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ISOMETRIES OF C®][0, 1]

V. D. PATHAK

By C™[0, 1] (henceforth denoted by C”) we denote the
Banach algebra of complex valued » times continuously differ-
entiable functions on [0, 1] with norm given by

171 =sup (3 (L) gor sec.

r=0 7!

By an isometry of C™ we mean a norm-preserving linear
map of C™ onto itself.

The purpose of this article is to describe the isometries
of C™ for any positive integer n. More precisely, we show
that any isometry of C™ is induced by a point map of the
interval [0, 1] onto itself.

The isometries of C (with the same norm as above) are deter-
mined by M. Cambern [1]. N. V. Rao and A. K. Roy [2] have also
determined the isometries of C® with norm of feCY given by
Nl =1Flle + 11 f 1l and even for more general norms.

In the proof we shall follow the techniques of [1].

1. Let W denote the compact space [0, 1] X [—x, 7]*. We prove
the following propositions.

ProrosiTION 1.1. Given (x,0, ---, 0,) € W, then there exists h e
C™ such that

o [T (@)] S R W)]
% 7] = g&‘) 7!

for yel0, 1], vy + =, with |h(x)| =h(@x) > 0, |k (x)] = "h'(x) > 0,
B (x)] = e%h'"(x) > 0, ---, |h"™(x)| = €“h™(x) > 0.

Proof. Let f, be the real valued, nonnegative continuous function
on [0, 1] defined as follows

. o o — — 1
0 (y —2) = D)
1+ 2m)(y— @)~ < (y— 2) S0
2(n!
fo(y)=‘< 1
1—2(n!)(y—w)---0<(y—w)§2(m)

2(n!)
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For 1< » <n define f.(y) as f.(y) = Syfr_l(t)dt. It can be easily
verified that for 1 < » < n, f.(y) is as follows:

_ 5 1 -7 < _—1
ZGroiemy e YT Y= 5wy

(y—2) 20Dy —o " 1 _
T oD 2n1) -—m=0

f(y) = 4 (y — a) _ 2(n!)(y — 2)"+ o 0<(y— )= 1

71 (o + D)1 Y=g

$ (=1)t (y—2— 1 _

=g + DM@ (r— P! 2(n!) <.

Now let

_ 1 & (0,0 (y — ) 10,07
o(y) = <—17,-[2 ool =2 |+ evmr .

Clearly, for 1 <7 < m, f\” = f,_,. Therefore gcC™ and

() = 1 K 01-0; Wy — @)™ 01—02) <r<'wn
g (y)—(zn_l)que G L4 fo(y) for 1 <7
Thus
g(x) =0, g (x) = —(?—%B—!e“"l—”r’ forl<r=n-1,

and g (x) = €=’ Therefore

n (r 7—1
Zlg’(x)lz 1 11

= @n— 1! =1 onl
Now consider >.", ((g“(y)|/»!) for y€[0, 1] and y + =.
Case 1. Let (y — a) < (—1/2(n))).

Slgtwl o 1 Sy —ef, 1 @1

(1) B 1 S @m—Inm g1 @e—D A7l
(n l)ly__xl ‘ﬂ—]:— (n--r) ly__x!(n—r—j)
AR S R e

For m = 1, 2, it can be easily verified that right hand side of (1) is
less than 337, (g™ (x)|/»!). When n =3, denoting (n!/(n — 7)!j!) by
Cr, (1) gives



ISOMETRIES OF C™[0,1] 213

gl . 1 e 1 1 -1
< —_— +
2 rl T @u—11 &5 @G- A
l (n—1) 1 (n—1) 1 Ca_z——r—l 1 }

2(nl) = ) A {J'(j + D —r =11 7 @nl)
Now

1 S'n—-1) - n—1) & 1 < 2(n — 1) < 1
@n—1D!7= ] T @2u-—1)1& 270 T 2 — 1) 4(n!)
for all n=3.

Thus we have

1 %m—1)_ 1

(2) for n =3, e D12 eIk
Also
(n—1) 1 (n—r) 1 7}_7_1 1
2(n! )20 7l 2 {y(j +D(n —r — 1)10“ (2(4@!))7‘1}
1 (n—1) 1 1 (n—7) P 1
= 2(n!) = > rl 2(n — r — 1)v{Z G (2(n!))f"1}
. 1 l n—1 1 (n—1—7)
T em) 2m — 1)1 ;) Cr < 2(n!)>
1 n—1 9 n—1
Kl i 2(n!)) i 1} <Z> 81 1
=T 22 — D1 =2@m))m—1)1 < 64 " 2l
Thus
1 o= 1 o= 1 (-1, 1
5 2nl) = ! ; {j(j +Dn—r—101 (2(n!))j“}
4 n!

