ISOMETRIES OF $C^{(n)}[0, 1]$

V. D. PATHAK

By $C^{(n)}[0, 1]$ (henceforth denoted by $C^{(n)}$) we denote the Banach algebra of complex valued n times continuously differentiable functions on [0, 1] with norm given by

$$||f|| = \sup_{x \in [0,1]} \left(\sum_{r=0}^{n} \left(\frac{|f^{(r)}(x)|}{r!} \right) \text{ for } f \in C^{(n)} .$$

By an isometry of $C^{(n)}$ we mean a norm-preserving linear map of $C^{(n)}$ onto itself.

The purpose of this article is to describe the isometries of $C^{(n)}$ for any positive integer n. More precisely, we show that any isometry of $C^{(n)}$ is induced by a point map of the interval [0, 1] onto itself.

The isometries of $C^{(1)}$ (with the same norm as above) are determined by M. Cambern [1]. N. V. Rao and A. K. Roy [2] have also determined the isometries of $C^{(1)}$ with norm of $f \in C^{(1)}$ given by $||f|| = ||f||_{\infty} + ||f'||_{\infty}$ and even for more general norms.

In the proof we shall follow the techniques of [1].

1. Let W denote the compact space $[0, 1] \times [-\pi, \pi]^n$. We prove the following propositions.

PROPOSITION 1.1. Given $(x, \theta_1, \dots, \theta_n) \in W$, then there exists $h \in C^{(n)}$ such that

$$\sum_{r=0}^{n} \frac{|h^{(r)}(x)|}{r!} > \sum_{r=0}^{n} \frac{|h^{(r)}(y)|}{r!}$$

 $egin{aligned} & for & y \in [0,\,1], \; y
eq x, \; \; with \; \; |h(x)| = h(x) > 0, \; |h'(x)| = e^{i heta_1}h'(x) > 0, \ |h''(x)| = e^{i heta_2}h''(x) > 0, \; \cdots, \; |h^{(n)}(x)| = e^{i heta_n}h^{(n)}(x) > 0. \end{aligned}$

Proof. Let f_0 be the real valued, nonnegative continuous function on [0, 1] defined as follows

$$f_0(y) = egin{cases} 0 & \cdots (y-x) \leq -rac{1}{2(n!)} \ 1 + 2(n!)(y-x) \cdots -rac{1}{2(n!)} < (y-x) \leq 0 \ 1 - 2(n!)(y-x) \cdots 0 < (y-x) \leq rac{1}{2(n!)} \ 0 & \cdots rac{1}{2(n!)} < (y-x) \ . \end{cases}$$

For $1 \le r \le n$ define $f_r(y)$ as $f_r(y) = \int_x^y f_{r-1}(t) dt$. It can be easily verified that for $1 \le r \le n$, $f_r(y)$ is as follows:

$$f_r(y) = egin{aligned} & \int_{j=1}^r rac{1}{(j+1)!(2(n!))^j} rac{(y-x)^{r-j}}{(r-j)!} \cdots (y-x) \leq rac{-1}{2(n!)} \ & rac{(y-x)^r}{r!} + rac{2(n!)(y-x)^{r+1}}{(r+1)!} \cdots -rac{1}{2(n!)} < (y-x) \leq 0 \ & rac{(y-x)^r}{r!} - rac{2(n!)(y-x)^{r+1}}{(r+1)!} \cdots 0 < (y-x) \leq rac{1}{2(n!)} \ & rac{\sum_{j=1}^r rac{(-1)^{j-1}}{(j+1)!(2(n!))^j} rac{(y-x)^{r-j}}{(r-j)!} \cdots rac{1}{2(n!)} < (y-x) \ . \end{aligned}$$

Now let

$$g(y) = \frac{1}{(2n-1)!} \left[\sum_{j=1}^{(n-1)} e^{i(\theta_1 - \theta_j)} \frac{(y-x)^j}{j!} \right] + e^{i(\theta_1 - \theta_n)} f_n(y) \; .$$

Clearly, for $1 \le r \le n$, $f_n^{(r)} = f_{n-r}$. Therefore $g \in C^{(n)}$ and

$$g^{\scriptscriptstyle (r)}(y) = rac{1}{(2n-1)!} \sum_{j=r}^{(n-1)} e^{i(heta_1 - heta_j)} rac{(y-x)^{j-r}}{(j-r)!} + e^{i(heta_1 - heta_n)} f_{n-r}(y) \, ext{ for } \, 1 \leqq r \leqq n \, .$$

Thus

$$g(x)=0$$
, $g^{(r)}(x)=rac{1}{(2n-1)!}e^{i\,(heta_1- heta_r)}$ for $1\leqq r\leqq n-1$,

and $g^{(n)}(x) = e^{i(\theta_1 - \theta_n)}$. Therefore

$$\sum_{r=0}^{n} \frac{|g^{(r)}(x)|}{r!} = \frac{1}{(2n-1)!} \sum_{r=1}^{(n-1)} \frac{1}{r!} + \frac{1}{n!}$$
.

Now consider $\sum_{r=0}^{n} (|g^{(r)}(y)|/r!)$ for $y \in [0, 1]$ and $y \neq x$.

