We assume that \\σt\\ is dominated by a function h(t) in L^a, b] and
that, for each Borel set E in (a, b]xR, σt(E{t)) is a Borel measurable
function of t. (Here E{t) denotes the t-section of E.) Under these
hypotheses, the function defined by (1.1) is in S.

REMARK. Cameron and Storvick make the stronger assumption
that ||0 t | | is bounded as a function of t rather than dominated by
an Z/i-function. Except for this, our assumptions on θ coincide with
theirs.

Proof. Since S is a Banach algebra, it suffices to show that
the function

(3.5) f(x) = \bθ(t, x(t))dt
Ja

is in S. This will follow from Lemma 3 if we show that / can be
written in the form (3.3).
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For E in ^ ( ( α , b] x K), let μ{E) = Vσt(E{t))dt. We claim that

μ is a Borel measure on (α, b] x R with \\μ\\ ̂  11 ^ I Ii Let {En} be
a disjoint sequence of Borel sets from (α, 6] x R. For each integer
N, Σ5Uk*C^ *})l ^ I kill ^ Λ(ί). Hence, by the Dominated Conver-
gence Theorem,

UEn) = [σt ( U ̂  )dt = [±σt
n=l / Ja \n=l / Jan=l

and so μ is countably additive.
Next we show that \\μ\\^ ||Λ||i Let Eu --,En be any finite

sequence of disjoint Borel sets. It suffices to show that ΣJ = 1 \μ(Es)\<Z
\\h\\,. Since Σ?=i ktC^f )l ^ Ik*II ^ λ(*), we can write

ΣIJWI Σ

To finish the proof, it suffices to show that

f(x) = ί exp {ivx(t)}dμ(t, v).
J(α,6]xJ?

In fact, we will show that for any bounded Borel measurable func-

tion φ on (α, 6] x R, I φ(t, v)dσt(v) is a measurable function of t and

ΓΓt φ(t, v)dσt(v) ~\dt = \ φ(t, v)dμ(t, v) .

First let ^(t, v) = XE(t, v) where E is in ^ ( ( α , δ] x R). Then

Λ(ί, v)dσt(v) =

which is measurable as a function of t by assumption. Also

— \ y~E(t>, v)dμ(t, v) as desired.
J ( α , δ ] x Λ

The result now follows easily for simple functions φ by linearity.
For φ a bounded measurable function, take a sequence {φn} of simple
functions such that ||0j|«> ^ IÎ IU and φn converges to φ uniformly.
By the Dominated Convergence Theorem,
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( φ(t, v)dσt(v) = lim \ φn(t, v)dσt(v) .
J R n->oo J R

But I φn(t, v)dσt(v) is a measurable function of t for each n and so
φ(t, v)dσt(v) is a measurable function of ί. Next note that

R

\\φ%(t,v)dσt(y)\ ^ \R\\Φ\\-d\σt\(υ) = I W U k J I ^ \\Φ\\Λ(t)

for every w. This justifies the second of the three uses of the
Dominated Convergence Theorem in the following string of equalities.

φ(t, v)dμ(t, v) = limί φΛ(t9 v)dμ{t, v)
δ ] X Λ w-»oo J ( α , δ ] x Λ

= lim \"\\ φ,(t, v)dσt(v)]dt

- ΓΓlimί φn{t, v)dσt(v)]dt

= ίTί Hm^(ί, v)dσt(v)]dt

= i \ Φ(ft v)dσt(v) \dt as desired.

For each x, exp {ivα (ί)} is a bounded Borel measurable function

of (t, ^ ). Hence /(#) = I I exp {ίvx(t)}dσt(v) \dt equals

1 exp {ivx (t)}dμ(t, v)
J ( α , & ] x Λ

as desired.

We now know that F(x) = exp |(V<, »(*))dίl = Σ (1M!) /ΛW is
in S where / is given by (3.5). Further we know from the proofs
of Theorem 1 and Lemma 3 that / is associated with the measure
a = μoφ~ι where μ is the measure from the preceding theorem.
Because convolution is taken over into pointwise multiplication by
the map from ^^(L2) onto S, the measure (l/n\) σ* *σ {n convolu-
tions) is associated with (l/n\)fn. Now ||(l/iif)σ* *σ|| ^ (l/^!)||σ||w

and so, of course, ΣSU (Xln!) 11 ̂ * *^ 11 < °° Under these conditions,
as noted earlier, the analytic Feynman integral of the sum is the
sum of the analytic Feynman integrals, and so we have

Sanfg oo -I fanf-

F{x)dm(x) = Σ — \ f"(x)dm{x) .
C[o,6] Λ=0 γi\ J(7[α,&]

J anfg

F(x)dm(x) as a series if we
S C ί a , b - \

fn(x)dm(x). We will obtain such a
<7[α,δ]
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Sanfg

fn(x)dm(x) as an integral over
a finite-dimensional space.

