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ULTRASPHERICAL EXPANSIONS AND
PSEUDO ANALYTIC FUNCTIONS

ALLAN J. FRY ANT

This paper takes up the function theoretic approach to
the study of ultraspherical expansions, their conjugates,
the associated elliptic equations, and first order systems.
The theory of pseudo analytic functions and Bergman-
Gilbert type integral operators are employed, and the rela-
tion between these two approaches is examined. Throughout,
results obtained are analogs of well known theorems from
the theory of analytic functions of a single complex variable,
and the related study of harmonic functions and Fourier
series.

The study of trigonometric series, analytic functions, Laplace's
equation, and the Cauchy-Riemann system are all in a sense equi-
valent. Since this study has proven to be one of the most fruitful
in mathematics, and since Laplace's equation is just one specific
elliptic partial differential equation, analogous developments should
be expected for more general elliptic equations. In particular, it
is natural to hope for a relationship with analytic functions corres-
ponding to that found in the case of harmonic functions, u = ΈLe(f)9

which has proved so useful in the study of Laplace's equation and
expansions in the associated special functions (trigonometric series).

For u the solution of an elliptic equation more general than
Laplace's, two approaches are apparent:

(1) Generalize the operation of "taking the real part". That
is, find bounded linear operators which transform analytic functions
to solutions u. Such results have been obtained, in particular, by
Bergman [3] and Gilbert [14], where integral operators are developed
to provide the transformation from analytic functions to solutions
of corresponding elliptic equations.

(2 ) Generalize function theory. That is, extend function theory
so that solutions u of elliptic equations can be obtained as u=Re(f),
where / is a "pseudo" analytic function sharing many of the pro-
perties associated with classical analytic functions of a single complex
variable. Bers [4], and Vekua [24] have developed such an approach.

In the pursuit of function theoretic results in this context, the
case of ultraspherical expansions is of particular interest, since in
this case both approaches (1) and (2) are directly applicable and
intimately related. Using them, we obtain function theoretic results
for ultraspherical expansions, adding to the extensive work of
Muchenhaupt and Stein [19] on the subject.
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The ultraspherical (or Gegenbauer) polynomials CZ(x), μ > 0, of
degree n are defined by the generating relation

(1.1) (1 - 2zx + z2)-f = Σ znC£(x) .
Λ = 0

The sequence {C (̂cos 0)}ΪU is orthogonal and complete over (0, π)
with respect to the measure $m2μθdθ. Thus a function /(#) defined
on (0, π) has the expansion

(1.2)

where

[*£(cos 0) sin2"

Γ [CΛcos θ)f sm2μθdθ
Jo

cos θ) sh
πΓ(n + 2μ) J

The Abel sums

(1.3) U(r, θ) - Σ αwr%C^(cos ί)
Λ = 0

of the series (1.2) arise as solutions of the partial differential equa-
tion

(1.4) Uxx + Uyy + ~^Uy = 0 ,

(#, ]/) = (r cos 0, r sin θ), and are called generalized axisymmetric

potentials (see [26] for a discussion of this equation and physical

applications). Corresponding to equation (1.3) is t h e first order

system

Uχ - Vy = -%L V

(i5) v

defining the conjugate V of U [19, p. 19]. V satisfies the "con-
jugate equation"

(1.6) Vmβ + Vyy + -*!LV, - - ^ - F - 0 .

Letting u = U, v = y2μV, if U and F satisfy (1.5), then, u, v are
solutions of



ULTRASPHERICAL EXPANSIONS AND PSEUDO ANALYTIC FUNCTIONS 85

(1.7) u9 = y~2μvy and uy = -y~2μvx .