Case 1. Let $(y - x) \le (-1/2(n!))$.

$$\begin{array}{l} \left(\begin{array}{c} \sum\limits_{r=0}^{n} \frac{\mid g^{(r)}(y)\mid}{r!} \leq \frac{1}{(2n-1)!} \sum\limits_{j=1}^{(n-1)} \frac{\mid y-x\mid^{j}}{j!} + \frac{1}{(2n-1)!} \sum\limits_{r=1}^{(n-1)} \frac{1}{r!} \\ \times \left\{ \sum\limits_{j=r}^{(n-1)} \frac{\mid y-x\mid^{j-r}}{(j-r)!} \right\} + \sum\limits_{r=0}^{n} \frac{1}{r!} \left\{ \sum\limits_{j=1}^{(n-r)} \frac{\mid y-x\mid^{(n-r-j)}}{(j+1)! \ (2(n!))^{j} (n-r-j)!} \right\} \ . \end{array}$$

For n=1, 2, it can be easily verified that right hand side of (1) is less than $\sum_{r=0}^{n} (|g^{(r)}(x)|/r!)$. When $n \ge 3$, denoting (n!/(n-j)!j!) by C_i^n , (1) gives

$$egin{aligned} \sum_{r=0}^{n} rac{\mid g^{(r)}(y) \mid}{r!} & \leq rac{1}{(2n-1)!} \sum_{j=1}^{(n-1)} rac{1}{j!} + rac{1}{(2n-1)!} \sum_{r=1}^{(n-1)} rac{(n-1)}{r!} \ & + rac{1}{2(n!)} \sum_{r=0}^{(n-1)} rac{1}{r!} \sum_{j=1}^{(n-r)} \left\{ rac{1}{j(j+1)(n-r-1)!} C_{j-1}^{n-r-1} rac{1}{(2(n!))^{j-1}}
ight\} \;. \end{aligned}$$

Now

$$\frac{1}{(2n-1)!}\sum_{r=1}^{\binom{(n-1)}{r}}\frac{(n-1)}{r!}\leqq\frac{(n-1)}{(2n-1)!}\sum_{r=1}^{\binom{(n-1)}{r}}\frac{1}{2^{r-1}}<\frac{2(n-1)}{(2n-1)!}<\frac{1}{4(n!)}$$
 for all $n>3$

Thus we have

(2) for
$$n \ge 3, \frac{1}{(2n-1)!} \sum_{r=1}^{(n-1)} \frac{(n-1)}{r!} < \frac{1}{4(n!)}$$
.

Also

$$egin{aligned} &rac{1}{2(n\,!)}\sum_{r=0}^{(n-1)}rac{1}{r\,!}\sum_{j=1}^{(n-r)}\left\{rac{1}{j(j+1)(n-r-1)!}C_{j-1}^{n-r-1}rac{1}{(2(n\,!))^{j-1}}
ight\} \ &\leq rac{1}{2(n\,!)}\sum_{r=0}^{(n-1)}rac{1}{r\,!}rac{1}{2(n-r-1)!}\left\{\sum_{j=1}^{(n-r)}C_{j-1}^{n-r-1}rac{1}{(2(n\,!))^{j-1}}
ight\} \ &= rac{1}{(2(n\,!))}\cdotrac{1}{2(n-1)!}\sum_{r=0}^{(n-1)}C_r^{n-1}\Big(1+rac{1}{2(n\,!)}\Big)^{(n-1-r)} \ &= rac{\left\{\left(1+rac{1}{2(n\,!)}
ight)+1
ight\}^{n-1}}{2(2(n\,!))(n-1)!}\leq rac{\left(rac{9}{4}
ight)^{n-1}}{2(2(n\,!))(n-1)!}<rac{81}{64}\cdotrac{1}{2(n\,!)} \ . \end{aligned}$$

Thus

By (2) and (3) it follows immediately that for all $y \in [0, 1]$ and $y \neq x$

$$\sum_{r=0}^{n} \frac{|g^{(r)}(y)|}{r!} < \sum_{r=0}^{n} \frac{|g^{(r)}(x)|}{r!}$$
.

Case 2. Let
$$-(1/2(n!)) < (y-x) < 0$$

$$\sum_{r=0}^{n} rac{|g^{(r)}(y)|}{r!} \le rac{1}{(2n-1)!} \sum_{j=1}^{(n-1)} rac{|y-x|^{j}}{j!} + rac{1}{(2n-1)!} \sum_{r=1}^{(n-1)} rac{1}{r!} \left\{ \sum_{j=r}^{(n-1)} rac{|y-x|^{j-r}}{(j-r)!}
ight\} + \sum_{r=0}^{n} rac{1}{r!} \left| rac{(y-x)^{n-r}}{(n-r)!} + rac{2(n!)(y-x)^{n-r+1}}{(n-r+1)!}
ight|$$