By (2) and (3) it follows immediately that for all y €[0, 1] and y +

5’;! 9" W] éi g7 @)

Case 2. Let —(1/2(n!])) <y —2) <0

n ]g(r)(y)[ - 1 (n—1) I?/ _ xli n 1 (n—l)i (n—l)]y _ xlj—r
=) T 2n—D1 = J! (2n — 1)! Z‘l 7! {a’w (3 — ! }
A= 2Dy — 2"

= !l (n— 7)) (m — r + 1))
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= (2n1_ 1! (:) (—1):'(;/! —a)y (an_ 5 ”2;1%’
v m (:}}T {:: (_I)Z;riyr—)! 2}
+ % (—i)!n—r {(Z/%——x;); N 2(7(2 i - f)l)_'ﬁ}
- m(n:% + % + (g’(y _ x){?(‘(z%%ﬁ

CLr L, DDty (1)

-

sl(n —s)!  sl(m—s+1) = slrl
+(y_x)n{(—nl’)” . 2(%1)(—1)”‘1} L Dy — 2

Il

n! (» + 1)!
_w 97@| | Sy — @) 1
rz='o 7! * sz="1 s! {(Zn — 1)
(n—s)i— 2(%!)
rz=1 7! (n—s—l—l)!I>

(=D"y — )" _ (=D"(y — )"+
+ py {1 — 2@} + D1
< 3 lg7@)
=0 7’!

since all the other terms are negative. Verification in cases when
0<(y—x)=(1/2(n!)) and (1/2(n!)) < (y — ) is similar. From this
it follows that the function k € C™ defined by h(y) = 1 + ¢ *%1g(y) has
the desired properties.

ProposiTION 1.2. For any feC™

n ) ) ) 0 if 1=k<n
__1 ]-IC?‘l n—j+1) (k) i-1

S DG = s e

where ()% (x) means the kth derivative of f* at x.

Proof. We prove this proposition by induction on . Forn =1
it is obvious. Let it be true for » = . Then we have

r

S (~DCL Y@ @) =0, for 1=k<r,

i=1

and

3 (— DG ) P ) = @)

Now let n =2+ 1and k= + 1.
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Since (f™9)(w) = (r — j + 2) () (@)f'(x)

(r+1

Z.)( =1 CIR(f ) T (@) (f (@)

= S (~pCH @Yo - + 23 Gl @) @)
= 5 (=17 + DO @Y7 @) @)

+ S (=1 + DO @) G @) @)
= r + D{E (DT CLE @) (@) @)

T+ D 3 (@O e @) @)
=+ DIF@Y + (r + DS GO @)

S (DO @) @)

+ (0 + D E (~DTCE @) (@)
= (r + DIF@)™

Now let w = » + 1 and % < (» + 1). Then
S~ @S @)

= S~ DO~ 2 @) HE O @) @)
= (r + 1) 3 O @) 3 (- DG (F @)= (@)

0+ D S (DO @) @)
=0.

Hence the proposition follows by mathematical induction.

2. If X is any compact Hausdorff space, we will denote by
C(X) the Banach algebra of continuous complex funections defined on
X with norm || ||, determined by ||g|l. = sup,.x |g@)| for g € C(X).

Given feC™, we define feC(W) by
Fia, 0, -0, 00 = f@) + ef'@) + S17@) + o+ S0

(,0, ---,0,)eW.

The following lemma is then obvious.
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LeMMA 2.1. The mapping f — f establishes a linear and norm-
preserving correspondence between C™ and the closed subspace S of

C(W), S = {f: feC™).