If U and V are solutions of the equations (1.5), then F — U +
i F is a pseudo analytic function of the first kind. We call such
functions μ-pseudo analytic. Since [1, y~2μ] is a generating pair for
the system (1.5) the function u + iv is the corresponding pseudo
analytic function of the second kind (cf. the equations of mixed
type example [9, pp. 389-390]). It is easy to show that if U is a
solution of equation (1.4) then there exists a function V related to
Ubγ the system (1.5), and V is unique up to a function of y alone.
Specifically, given U and V satisfying (1.5), the functions U and
F* satisfy (1.5) if and only if V*(x, y) = V(x, y) + g(y), where g
satisfies g' + (2μ/y)g — 0. For convenience, if U is given by the
series expansion (1.3) following [2], [19] we choose as the conjugate
V related to U by (1.5) the following:

(1.8) F(r, θ) = 2μ Σ α.r*C£±ί(cos θ) sin θ .
*=i n + 2μ

Gilbert [15] has developed an integral operator which tranf orms
analytic functions / to generalized axisymmetric potentials U. If

U{r, θ) = ± n\ α.r*C;(cosfl) ,
»-i 1 (n + 2μ)

then this Aμ operator gives

U(r, θ) = Aμ(f)

Γ f(r cos θ + ir sin ί cos t) sin^-'tdt ,
\μ) h

where f(z) = Σϊ=o ^^ % . Heins [18] traces the origin of such integral
representations back to Poisson [21]. An explicit integral representa-
tion for the inverse transform Aμ1 was first obtained in [15], and is

(1.9) = ΓU(r, t)K(z/r, c o s t ) & m t d t , \z\ < r ,
Jo

where

Λ _ Γ\μ + 1) (1 - f)^1 / 2(l - σ2)
)

π

Our first objective is to examine the relationship between the
Aμ integral operator and μ-pseudo analytic functions. Also, for
μ — 0, (1.4) and the conjugate equation (1.6) each reduce to Laplace's
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equation, and the system (1.5) becomes the Cauchy-Riemann system.
Thus, given a proper formulation, all results regarding ultraspherical
expansions, their conjugates, and ^-pseudo analytic functions should
in the limit as μ —> 0 reduce to classical function theory.

2 Integral operator for the conjugate; the limit μ —> 0*
Throughout, we shall restrict attention to ultraspherical series
having real coefficients. Since

(2.1) lim μ-Vftx) = ^Tn(x) ,

where Tn is the Tchebychev polynomial of degree n (see [23, p.
178]), it is natural to renormalize the Aμ integral as follows: let

L" - -μTmAμ

If

(2.2) U{r, θ) = =-?— Σ α^C^cos θ) ,
y > ) μ £oΓ(n + 2μ)

then

U(r, θ) = Lμ(f)

1 fπ
= \ f(r cos θ + ir sin θ cos ί) &\τ£μ-Hdt ,

μΓ2(μ)jo

where

(2.3) f(z) = Σ «•«•

We call / the Lμ associate of U. The limit (2.1) then yields

(2.4) lim Lμ(zn) = lim ^Hl r%C^(cos θ)
Λ->O μ-* μΓ(n + 2μ)

= rnTn(cos θ)

- R e (zn) .

Since \Lμ(zn) — Re(«*)l ~ d(n) on \z\^lf w h e r e [βf(τt)]1/%-^l as
w e h a v e t h e fol lowing

THEOREM 2.1. Let f{z) = Σ^U α^%, ^fcere αΛ are real, and

ϊ ϊ m I an \1/n =
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uniformly on \z\ ̂  1.

Proof.

μΓ{n + 2μ)
ί (cos 0) - cos nθ

By the result [23, p. 182]

Cί(cos 0) = Σ ««<*»-» cos (w — 2m)0 ,
m=0

where

It is easy to see that

Thus

a - Γ(μ ' f m)
Γ(μ)m\

μ ~ (iM

if TO

if m = 0, % .

-— C^(cos 0) — cos nθ

aoan cos ^0 — cos nθ

n\

μ

and for 0 < μ < 1, this is

f

2μ)

LμΓ\μ)

μ)

μΓ{μ)Γ{n + 2μ)

r" .