$$\begin{split} &= \frac{1}{(2n-1)!} \sum_{j=1}^{(n-1)} \frac{(-1)^{j}(y-x)^{j}}{j!} + \frac{1}{(2n-1)!} \sum_{r=1}^{n-1} \frac{1}{r!} \\ &+ \frac{1}{(2n-1)!} \sum_{r=1}^{(n-2)} \frac{1}{r!} \left\{ \sum_{j=r+1}^{(n-1)} \frac{(-1)^{j-r}(y-x)^{j-r}}{(j-r)!} \right\} \\ &+ \sum_{r=0}^{n} \frac{(-1)^{n-r}}{r!} \left\{ \frac{(y-x)^{n-r}}{(n-r)!} + \frac{2(n!)(y-x)^{n-r+1}}{(n-r+1)!} \right\} \\ &= \frac{1}{(2n-1)!} \sum_{r=1}^{(n-1)} \frac{1}{r!} + \frac{1}{n!} + \sum_{s=1}^{(n-1)} (y-x)^{s} \left\{ \frac{(-1)^{s}}{s!(2n-1)!} + \frac{(-1)^{s}}{s!(n-s)!} + \frac{2(n!)(-1)^{s-1}}{s!(n-s+1)!} + \sum_{r=1}^{n-1-s} \frac{(-1)^{s}}{s!r!} \right\} \\ &+ (y-x)^{n} \left\{ \frac{(-1)^{n}}{n!} + \frac{2(n!)(-1)^{n-1}}{n!} \right\} + \frac{(-1)^{n}(y-x)^{n+1}}{(n+1)!} \\ &= \sum_{r=0}^{n} \frac{|g^{(r)}(x)|}{r!} + \sum_{s=1}^{(n-1)} \frac{(-1)^{s}(y-x)^{s}}{s!} \left\{ \frac{1}{(2n-1)!} + \frac{(-1)^{n}(y-x)^{n+1}}{(n-s+1)!} \right\} \\ &+ \frac{(-1)^{n}(y-x)^{n}}{n!} \left\{ 1 - 2(n!) \right\} + \frac{(-1)^{n}(y-x)^{n+1}}{(n+1)!} \\ &< \sum_{r=0}^{n} \frac{|g^{(r)}(x)|}{r!} \end{split}$$

since all the other terms are negative. Verification in cases when $0 < (y - x) \le (1/2(n!))$ and (1/2(n!)) < (y - x) is similar. From this it follows that the function $h \in C^{(n)}$ defined by $h(y) = 1 + e^{-i\theta_1}g(y)$ has the desired properties.

Proposition 1.2. For any $f \in C^{(n)}$

$$\sum_{j=1}^{n} (-1)^{j-1} C_{j-1}^{n} (f^{n-j+1})^{(k)}(x) (f(x))^{j-1} = \begin{cases} 0 & \text{if} \quad 1 \leq k < n \\ n! (f'(x))^{n} & \text{if} \quad k = n \end{cases}$$

where $(f^{n-j+1})^{(k)}(x)$ means the kth derivative of f^{n-j+1} at x.

Proof. We prove this proposition by induction on n. For n = 1 it is obvious. Let it be true for n = r. Then we have

$$\sum_{j=1}^r (-1)^{j-1} C_{j-1}^r (f^{r-j+1})^{(k)}(x) (f(x))^{j-1} = 0$$
 , for $1 \le k < r$,

and

$$\textstyle\sum_{j=1}^r \, (-1)^{j-1} C^r_{j-1}(f^{r-j+1})^{(r)}(x) (f(x))^{j-1} = \, r\,! \, (f'(x))^r \;.$$

Now let n = r + 1 and k = r + 1.

Since
$$(f^{r-j+2})'(x) = (r - j + 2) (f^{r-j+1})(x)f'(x)$$

$$\begin{split} \sum_{j=1}^{(r+1)} (-1)^{j-1} C_{j-1}^{r+1} (f^{r-j+2})^{(r+1)} (x) (f(x))^{j-1} \\ &= \sum_{j=1}^{r+1} (-1)^{j-1} C_{j-1}^{r+1} (f(x))^{j-1} \Big\{ (r-j+2) \sum_{s=0}^{r} C_s^r (f^{r-j+1})^{(r-s)} (x) (f')^{(s)} (x) \Big\} \\ &= \sum_{j=1}^{r+1} (-1)^{j-1} (r+1) C_{j-1}^r (f(x))^{j-1} (f^{r-j+1})^{(r)} (x) f'(x) \\ &+ \sum_{j=1}^{r+1} (-1)^{j-1} (r+1) C_{j-1}^r (f(x))^{j-1} \Big\{ \sum_{s=1}^{r} C_s^r (f^{r-j+1})^{(r-s)} (x) (f')^{(s)} (x) \Big\} \\ &= (r+1) \Big\{ \sum_{j=1}^{r} (-1)^{j-1} C_{j-1}^r (f(x))^{j-1} (f^{r-j+1})^{(r)} (x) \Big\} f'(x) \\ &+ (r+1) \sum_{j=1}^{r+1} (-1)^{j-1} (f(x))^{j-1} C_{j-1}^r \Big\{ \sum_{s=1}^{r} c_s^r (f^{r-j+1})^{(r-s)} (x) (f')^{(s)} (x) \Big\} \\ &= (r+1)! (f'(x))^{r+1} + (r+1) \sum_{s=1}^{r-1} C_s^r (f')^{(s)} (x) \\ &\times \Big\{ \sum_{j=1}^{r} (-1)^j C_{j-1}^r (f^{r-j+1})^{(r-s)} (x) (f(x))^{j-1} \Big\} \\ &+ (r+1) \sum_{j=1}^{r+1} (-1)^{j-1} C_{j-1}^r (f(x))^r (f'(x))^{(r)} \\ &= (r+1)! (f'(x))^{r+1} \ . \end{split}$$