For now, let λ > 0. We wish to calculate

— ( fn(X-1/2x)dm(x) .
Til JC[a,b]

We know from the discussion of the preceding theorem that f(x) =

J exp {ivx(t)}dμ(t, v) where μ is a C-valued Borel measure on
(α,&]x«

(α, b] x R and so, \f(x)\ ^ \\μ\\ for all x. Certainly then the
Wiener integral above exists.

We will use the following notation:

4* = ί(*i, , O in [α, bf: a = t0 < t, < - < tn ^ b} .

LEMMA 4. For λ > 0,

T1 ( exp l - ^ - ^ ) 2 + iUj(ύ \dUj

= exp

The lemma follows from the change of variables

t >x ηi/2

and from the fact that exp { — z2/2} is its own Fourier transform; i.e.,

(2ττ)-1/2( exp {~z2/2 + izω}dz = exp (-ω2/2).

The lemma actually holds for λ in C+, but we only need it
for λ > 0. For λ = — iq(q Φ 0), the right hand side above makes
sense, but the integral does not exist as a Lebesgue integral.

Now we can write

~±Λ fn(X~mx)dm(x)
U\ JC[α,6]

= - M Γ Π (6 θ(t3, χ-^x(td))dtS ]dm(x)

=J-ί t fπfl(if(rt(tί

= ( ( Γ Π θ{tjt
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where the use of the Fubini Theorem is justified since

ί t fί\θith\-inx{tό))\dtdm(x)
jC[α,6] JJn j=l

= ( ί Π I ί exp {iχ-mx{t3)vό}dσtά{vά)
JC[α,δ] Un 5=1 I JR

dtdm(x)

[ Π h(t3)dtdm(x)
C[α,δ] $Δn j=l

= _JL_f f f[ h{to)didm(x)
n\ JCla,b] J[α,δ]» i=l

< oo .

By applying a basic Wiener integration formula and then making
a simple change of variables, we see that the last expression in
(3.6) equals

S 2

Δn

[ Γ Π θ(fif %)Ί exp I — Σ ("Uj ~~ U*~^ \dudt
JJl«Ly-l J I 2 3=1 ty — ίy_i

exp {iufliW^v,) Ί exp
JJ I 2 " l ίy - ίy^

One can easily justify integrating first with respect to the u/s.
Doing this and applying Lemma 4 n times, we obtain

S f ( 1 Γ n ι Ί)

1 exp j Σ Σ (2 — Sdfι)VjVι(t3 — a) \\
x dσ^v,)" 'dσtn(vn)dt = gn(X) .

So for X > 0, (1/tt!) t ^ fn(χ-inx)dm(x) = flrΛ(λ) .

Note next that the integral giving gn(X) in (3.7) exists for

Re X ̂  0(λ Φ 0) since the integrand is bounded by 1 and

Because of this it is not difficult to argue in the usual way via
Morera's Theorem, the Fubini Theorem and the Cauchy Integral
Theorem that gn(x) is analytic in C+. Also it is not hard to see
that flrΛ(λ)—> gn( — iq) as X->—iq through C+. Hence

Sanf -I

exists and equals gn( — iq).
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We summarize in the following theorem.

THEOREM 2. Under the hypotheses of Theorem 1 we have the
formula

Γ f* F(x)dm(x) = 1

+ Σ( ί
w=lJJΛJK* q

x dσ^Vj)- -dσtjyn)dt

where i*1 is given by (1.1).
We end this paper by remarking that the work done above for

S δ
θ(t, x(t))dt can be carried out just as well for

a Cb

other analytic functions of \ θ(t, x{t))dt.
Jα

Note added in proof. The conditions on θ in Theorem 1 can be
improved slightly to conditions which are equivalent but formally
weaker. This is discussed briefly in Corollary 4 of "Notes on the
Feynman integral P', to appear in the J. of Functional Analysis.
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