Next given (2, 8, ---, 6,)e W, we define a continuous linear
functional L(z, 6, ---, 8,) on C™ by

L(x,01,---,f9n)(f) = fN(x’ ﬁu Tty 9%) ’ f € C(n) .
In view of Proposition 1.1 the proof of the following lemma is

analogous to the proof of Lemma 1.2 in [1].

LEMMA 2.2. An element of C™" is an extreme point of the unit
ball U* of C™" if and only vf f* is of the form €"Li,,,,...,,) for some
7ne [_ﬂ., 7[]’ (x, aly Ty 0%) ew.

We now suppose that 7 is an isometry of C™. The adjoint T*
is then an isometry of C"™’, and thus carries extreme points of U*
onto itself.

LEMMA 2.3. The image by T of the constant function 1 of C™
18 & constant function ¢, Nel|—=, x].

Proof. For each extreme point e”L,,,,...,s,, of U¥,
l(ei”L(x,ol,--.,m)(l)] =1.

Thus for each extreme point |T%(e"L,,...s,)(1)| = 1. Therefore,
| Lits,oy,0,0(T(L))| = 1. Thus for a fixed x, [(T(1))(z) + e”«(T(1))' (%) +
cos (@0 )(TL)™(x)| =1 for all 4, ---, 0, c[—=x, w]*. Choosing
0, 0, ---,0,, so that

arg(T()(@) = axg(e”(TW) (@) = -+ = arg(S2(TW)" (@)
we get
(TW)@)| + [(TOY@)] + - + IO~y

Again by choosing 4, - --, 4,, so that
arg((T())(x)) = w + arg(e’(T(Q))'(x)) = + -+ = 7 + arg(e’~(T(1))™(»))

we get

(W)@ — (oY@ + -+ TDE@R g

n!

Thus either
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llran@| =1 and [(TQY@)] + - + '—‘T(l%x—” = o}

or

(4) {$(T(1))(x)1 =0 and [(TQ)Y@)| +---+ I(T(l)?i‘:”(w)l _ 1} .

Therefore, for any x €0, 1], |(T(L))(x)| =1 or |[(T(1L)x)] =0. But
since |T(1)] is a continuous function on [0, 1] we have

(TA)(@)| =0 or [(TAN@)|=1.

Now [(T(L)(@)| = 0 implies that (7(1))(x) = (TQ))'(x) = (T'(1))"(x) =
.- = (TA)™(x) = 0 which contradicts (4).

Hence [(T(1))(z)| =1 from which it follows that (7T(1))'(x) =0
and hence

T@A) = ¢* for some fixed ne[—7, 7].

We denote T*(L,0,,...,0,0) DY

12(2,01,%+,0p)
€ ’ L(?/(z 0y - 00Y1@ 0y - 00V nte 0y «r 0,))

The above Lemma 2.3, shows that \(«,4,, ---,8,)= X\ for all@@, ---,0,) €
[—7, #]. For

(T*(L(m,/)lv'",ﬂn)))(l) = e“(x’”l’”')0%)L(y(a¢,01,...,0n):"ﬁl(1,01,~..,(}n)""/"n(x,01 :::: 07,))(1) ’
so that Li,g,,....0n(T1) =€ and thus Li,g,,... s, (") = €*#00 00,
Hence \(z, 6, ---,0,) = \.

LEmMMA 2.4. If 2¢€]0, 1], then for all @, ---,0,) c[—=x, 7]*,
Yiz,0,:00) = Yiz,0,0--,0) -
Proof. For fixed x €[0, 1], we consider the map p: [—=, x]* —[0, 1]
given by ’
p(ely 02, ] 07») = y(z,ﬂl,n-,ﬂ%) .

It is easy to verify that this mapping is continuous. Hence the
image of [—=, z]" in [0, 1] is a connected subset of [0, 1]. It is, in
fact, a singleton. For otherwise we could find ¢ in C"™ such that
g=g = ... =¢"™ =0 on an open subinterval Ic o(—=, x]*) while
for some Yu,p,,.0,) & 1,

I Y or0p,er09)) T €V 000G (Y o o)
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1

T o+ 5l W)
+ eV inn@ ey ————1——9("4“@/(479 om)
(n — 1)! e

1 .