Now let n = r + 1 and k < (r + 1). Then

$$\begin{split} \sum_{j=1}^{r+1} (-1)^{j-1} C_{j-1}^{r+1} (f^{r-j+2})^{(k)}(x) (f(x))^{j-1} \\ &= \sum_{j=1}^{r+1} (-1)^{j-1} C_{j-1}^{r+1} (r-j+2) (f(x))^{j-1} \Big\{ \sum_{s=0}^{k-1} C_s^{k-1} (f^{r-j+1})^{k-1-s}(x) (f')^{(s)}(x) \Big\} \\ &= (r+1) \sum_{s=0}^{k-2} C_s^{k-1} (f')^{(s)}(x) \Big\{ \sum_{j=1}^{r} (-1)^{j-1} C_{j-1}^{r} (f(x))^{j-1} (f^{r-j+1})^{(k-1-s)}(x) \Big\} \\ &+ (r+1) \sum_{j=1}^{r+1} (-1)^{j-1} C_{j-1}^{r} (f(x))^{k-1} (f')^{(k-1)}(x) \\ &= 0 \; . \end{split}$$

Hence the proposition follows by mathematical induction.

2. If X is any compact Hausdorff space, we will denote by C(X) the Banach algebra of continuous complex functions defined on X with norm $|| \quad ||_{\infty}$ determined by $||g||_{\infty} = \sup_{x \in X} |g(x)|$ for $g \in C(X)$. Given $f \in C^{(n)}$, we define $\widetilde{f} \in C(W)$ by

$$\widetilde{f}(x,\, heta_{\scriptscriptstyle 1},\,\,\cdots,\,\, heta_{\scriptscriptstyle n})=f(x)+e^{i heta_{\scriptscriptstyle 1}}f'(x)+rac{e^{i heta_{\scriptscriptstyle 2}}}{2\,!}f''(x)+\cdots+rac{e^{i heta_{\scriptscriptstyle n}}}{n\,!}f^{\scriptscriptstyle(n)}(x)\;, \ (x,\, heta_{\scriptscriptstyle 1},\,\,\cdots,\,\, heta_{\scriptscriptstyle n})\in W\;.$$

The following lemma is then obvious.

LEMMA 2.1. The mapping $f \to \widetilde{f}$ establishes a linear and norm-preserving correspondence between $C^{(n)}$ and the closed subspace S of C(W), $S = \{\widetilde{f}: f \in C^{(n)}\}$.

Next given $(x, \theta_1, \dots, \theta_n) \in W$, we define a continuous linear functional $L(x, \theta_1, \dots, \theta_n)$ on $C^{(n)}$ by

$$L_{(x, heta_1,\ldots, heta_n)}(f)=\widetilde{f}(x, heta_1,\,\ldots,\, heta_n)$$
 , $f\in C^{(n)}$.

In view of Proposition 1.1 the proof of the following lemma is analogous to the proof of Lemma 1.2 in [1].

LEMMA 2.2. An element of $C^{(n)^*}$ is an extreme point of the unit ball U^* of $C^{(n)^*}$ if and only if f^* is of the form $e^{i\gamma}L_{(x,\theta_1,\dots,\theta_n)}$ for some $\gamma \in [-\pi,\pi], (x,\theta_1,\dots,\theta_n) \in W$.

We now suppose that T is an isometry of $C^{(n)}$. The adjoint T^* is then an isometry of $C^{(n)*}$, and thus carries extreme points of U^* onto itself.

LEMMA 2.3. The image by T of the constant function 1 of $C^{(n)}$ is a constant function $e^{i\lambda}$, $\lambda \in [-\pi, \pi]$.

Proof. For each extreme point $e^{i\eta}L_{(x,\theta_1,\dots,\theta_n)}$ of U^* ,

$$|(e^{i\eta}L_{(x,\,\theta_1,\,\ldots,\,\theta_m)})(1)|=1$$
 .

Thus for each extreme point $|T^*(e^{i\eta}L_{(x,\theta_1,\dots,\theta_n)})(1)|=1$. Therefore, $|L_{(x,\theta_1,\dots,\theta_n)}(T(1))|=1$. Thus for a fixed x, $|(T(1))(x)+e^{i\theta_1}(T(1))'(x)+\dots+(e^{i\theta_n}/n!)(T(1))^{(n)}(x)|=1$ for all $(\theta_1,\dots,\theta_n)\in[-\pi,\pi]^n$. Choosing $\theta_1,\theta_2,\dots,\theta_n$, so that

$$\arg((T(1))(x)) = \arg(e^{i\theta_1}(T(1))'(x)) = \cdots = \arg\Bigl(\frac{e^{i\theta_n}}{n!}(T(1))^{(n)}(x)\Bigr)$$

we get

$$|(T(1))(x)| + |(T(1))'(x)| + \cdots + \frac{|(T(1))^{(n)}(x)|}{n!} = 1$$
.

