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ON THE THEOREM OF S. KAKUTANI-M. NAGUMO AND
J. L. WALSH FOR THE MEAN VALUE PROPERTY
OF HARMONIC AND COMPLEX POLYNOMIALS

SHIGERU HARUKI

Let K be either the field of complex numbers C or the
field of real numbers K. Let n be a fixed integer >2, and
¢ denote the number exp 2zi¢/n). Let f,f;:C—> K for j=
0,+:+,n. Define 4, and 2, by

Ao, y) = n“LZ_: Sl + (/fy)} — fl),
2w, 9) = 1T fiw + 0) |~ fula)

for all z,y€C. Our main result is the following. If
(n +1) wunknown functions f;:C—>K for 5j=0,1,:---,n
satisfy the quasi mean value property 0Q,(x,y) =0 for all
z,y€C, then (n -+ 1) unknown functions [, satisfy the
difference functional equation 4, f,(x) = 0 for all u,xcC and
for each 5 =20,1,---,n, where the usual difference operator
4, is defined by 4, f(x) = f(x + u) — f(x). By using this result
we prove somewhat stronger results than the theorem of
S. Kakutani-M. Nagumo (Zenkoku, Sigaku Danwakai, 66
(1935), 10-12) and J. L. Walsh (Bull. Amer. Math. Soc., 42
(1936), 923-930) for the mean value property 4,(x,y) =0 of
harmonic and complex polynomials.

1. Introduction. Throughout this note K denotes either the
field of complex numbers C or the field of real numbers R. Let n
be a fixed integer >2, and ¢ denote the number exp (2zi/n). Let
fif:C—K for v=20,1, ---,n. Define 4,(z, y) and 2,(x, ¥) by

Aw, 5 = | S ftw + 09 |~ fw

Q,(x, y) = n"l[g Silw + 0%] — fa(x)

for all z, y € C. A function f: C — K is said to have the mean value
property for polynomials if f satisfies the equation
Az, ) =0 for all =z, yeC,

while, as a generalization of the mean value property, » + 1 func-
tions f,: C — K are said to have the quasi mean value property for
polynomials if f, satisfy the equation

Q,(x,y) =0 for all =z, yeC.
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In 1935 S. Kakutani and M. Nagumo [19], and independently,
in 1936 J. L. Walsh [29] proved the following theorems concerning
the mean value property of harmonic and complex polynomials.

THEOREM A. (Kakutani-Nagumo-Walsh.) If f:C— R 1is con-
tinuous, the mean wvalue property A,(x, y) = 0 holds for all x, yeC
if, and only if, f(x) is a harmomic polynomial of degree at most
n — 1.

THEOREM B. An entire function f satisfies the mean value
property A,(x,y) =0 for all x, yeC if and only if f is given by a
complex polynomial of degree at most n — 1.

The above Theorem A and Theorem B are direct or indirect
motivations for the generalizations and applications of J. Aczél, H.
Haruki, M. A. McKiernan and G. N. Sakovi¢ [2], E. F. Beckenbach
and M. Reade [3], [4], A. K. Bose [5], L. Flatto [7], [8], [9], A.
Friedman and W. Littman [10], A. Garsia [11], H. Haruki [13], [14],
S. Haruki [15], [16], [17], J. H. B. Kemperman and D. Girod [21],
M. A. McKiernan [25], M. O. Reade [27]. For more details of
functional equations of type 4,(z, y) = 0, see M. A. McKiernan [26],
and for the relation to Gauss’ mean value theorem, harmonic functions
and differential equations, see L. Zaleman [30].

The main purpose of this note is to study some more generaliza-
tions of Theorem A and Theorem B from the standpoint of the
theory of finite difference functional equations.

2. P-additive symmetrical mappings, generalized polynomials
and 4"f(x) = 0. In this section we present some notation, defini-
tions for p-additive symmetrical mappings, generalized polynomials
and results of S. Mazur and W. Orlicz [23] for the finite difference
functional equation 47f(x) = 0.