< l—g( )(y(x,gﬁl,-n,{on))‘ .
n!

For instance, one may take
Y=Y

0
9(y) = {
¥y —y)""" y>uy

where y, is least upper bound of I and yu,.,,...., sufficiently near
to y¥,. Thus for an infinite number of 4,6, ---, 6,) e[—=, 7]* with
y(x’gl’...’ﬂn) € I,

L(z,el ,,,,, 0,,)(T(g)) = T*L(x,el,---,an)(g)

— il
=e L(y(:r,ﬂl,'-‘ﬂn):3‘,’1(.1-,/}1,..-,0%)-"’fo’ﬂ(x,ol.-u.Bn))(g)

while
L(x,¢1,~-~,¢n)(T(g))

— iz
=€ L<y<x,¢\.~--,<.an>’“f"x(x,,cl ,,,,, ¢n>x"‘:’r”n(x,¢1,‘~~.¢ﬂ>)(g) #0.

Since p is continuous, o7%(I) is open in [—=, 7]* and therefore for
each 7 =1,2, ..., n there exist an infinite number of 6,’s such that

(5) Loy n)(T(9)) = 0 while  Lp,.....0(T(9)) # 0 .

Therefore (T(9))(@) + e(T(9))' (@) + -+ + (e”[n!)(T(9))™(x) = 0.

For any j with 1 < 5 < n, by keeping 6, constant for ¢ = j and
varying 6; we can see that (T(g))Y'(x) = 0. Thus L,,...,(T(9)) =0
which contradicts (5).

Hence ¥,o,,--0,) = Yewo,o0 for all (@, ---, 0,)e[—m, x|

Finally, we define a point map = of [0, 1] to [0, 1] by

(X) = Yis0,00 -

Consideration of (7-')* shows that ¢ is onto, and, applying

Lemma 2.4, one-one.

THEOREM 2.5. Let T be an isometry of C™. Then, for feC™,
(T(f)(x) = e f(z(x))

with e* = T(1). Moreover, T is one of the two functions F,1— F
where F is the identity mapping of [0, 1] onto itself.
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Proof. Given z€[0,1] and 6 €[—m, x], consider the function g¢
of the Proposition 1.1 constructed for (z, 6, --., 4). Clearly, g does
not depend on 6; g(x) = 0; ¢'(x), ¢"(x), --., 9" (x) are positive reals
and 33, (97 @)/r!) > S (g @) /1) for all y €0, 1], y = «. There-
fore,

gl = ¢'(x) + —1‘9"(01:) 4. +ig<n>(x)
21 n)
= e ""Lio,...0(9)
= e_wT*L(x,/),...,y)(T_l(g))

= em_”)Luwn/ﬁu 0,-..‘0)""7%%(1,0,"-,0))(T—l(g)) :

Thus we have for all §e[—r, 7]

lgll = ¢ [T Hg)(x(@)) + Vi v---0(THg)) (z(x))

(6) )
e+ me”””(x o0 o(T7Hg) ™ (z(2))] .

Since

gl = 1T @)l
_ % (T )" ()]
= Sup 2 —‘—""—“——' ’

y€[0,1]r=0 !

by (6) we have
Holl = (T (@)(c@)]| + [(THg) (z@)] + --- +%I(T“1(g))‘”)(f(x))l .

Again since ¢ is independent of 4,

(T ) (z(@), (T7H9) (@), - -+, (T"(g)™(z(x))
are independent of 6 but

1

A40) = {e%” 0o (Tg)) (z(®@) + -+ + —e
n!

Fatee0(Tg) (@)}

depends on 6 for otherwise (6) cannot be true. In other words, A(6)
is not constant. Now by (6) A(f) must be on a circle with center
as {—(T-%(9))(z(x))} and radius equal to ||g]l.