Again by choosing $\theta_1, \dots, \theta_n$, so that

$$\arg((T(1))(x)) = \pi + \arg(e^{i\theta_1}(T(1))'(x)) = \cdots = \pi + \arg(e^{i\theta_n}(T(1))^{(n)}(x))$$

we get

$$\left| |(T(1))(x)| - \left\{ |(T(1))'(x)| + \cdots + \frac{|(T(1))^{(n)}(x)|}{n!} \right\} \right| = 1.$$

Thus either

$$\left\{ |(T(1))(x)| = 1 \text{ and } |(T(1))'(x)| + \cdots + \frac{|(T(1))^{(n)}(x)|}{n!} = 0 \right\}$$

or

$$\{|(T(1))(x)| = 0 \text{ and } |(T(1))'(x)| + \cdots + \frac{|(T(1))^{(n)}(x)|}{n!} = 1\}.$$

Therefore, for any $x \in [0, 1]$, |(T(1))(x)| = 1 or |(T(1))(x)| = 0. But since |T(1)| is a continuous function on [0, 1] we have

$$|(T(1))(x)| \equiv 0$$
 or $|(T(1))(x)| \equiv 1$.

Now $|(T(1))(x)| \equiv 0$ implies that $(T(1))(x) \equiv (T(1))'(x) \equiv (T(1))''(x) \equiv \cdots \equiv (T(1))^{(n)}(x) \equiv 0$ which contradicts (4).

Hence $|(T(1))(x)| \equiv 1$ from which it follows that $(T(1))'(x) \equiv 0$ and hence

$$T(1) \equiv e^{i\lambda}$$
 for some fixed $\lambda \in [-\pi, \pi]$.

We denote $T^*(L_{(x,\theta_1,\dots,\theta_n)})$ by

$$e^{\imath\lambda(x,\theta_1,\cdots,\theta_n)}L_{(y_{(x|\theta_1,\cdots,\theta_n)},\psi_{1(x|\theta_1,\cdots,\theta_n)},\cdots,\psi_{n(x|\theta_1,\cdots,\theta_n)})} \cdot \\$$

The above Lemma 2.3, shows that $\lambda(x, \theta_1, \dots, \theta_n) \equiv \lambda$ for all $(\theta_1, \dots, \theta_n) \in [-\pi, \pi]$. For

$$(T^*(L_{(x,\theta_1,\dots,\theta_n)}))(1)=e^{i\lambda(x,\theta_1,\dots,\theta_n)}L_{(y_{(x,\theta_1},\dots,\theta_n)},\psi_{1(x,\theta_1},\dots,\theta_n)}\cdots\psi_{n(x,\theta_1,\dots,\theta_n)})(1)\text{ ,}$$

so that $L_{(x,\theta_1,\dots,\theta_n)}(T(1)) = e^{i\lambda(x,\theta_1,\dots,\theta_n)}$ and thus $L_{(x,\theta_1,\dots,\theta_n)}(e^{i\lambda}) = e^{i\lambda(x,\theta_1,\dots,\theta_n)}$. Hence $\lambda(x,\theta_1,\dots,\theta_n) \equiv \lambda$.

Lemma 2.4. If
$$x \in [0, 1]$$
, then for all $(\theta_1, \dots, \theta_n) \in [-\pi, \pi]^n$,
$$y_{(x,\theta_1,\dots,\theta_n)} = y_{(x,0,\dots,0)}.$$

Proof. For fixed $x \in [0, 1]$, we consider the map $\rho: [-\pi, \pi]^n \to [0, 1]$ given by

$$\rho(\theta_1, \theta_2, \dots, \theta_n) = y_{(x,\theta_1,\dots,\theta_n)}$$
.

It is easy to verify that this mapping is continuous. Hence the image of $[-\pi,\pi]^n$ in [0,1] is a connected subset of [0,1]. It is, in fact, a singleton. For otherwise we could find g in $C^{(n)}$ such that $g\equiv g'\equiv\cdots\equiv g^{(n)}\equiv 0$ on an open subinterval $I\subset \rho([-\pi,\pi]^n)$ while for some $y_{(x,\varphi_1,\cdots,\varphi_n)}\notin I$,

$$\left|g(y_{(x,\varphi_1,\ldots,\varphi_n)})\right. + e^{i\psi_{1(x}\varphi_1,\ldots,\varphi_n)}g'(y_{(x,\varphi_1,\ldots,\varphi_n)})$$

$$egin{aligned} &+ e^{i\psi_{2}}{}_{(x,arphi_{1},...,arphi_{n})} \cdot rac{1}{2!} g''(y_{(x,arphi_{1},...,arphi_{n})}) + \cdots \ &+ e^{i\psi_{(n-1)}}{}_{(x,arphi_{1},...,arphi_{n})} \cdot rac{1}{(n-1)!} g^{(n-1)}(y_{(x,arphi_{1},...,arphi_{n})}) igg| \ &< igg| rac{1}{n!} g^{(n)}(y_{(x,arphi_{1},...,arphi_{n})}) igg| \ . \end{aligned}$$