DEFINITION. A mapping @”: C — K is called a homogeneous poly-
nomial of degree p if and only if there exists a p-additive symmetri-
cal mapping @Q,: C? — K; that is, Q,(x,, ---, ®,) = Q,(%;, -+, x;,) for
all (x,, -+, z,) €C and for all permutations (4, - - -, 7,) of the sequence
@, ---, p)and @, is an additive function in each z,, 1 < ¢ < p, such
that Q*(x) = Q,(x, ---, ) for all xeC. We say that @, is associated
with Q” or that @, generates Q”.

We agree that for » = 0 a homogeneous polynomial of degree
zero is a constant. If p is a fixed positive integer, then z,:C— C?
will denote the diagonal mapping ‘given by z,(x) = (x, ---, x). It is
clear from the relation Q°(x) = Q,(x, ---, x) that Q*: C — K is the
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composition of two mappings

¢ 0% K and @ =Q,ox,.

If @*: C — K is a homogeneous polynomial of degree p, one obtains
Q*(\vr) = AQ?(x) for any rational number A. Indeed, the relation
Qp = Qp y1€1dS Q"()\,x) = Qp()"x; Tty >"x) = )"pr(xy Tty x) = KPQP((E) for
all x e C and for any rational number .

DEFINITION. Let B8 be any nonnegative integer. If f:C— K is
a finite sum f=@Q + Q' + --- + @° of homogeneous polynomials,
then f is called a generalized polynomial of degree at most g.

For f:C— K and for ye€C we define the usual difference
operator 4, by 4,f(x) = flx + y) — f(x). For y,€C, :=1,2, ---, n,
we inductively define the nth order difference operator 4y, ..., by

Loy f@) = (4372, )4, f@) .

Notice that the ring of operators generated by this family of
operators is commutative and distributive.

The following general theorem of S. Mazur and W. Orlicz [23]
in the theory of finite difference functional equations plays a funda-
mental role in our study.

Fundamental theorem. Let M, N be fixed integers = 0. Let
X be an Abelian additive semigroup with unit element 0 and Iz =
-+ 2+ --- + 2 for integer I >0, xe X, and let F be an Abelian
group and ly=y+y+ ---+y for integer 1 >0, yeF. Let
f: X— F. The following three statements are equivalent if MY = 0
in F%:

(@) 47+'f(x) =0 for all z, ye X,

(b) 477, f(@) =0 for all @, ¥, -+, Yy, € X,

(e) f is a generalized polynomial of degree at most N, that is,
f@) =@ + Q) + --- + Q%) for all xe X, where Q*: X — F for
p=20,1, ---, N are homogeneous polynomials.

Note that the above Fundamental theorem clearly holds for the
case X =C and F = K.

Notation. We denote Q(x) = @, ,(x, ---,x) for v =0,1, ---, n,
where @?: C — K are homogeneous polynomials of degree p for v =
0,1, ---, n.

Notation. Let @,_,,.(x; y) denote the value of Q,(x, ---, z,) for
r,=2,1=1---,m—7r and 2, =y, i=n—2r+1, ---, n. In par-
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ticular Q.. (¥; ) = Qu.o(®; ¥) = Q"().

3. The quasi mean value property £2,(«,y) =0. Our first
result is the following:

THEOREM 3.1. If n + 1 unknown functions f,:C—K for v =
0,1, ---, n satisfy the quasi mean value property 2,(x,y) =0 for
all x, yeC, then there exist genmeralized polynomials of degree at
most n — 1 such that

S@) =Q + Q@) + - + Q)

for all x€C and for each v =0,1, ---, n.