On the other hand A(f) must be on or within the circle with
center as origin and radius equal to o=\, ((T-(g))" () |/r!)=]lg]|—
[(T-%(g))(z(x))|. This implies that (T'(9))(z(x)) = 0 for otherwise
A(f) has to be a constant (see Figure 2.1) which is false.
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A
T~
(T~ (g)(x)
| -
] :
A(0)
Ficure 2.1.
Therefore, we have
arg eVig,...n(T-g))(c(x)) = arg - ?l'-etm,o ..... NT-g))"(z (@) = - - -

- e '%ew”"”"”'-""’(T”‘(g))“"’(f(x)) .

Thus for all de[—m, 7], 1Zk=Zn, 1< n

Yhota, 0,00 — "/’j(z,o,-u,ﬂ) = Yh(z,0,0050 "/"j(z,o,n-,o) .

Also by (6)

loll = -] 3 Lewsenn( (g0 |

=1 k)
— em—o+w(¢,g,...,/;))[zn: _Lembk(x,o ..... =V j(x,0,e-, ,9))(T—l(g))(k)(z-(x))]
=1 k!
= gi=0+9j(,0,--, 0)>I:Z”“ _l_ei(wk(x,o ..... °"W‘””’°'“"°’)(T“’(g))(k)(f(x)):l .
=1 k)

Since the left hand side is independent of #, we have
N—= 0+ Pi,0,0 = N F Vi) -
Hence for all de[—=n,7],1=j7=n
Vit,0,00,0 = Vita,0,00 T 0
Now let f be any element of C™ such that f(x) =0 then for all

oel[—=x, ]

@)+ @) + e+ L)
21 n!
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Il

e_wL(a:,O,-n,U)(f)
e_iHT*L(z,o,---,ﬂ)(T_l(f))

= eww)L(r(z)ﬂlfl(:c,o,...,0),~--1/fn(z,o,...,o))(T_J(f))

= O (T (ela) + 5, esvweson(TH )P (e(a) |

1l

= e T (@) + 3 T TRA A (@) |
so that (7-'(f))(z(x)) = 0. For an arbitrary feC™, define g(y) =
fy) — f(x), y€[0, 1] then g(x) = 0 and so

0 = (T (@) = (T7(fN(e(@)) — f@)T(L)(z(x))
= (T (MN(c@)) — e " f(x) .

Thus, replacing f by 7T(f), it follows that for all xze[0,1] and
feC(%)’

(T(fN(@) = e f(z(x)) .

Now if, for 0 =7 =n — 1, F, is the mapping of [0, 1] onto itself
given by F,.(x) = «"* (where F, is the identity map F), we have

(T(F))(@) = e*(z(x)™* = e’z )@), 0=r=n-—1.
Therefore (T'(F)(x) = (T(F,_))(x)-z(x). Now

3 2 (TEN@) = Lo (TE)

= T*L(x,o,“-,o)(Fr)
— il
- el L(f(x),ﬁﬁl(x,o,...,o),"-,1/‘“,2(/,,;,0 ..... 0))(F'r)

= ¢ F,(e@) + 3 oo o F9 () |
i= g
— eii[(r(x))r+1 . T.Zir:leiw(’”’o ,,,,, D)C}“'I(T(x))”l“’} )
Thus for 0 <r<n-—1

(7) 3 G (TEDN@) = o E ebsevaCi ey

1
k!
Taking » = 0 in (7), we get

ﬁ —1—(T(F))”"(x) = @it P1,0.-0.00)
=1 [l

Taking » = 1, we get
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zi“ —]—clT(T(Fl»(m(x) = C¥(z(x))e!*vio,0) 4+ eI TY2(@,0,04,0)

Hence

ei(Z-H/fz(x,o,...,o))
= 3 L@IFE) @) — CHe@) 3 2 (TF) (@)

Thus by successive iterations we get for 1 <r=<=n

I

i) = 3y S35 (— LG (T(F, ) (@) (e()

ll
g@
|

S (G ) P )@

J=1

Therefore,

oo = 5 LS (C1pocy @ @@y
Applying Proposition 1.2 to the function = which clearly belongs to
C™ we get

ei]&”w’o ..... 0) — {T’(x)}n .

Thus 7'(x) is an nth root of a complex number of absolute value one.
But since 7'(x) is real valued and continuous we have 7'(z) =1
or 7/(x) = —1 and, therefore, z(x) = F or 1 — F.
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