For instance, one may take

$$g(y) = egin{cases} 0 & y \leq y_1 \ (y-y_1)^{(n+1)} & y > y_1 \end{cases}$$

where y_1 is least upper bound of I and $y_{(x,\varphi_1,\ldots,\varphi_n)}$ sufficiently near to y_1 . Thus for an infinite number of $(\theta_1,\theta_2,\ldots,\theta_n)\in[-\pi,\pi]^n$ with $y_{(x,\theta_1,\ldots,\theta_n)}\in I$,

$$\begin{split} L_{(x,\theta_1,\dots,\theta_n)}(T(g)) &= T^*L_{(x,\theta_1,\dots,\theta_n)}(g) \\ &= e^{i\lambda}L_{(y_{(x,\theta_1,\dots,\theta_n)},\psi_{1(x,\theta_1,\dots,\theta_n)},\dots,\psi_{n_{(x,\theta_1,\dots,\theta_n)}})}(g) \\ &= 0 \end{split}$$

while

$$\begin{split} L_{(x,\varphi_1,\dots,\varphi_n)}(T(g)) \\ &= e^{i\lambda} L_{(y_{(x,\varphi_1,\dots,\varphi_n)},\psi_{1(x,\varphi_1,\dots,\varphi_n)},\dots,\psi_{n(x,\varphi_1,\dots,\varphi_n)})}(g) \neq 0 \ . \end{split}$$

Since ρ is continuous, $\rho^{-1}(I)$ is open in $[-\pi, \pi]^n$ and therefore for each $i = 1, 2, \dots, n$ there exist an infinite number of θ_i 's such that

$$(5) L_{(x,\theta_1,\dots,\theta_n)}(T(g)) = 0 \text{while} L_{(x,\varphi_1,\dots,\varphi_n)}(T(g)) \neq 0.$$

Therefore $(T(g))(x) + e^{i\theta_1}(T(g))'(x) + \cdots + (e^{i\theta_n}/n!)(T(g))^{(n)}(x) = 0.$

For any j with $1 \leq j \leq n$, by keeping θ_i constant for $i \neq j$ and varying θ_j we can see that $(T(g))^{(j)}(x) = 0$. Thus $L_{(x,\varphi_1,\ldots,\varphi_n)}(T(g)) = 0$ which contradicts (5).

Hence $y_{(x,\theta_1,\ldots,\theta_n)}=y_{(x,0,\ldots,0)}$ for all $(\theta_1,\ldots,\theta_n)\in [-\pi,\pi]^n$.

Finally, we define a point map τ of [0, 1] to [0, 1] by

$$\tau(x) = y_{(x,0,\dots,0)}.$$

Consideration of $(T^{-1})^*$ shows that τ is onto, and, applying Lemma 2.4, one-one.

Theorem 2.5. Let T be an isometry of $C^{(n)}$. Then, for $f \in C^{(n)}$,

$$(T(f))(x) = e^{i\lambda} f(\tau(x))$$

with $e^{i\lambda} = T(1)$. Moreover, τ is one of the two functions F, 1 - F where F is the identity mapping of [0, 1] onto itself.

Proof. Given $x \in [0, 1]$ and $\theta \in [-\pi, \pi]$, consider the function g of the Proposition 1.1 constructed for $(x, \theta, \dots, \theta)$. Clearly, g does not depend on θ ; g(x) = 0; $g'(x), g''(x), \dots, g^{(n)}(x)$ are positive reals and $\sum_{r=1}^{n} (g^{(r)}(x)/r!) > \sum_{r=0}^{n} (|g^{(r)}(y)|/r!)$ for all $y \in [0, 1]$, $y \neq x$. Therefore,

$$egin{aligned} ||\,g\,|| &= g'(x) + rac{1}{2!}g''(x) + \cdots + rac{1}{n\,!}g^{(n)}(x) \ &= e^{-i heta}L_{(x, heta,\dots, heta)}(g) \ &= e^{-i heta}T^*L_{(x, heta,\dots, heta)}(T^{-1}(g)) \ &= e^{i(\lambda- heta)}L_{(au(x),\psi_{1}(x, heta,\dots, heta),\dots,\psi_{n}(x, heta,\dots, heta))}(T^{-1}(g)) \;. \end{aligned}$$

Thus we have for all $\theta \in [-\pi, \pi]$

$$(6) egin{aligned} ||\,g\,|| &= e^{i(\lambda- heta)}[(T^{-1}(g))(au(x)) \,+\, e^{i\psi_{1}(x\,\, heta,\,\cdots,\, heta)}(T^{-1}(g))'(au(x)) \ &+\cdots \,+\, rac{1}{n!}e^{i\psi_{n}}{}_{(x\,\, heta,\,\cdots\,\, heta)}(T^{-1}(g))^{(n)}(au(x))] \;. \end{aligned}$$

Since

$$egin{aligned} ||\,g\,|| &= ||\,T^{-1}\!(g)\,|| \ &= \sup_{y\,\in\, [0,\,1]} \sum_{r=0}^n rac{|\,(T^{-1}\!(g))^{(r)}\!(y)\,|}{r\,!} \; ext{,} \end{aligned}$$

by (6) we have

$$||g|| = |(T^{-1}(g))(\tau(x))| + |(T^{-1}(g))'(\tau(x))| + \cdots + \frac{1}{n!}|(T^{-1}(g))^{(n)}(\tau(x))|.$$