The proof of Theorem 3.1 is based on the Lemma 3.1 below.
Let G and H be additive Abelian groups. Let S be any field and
G, H be a unital S-modules. Let f: G — H satisfy the equation

Zib‘.%f(x—kaiy)zo for all x,ye@G,

where n > 2 is a given integer, v, # 0, a;, # 0(=a,) for i = 0,1, ---, n
are fixed elements in S and «; # «, for j = k. The above equation
is a generalization of the difference functional equation (ef. J. Aczél
[1], D. Z. Djokovi¢ [6], D. Girod and J. H. B. Kemperman [12],
M. H. Ingraham [18], J. H. B. Kemperman [20], [22], G. van der
Lijn [28], S. Mazur and W. Orlicz [23], M. A. McKiernan [24], [26])

"

)

Lf@) =0, e, gy—my4( )ﬂx+iy):0
for all z, ye G. More generally we have

LemMmA 3.1. Let fG— H for 1 =0,1, ---, n satisfy the equa-
tion

(3.1) S tay) =0 foral z,yeG,
1=0
where a; = 0 for i = 0,1, -+, n are fixed elements in S and a; + a,

for 7% k. Then equation (3.1) implies
(3.2) Arfi(®) =0  for each i=0,1,---, n and for all z,ucG .

Proof of Lemma 3.1. In view of equation (3.1) one can observe
the following property.

To eliminate the kth term f,, 0 < k < n, we

(3.3) replace by « — a,2;, and ¥y by ¥ + 2z, in (3.1).
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Indeed, for k¥ = j we have
Sl — az; + ay + agy) + - + file + a;y)
o e -ty +anzg) =0
for all z, y, 2; € G. Take the difference between (3.1) and the above
equation to obtain

(3-4) -/j(ao——aj)z]'jﬂo(x + aoy) + e+ 0+ -+ —/](anfaj)zjf.n(a/‘ + any) =0

for all =, y, 2; € G, since f;(x + a;y) is unchanged. Thus f; is elimi-
nated. If the same argument (3.3) is repeated (n — 1) times, then
(3.4) yields

(3'5) J(ao—ﬂJ)Zjd.Slzl Tt L/Iﬁﬂz,,,,f-o<x + aoy) =0

for all ,y,2, ---,2,€G, where 8, =a, —a, for 1 =1,2, ---, n and
l=+j5. In (3.5), replace =+ ay by 2z and set u = (a, — a,)z; =
Bi% = +++ = (8,2,. Then (3.5) becomes

A" fy(x) = 0 for all =z, ueG.

It is clear that an obvious modification can be applied for the terms
file + ay) for £ =1,2, ---, n to obtain

Arf(x) = 0 for each £t =1,2, ---,7n and for all =z, ueG.

Thus (3.1) implies {3.2). The Lemma 3.1 is proved.

Proof of Theorem 3.1. Observe that without loss of generality
we may assume one of o, =0, ie,, ;,#0=¢a,, 1 =0,1, ---, n — 1,
in Lemma 3.1 in order to obtain the same conclusion. The proof
now Iimmediately follows from Lemma 8.1 and the Fundamental
theorem with G = X =C and FF=S = H =K.

4. The mean valued property 4,(x, y) = 0. We first determine
the general solution of the mean value property under no regularity
assumptions. Then we prove somewhat stronger results than that
of Theorem A and Theorem B, when some weak regularity assump-
tions are imposed on f.

THEOREM 4.1. A function f:C— K salisfies the mean value
property Az, y) =0 for all x, yeC if and only if there exists a
generalized polynomial of degree at most n — 1 such that

41 [l =Q +Q@+ --- +Q () forall xzeC,

where the homogeneous polynomials Q:C—K for p=1,---,n —1
must satisfy the equation
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n—1n—1

4.2) z(j)az(s-,,,.,)(x;aVy):o for all @, yeC.