Again since g is independent of θ ,

$$(T^{-1}(g))(au(x)), (T^{-1}(g))'(au(x)), \cdots, (T^{-1}(g))^{(n)}(au(x))$$

are independent of θ but

$$A(heta) = \left\{ e^{i\psi_{1}(x \mid heta, \cdots, heta)} (T^{-1}(g))'(au(x)) + \cdots + rac{1}{n!} e^{i\psi_{n}(x, heta, \cdots, heta)} (T^{-1}(g))^{(n)} (au(x))
ight\}$$

depends on θ for otherwise (6) cannot be true. In other words, $A(\theta)$ is not constant. Now by (6) $A(\theta)$ must be on a circle with center as $\{-(T^{-1}(g))(\tau(x))\}$ and radius equal to ||g||.

On the other hand $A(\theta)$ must be on or within the circle with center as origin and radius equal to $\rho = \sum_{r=1}^{n} (|(T^{-1}(g))^{(r)}(x)|/r!) = ||g|| - |(T^{-1}(g))(\tau(x))|$. This implies that $(T^{-1}(g))(\tau(x)) = 0$ for otherwise $A(\theta)$ has to be a constant (see Figure 2.1) which is false.

FIGURE 2.1.

Therefore, we have

$$rg e^{i\psi_{1_{\{x,\, heta,\,\dots,\, heta\}}}}(T^{-1}(g))'(au(x)) = rg \cdot rac{1}{2!} e^{i\psi_{2(x,\, heta,\,\dots,\, heta)}}(T^{-1}(g))''(au(x)) = \cdots \ = rg \cdot rac{1}{n!} e^{i\psi_{n_{\{x,\, heta,\,\dots,\, heta\}}}}(T^{-1}(g))^{(n)}(au(x)) \; .$$

Thus for all $\theta \in [-\pi, \pi]$, $1 \le k \le n$, $1 \le j \le n$

$$\psi_{k(x,\theta,...,\theta)} - \psi_{j(x,\theta,...,\theta)} = \psi_{k(x,0,...,0)} - \psi_{j(x,0,...,0)}$$
.

Also by (6)

$$egin{aligned} ||g|| &= e^{i(\lambda- heta)} iggl[\sum_{k=1}^n rac{1}{k!} e^{i\psi_k(x, heta,\cdots, heta)} (T^{-1}(g))^{(k)} (au(x)) iggr] \ &= e^{i(\lambda- heta+\psi_j(x, heta,\cdots, heta))} iggl[\sum_{k=1}^n rac{1}{k!} e^{i(\psi_k(x, heta,\cdots, heta)-\psi_j(x, heta,\cdots, heta))} (T^{-1}(g))^{(k)} (au(x)) iggr] \ &= e^{i(\lambda- heta+\psi_j(x, heta,\cdots, heta))} iggl[\sum_{k=1}^n rac{1}{k!} e^{i(\psi_k(x, heta,\cdots, heta)-\psi_j(x, heta,\cdots, heta))} (T^{-1}(g))^{(k)} (au(x)) iggr] \,. \end{aligned}$$

Since the left hand side is independent of θ , we have

$$\lambda - \theta + \psi_{j(x,\theta,\dots,\theta)} = \lambda + \psi_{j(x,0,\dots,0)}$$
.

Hence for all $\theta \in [-\pi, \pi]$, $1 \le j \le n$

$$\psi_{j(x,\theta,\ldots,\theta)}=\psi_{j(x,0,\ldots,0)}+\theta$$
.

Now let f be any element of $C^{(n)}$ such that f(x)=0 then for all $\theta\in[-\pi,\pi]$

$$f'(x) + \frac{1}{2!}f''(x) + \cdots + \frac{1}{n!}f^{(n)}(x)$$

$$= e^{-i\theta} L_{(x,\theta,\dots,\theta)}(f)$$

$$= e^{-i\theta} T^* L_{(x,\theta,\dots,\theta)}(T^{-1}(f))$$

$$= e^{i(\lambda-\theta)} L_{(\tau(x),\psi_{1}(x,\theta,\dots,\theta)},\dots\psi_{n}(x,\theta,\dots,\theta))}(T^{-1}(f))$$

$$= e^{i(\lambda-\theta)} \Big[(T^{-1}(f))(\tau(x)) + \sum_{k=1}^{n} \frac{1}{k!} e^{i\psi_{k}(x,\theta,\dots,\theta)}(T^{-1}(f))^{(k)}(\tau(x)) \Big]$$

$$= e^{i\lambda} \Big[e^{-i\theta} (T^{-1}(f))(\tau(x)) + \sum_{k=1}^{n} \frac{1}{k!} e^{i\psi_{k}(x,\theta,\dots,\theta)}(T^{-1}(f))^{(k)}(\tau(x)) \Big]$$

so that $(T^{-1}(f))(\tau(x))=0$. For an arbitrary $f\in C^{(n)}$, define $g(y)=f(y)-f(x),\ y\in [0,1]$ then g(x)=0 and so

$$\begin{split} 0 &= (T^{\scriptscriptstyle -1}(g))(\tau(x)) = (T^{\scriptscriptstyle -1}(f))(\tau(x)) - f(x)(T^{\scriptscriptstyle -1}(1))(\tau(x)) \\ &= (T^{\scriptscriptstyle -1}(f))(\tau(x)) - e^{-i\lambda}f(x) \;. \end{split}$$