=0 =1 o=1

<

Proof of Theorem 4.1. If f: C — K satisfies 4,(x, y) = 0 for all
z, y €C, then (4.1) immediately follows from Theorem 3.1. To show
the converse, substitute (4.1) into 4,(x, y) = 0 to obtain

S@+ Q@+ o)+ o+ Q@ + )
= (@ + Q@) + -+ + Q@)

which implies, since Q" '(x + 6*y) = D.»=} (n ; 1 )Qm_l_a,.,)(x; 0*y),
n—1 2 2
,2;6 <Q° + Q@) + - + Q" (x) + Q@y) + %‘ ( - )Q(z_g,a,(x; 0*y)

(4.3) + -+ 2 (n B 0>Qm_1_a,a)(x; 0”y))

(1)

=n(Q + Q@) + --- + Q' (x)) .

But in order for (4.1) to be the general solution of 4,(x, y¥) = 0, the
homogeneous polynomials @’ 6 =1, 2, ---, » — 1, must satisfy equa-
tion (4.3). This case occurs only if

n—1 2 2 aet _ 1
¥ {Ql(ﬂ”y) + 2 <0>Q<z_a,a)(w; oY) + - + 3 (n )Q(n_l_g,a,(x; aVy)}

g
=0,

which yields (4.2). This proves the Theorem 4.1.

THEOREM 4.2. If a function f:C— R satisfies 4,(x,y) =0 for
all x,yeC, then (4.1) holds for all xe€C, where Q": C— R for p =
0,1, ---,n — 1. Moreover, f is bounded on a set of positive Lebesgue
measure if and only if f is given by a harmonic polynomial of
degree at most n — 1.

LEMMA 4.1. Let f: C— K be a generalized polynomial of degree
at most n — 1 such that

4.1) Jx) = @ + @) + --- + @"(%)

for all x€C, where @:C— K, p=0,1, ---,n — 1, are homogeneous
polynomials. If f is bounded on a set of positive Lebesgue measure,
then @° for p = 0,1, ---, n — 1 are continuous everywhere and hence
so is f.
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Proof of Lemma 4.1. Replace 2 by Mx for each M =1, 2, -- -, n.

Then

f(x) 11 1-.-1 Q°

f2x) 1 2 22...2"1 Q'(x)

Sfnx) 1 »n n---n Q' (x)
We briefly write this as |F'| = |V||@Q]|. Observe that V]| is the van
der Monde determinant and is not zero. Therefore Q*, »p =0,1, ---,
n — 1, can be determined uniquely in terms of f(Mz) for M =
1,2 --.,n. Since fis bounded on a set of positive Lebesque measure,
the @°(x) for p = 0,1, ---, » — 1 are bounded on a set of positive
Lebesgue measure for all z. On the other hand we have the basic
identity

Qn-—l(xh ) Xpy) = (1/(% — 1)V)Azl Ce Azn—1Qn—1(x)

for all z, x;, -+, 2,_;. The right side is the sum of 2"~' terms of
the form

(=D ((n — DR @y, + -+ - + @)

with « = 0. But we have just proved that Q7(x) is bounded on a
set of positive Lebesgue measure for p =0, 1, ---, » — 1 and for all z.
Hence @, for p =0, 1,---, n — 1 are also bounded on a set of positive
Lebesgue measure for all ,, -+, 2,,. It is well-known (e.g., [20])
that an additive function f:C— K which is bounded on a set of
positive measure is continuous everywhere. It follows from this
theorem that a p-additive mapping which is bounded on a set of
positive Lebesgue measure is continuous everywhere. Hence, Q*
for each p=0,1, ---, % — 1 is continuous everywhere. Equation
(4.1) now shows that f is continuous everywhere. This proves the
Lemma 4.1.

Proof of Theorem 4.2. This is a consequence of Lemma 4.1 and
Theorem A of Kakutani-Nagumo-Walsh.