Thus, replacing f by T(f), it follows that for all $x \in [0, 1]$ and $f \in C^{(n)}$,

$$(T(f))(x) = e^{i\lambda} f(\tau(x)) .$$

Now if, for $0 \le r \le n-1$, F_r is the mapping of [0, 1] onto itself given by $F_r(x) = x^{r+1}$ (where F_0 is the identity map F), we have

$$(T(F_r))(x) = e^{i\lambda}(\tau(x))^{r+1} = e^{i\lambda}(\tau^{r+1})(x), \quad 0 \le r \le n-1.$$

Therefore $(T(F_r))(x) = (T(F_{r-1}))(x) \cdot \tau(x)$. Now

$$\begin{split} \sum_{k=0}^n \frac{1}{k!} (T(F_r))^{(k)}(x) &= L_{(x,0,\cdots,0)}(T(F_r)) \\ &= T^* L_{(x,0,\cdots,0)}(F_r) \\ &= e^{i\lambda} L_{(\tau(x),\psi_{1(x,0,\cdots,0)},\cdots,\psi_{n(x,0,\cdots,0)})}(F_r) \\ &= e^{i\lambda} \bigg[F_r(\tau(x)) + \sum_{j=1}^n \frac{1}{j!} e^{i\psi_{j}(x,0,\cdots,0)} F_r^{(j)}(\tau(x)) \bigg] \\ &= e^{i\lambda} \bigg[(\tau(x))^{r+1} + \sum_{j=1}^{r+1} e^{i\psi_{j}(x,0,\cdots,0)} C_j^{r+1}(\tau(x))^{r+1-j} \bigg] \,. \end{split}$$

Thus for $0 \le r \le n-1$

$$(7) \qquad \sum_{k=1}^{n} \frac{1}{k!} (T(F_r))^{(k)}(x) = e^{i\lambda} \sum_{j=1}^{r+1} e^{i\psi_{j}(x)} e^{i(x-1)} C_j^{r+1}(\tau(x))^{r+1-j} .$$

Taking r=0 in (7), we get

$$\sum_{k=1}^{n} \frac{1}{k!} (T(F))^{(k)}(x) = e^{i(\lambda + \psi_{1}(x,0,\dots,0))}.$$

Taking r=1, we get

$$\sum_{r=1}^n rac{1}{k!} \left(T(F_1)
ight)^{(k)}(x) = C_1^2(au(x)) e^{i(\lambda + \psi_1(x,0,\cdots,0))} \, + \, e^{i(\lambda + \psi_2(x,0,\cdots,0))} \; .$$

Hence

$$egin{aligned} e^{i(\lambda+\psi_{2(x,0,\cdots,0)})} \ &= \sum\limits_{k=1}^n rac{1}{k!} (T(F_1))^{(k)}(x) - C_1^2(au(x)) \sum\limits_{k=1}^n rac{1}{k!} (T(F))^{(k)}(x) \;. \end{aligned}$$

Thus by successive iterations we get for $1 \le r \le n$

$$egin{aligned} e^{i(\lambda+\psi_{T}(x,0,\cdots,0))} &= \sum\limits_{k=1}^{n}rac{1}{k\,!}\left\{\sum\limits_{j=1}^{r}(-1)^{j-1}C_{j-1}^{r}(T(F_{r-j}))^{(k)}(x)(au(x))^{j-1}
ight\} \ &= e^{i\lambda}\sum\limits_{k=1}^{n}rac{1}{k\,!}\left\{\sum\limits_{j=1}^{r}(-1)^{j-1}C_{j-1}^{r}(au^{r-j+1})^{(k)}(x)(au(x))^{j-1}
ight\}\;. \end{aligned}$$

Therefore,

$$e^{i\psi_{n(x,0,\cdots,0)}} = \sum_{k=1}^{n} \frac{1}{k!} \left\{ \sum_{j=1}^{n} (-1)^{j-1} C_{j-1}^{n} (\tau^{n-j+1})^{(k)} (x) (\tau(x))^{j-1} \right\} .$$

Applying Proposition 1.2 to the function τ which clearly belongs to $C^{(n)}$ we get

$$e^{i\psi_{n(x,0,\cdots,0)}} = \{\tau'(x)\}^n$$
 .

Thus $\tau'(x)$ is an *n*th root of a complex number of absolute value one. But since $\tau'(x)$ is real valued and continuous we have $\tau'(x) \equiv 1$ or $\tau'(x) \equiv -1$ and, therefore, $\tau(x) \equiv F$ or 1 - F.

REFERENCES

- 1. M. Cambern, Isometries of certain Banach algebras, Studia Mathematica T., XXV, (1965), 217-225.
- 2. N. V. Rao and A. K. Roy, Linear isometries of some function spaces, Pacific J. Math., 38 (1971), 177-192.

Received February 2, 1979 and in revised form April 27, 1979.

University of California Santa Barbara, CA 93106

Current address: M. S. University

Baroda-390 002

India