For the case K = C we have the following:

THEOREM 4.3. If a function f:C— C satisfies A,(x,y) =0 for
all x, yeC, then (4.1) holds for all x€C. Further, f is bounded on
a set of positive Lebesgue measure if and only if f is a complex
polynomial of the form

n—1 n—1
(4.4) flx) = sz:'s o, + ;:11 a,,x,



120 SHIGERU HARUKI
where T denotes the conjugate of x.

LEMMA 4.2. Let n be a given integer =1, and let Q,: C*— C be
an m-additive symmetrical mapping and continuous everywhere.
Then there exist complex constants a, a,, ---, &, such that for all
Xy, -, 2, €C,

n

(4'5) Qn(xly Y 9(/',,,) = Z (ar Z w1m2 tee xr%r+lzr+2 M En) .
()

r=0

Proof of Lemma 4.2. For n =1 we have
Qi + 2,) = Q) + Q)  for all =, x,€C,

whose continuous solutions are well-known (e.g., see J. Azcél [1, p.
217]) to be of the form

Q.(x) = Ax + BZ%

where A and B are complex constants. We now assume that (4.5)
is true for » = m = 1. For » = m + 1 the continuous solution of
the equation

(4'6) Qm-H(xl, ey Ty Y + z) = Qm-H(xl; c0 oty Loy y) + Qm‘l-l(xly crty Ty z)

for all x,, -+, 2, ¥, 2€C is given by

r=0

(47) Qm+1(x1, crty Ty xm+1) = Z (Ar(xm—f‘l)% L1dg = = * xra_9¢+1wr+2 tee :'?m) .
Substitute (4.7) into (4.6) to obtain

SZ (A,(y +2) DXy - BT By im)
G
=3 (4w D T) -
+ g (A,(z)(% Tily * * Ly Byt = ° 9?,,,) .

By the uniqueness theorem of polynomial coefficients we have
Ay +2) =A(y) + A,(?) for each r»=20,1,.---,n

and A4,(z) = a,x + B3,% for each », where «, and 3, are complex con-
stants. This solution in (4.7) implies

m

Qm+1 = Z <(arwm+1 + Br@mﬂ) (23 L1y + - * xrzrﬂﬁrﬂ e fi»;)
m
r

r=0
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which shows that there exist complex constants a,, a,, ---, @, such
that

m+1
Qm+1 = Z (ar Z Ty« Byl 1 Zprn * * xmﬂ) ’

r=0 (m;}—l)
yielding the Lemma 4.2.
Note that in particular for the case , =2, = -+ =2, =%,., =
Bpin = -+ » = X, (4.5) becomes
(4.8) Q) = 3, a,a""F"
r=0

Proof of Theorem 4.3. By applying Lemma 4.1 with K = C we
obtain that @ is continuous for each p = 0,1, ---, » — 1. Hence,
Lemma 4.2 with (4.8) yields

Q(x) = }3 a,x"E" for each »p=0,1,---,n—1.
Hence, by (4.1), we have

(4.9) OES

th

Sy

Conversely, if (4.9) is substituted in the mean value property
A,(x, y) = 0, then we obtain

n—1 _
> {[ano] + [@ou(@ + 0Y) + @:,@ + F7)]
+ [@oo(x + 0°Y)* + a.(@ + OYT + 0°Y) + a,,F + F7)]

(4.10) + o @@+ Y F an, (e + QY NE + 6°F)
R e SN ¢ Sk ) ki |

By expanding both sides of (4.10) and comparing coeflicients a,  one
observes that (4.9) satisfies the mean value property 4,(x, y) = 0 if
a,,=0 for r=s, r,s=1,---, n — 1, since the right side of (4.10)
is independent of y and %, and

E(ﬁ”ﬁ—”)p:% for p=0,1,---,n—1,
v=0
Sy =0 for p=1--,m—1,

S@»r=0 for p=1,--,n—1,
y=0

and
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n—1 _
2. 07@)=0 for j+#1, jl=1--,n—1.
»=0

Therefore, we obtain
n—1 n—1
(4.9) f@) = X 0,0 + Xia,,% .

This proves the Theorem 4.3.
The author wishes to thank very much Professor J. Aczél for
his advice and encouragement.
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