Now, since Γ(n + μ)/Γ(n + 2μ) ~ (n + μ)"^ as
μΓ(μ) -»1, there exists an iVΊ such that

22/iΓ(^ + ̂ )

—> oo, and as μ—>0,

μΓ\μ) μΓ{μ)Γ(n + 2μ)

for all n > Nj_ and all μ e [0, 1], where c is a constant (eg., 3 will do).
Thus given ε > 0, there exists an N2 > Nt such that

μΓ{n + 2μ)
C£(cos 0) - cos nθ \a%\r*< ε
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for all μ e [0, 1], Θ e [0, π], and 0 ^ r ^ 1. The convergence (2.4) of
the first N2 terms then completes the proof.

The conjugate V of U given by (2.2) has the series expansion

(2.5) V(r, θ) = 2^ Σ -FT ^ —α.r CίiXcos 0) sin 0 .
*=i Γ(n + 2μ + 1)

Bers and Gelbart [8, p. 177] have given an integral representation
for conjugate functions which yields the definition of a "conjugate"
integral operator LJ that transforms the Lμ associate / o f U to V.
Appealing to this result, the following is immediate:

If U is given by the series (2.2), then a function connected
with U by the equations (1.5) is

V(r, θ) = - — - — Γ f{r cos θ + ir sin θ cos t) cos t sin^Ήdt .
μΓ2(μ)Jo

We further verify directly that this expression has the series
expansion (2.5) above. An integration by parts shows that

— — - — I (r cos θ + ir sin θ cos t)n cos t sin2μ~Hdt

= n^smθ Γ (r cos <9 + ίr sin θ cos ί ) - 1 si

θ) sin έ» ,

which yields the result. Also, since

( 2.6 ) j c : w l s

the three series (2.2), (2.3), and (2.5) all have the same radius of
convergence, i.e., they all converge absolutely and uniformly on
compact subsets of \z\ < R, where lim \an\

1/n — R~\ Thus, defining

(2.7) L*(/) = - — \ — Γ fir cos θ + ir sin θ sin t) cos t am2μ-Hdt ,

on interchanging the order of summation and integration we find
that if / has the Taylor series expansion (2.3), then !£(/) is given
by the series (2.5). (Regarding the conjugate operator, see also
[14, p. 189]). Further, the Lμ and Lμ integral representations for
U and V obtain throughout the common disk \z\ < R.

In view of Theorem 1, it is natural to expect that L*(/)—>Im (/)
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as μ —> 0. Now,

sin Θ

(see [23, p. 187]). Thus

(2.8) Km L*(zΛ) - lim ? ^ αnC£ίί(cos θ) sin 0
"o ' o Γ(n + 2μ + 1)

= r* sin ^#

= Im (zn) .

A g a i n , s i n c e \L*(zn) — lm(zn)\ ~ g(n) o n ] s | ^ l , w h e r e [g(n)]1/n-+l
as w—»co? we have the desired result for functions which are analytic
on a closed disk:

THEOREM 2.2. Let f(z) = Σ"=o αΛsΛ, wfeere an are real and

^oo \an\
1/n = l//e, JB > 1. Tfeβ^

limL*(/) = Im(/)
;ί-»0

uniformly on \z\ ^ 1.

Proof. The generating relation (1.1) yields

- ^ 2 | ^r— - Σ 2 Cί±ί(cos tf) sin 0.
(1 - 2z cos θ + 22)/ί+1 »=i

Subtracting

1 — 2z cos ^ + z2 »=i

and noting that each series converges uniformly on compact subsets
of \z\ < 1, we have for 0 < p < 1, % = 1, 2, -,

sin w#
g s i n ^ί1 ~ a -2z c o s θ

( - 2z cos 6> + ^ 2 )^

Thus

C
(2.10) I C^l (cos Θ) sin φ — sin nθ | ^

for all θ e [0, 2ττ], and μ e [0, 1], where C is a constant depending
only on p. Now,
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^ Σ Γ(n

Γ(n + 2μ

anr
nC%±ϊ (cos θ) sin θ - anr

n sin nθ

—C£ίί (cos 0) sin θ

- CίJίί (cos 0) sin θ 7£ίί (cos 0) sin 0 - sin w#11 .

Let ε > 0. Choose pe(Q,l) sufficiently near 1 so that ΣϋU|αJ/0"~*
converges. Then by the result (2.10), there exists an JVΊ such that

Σ \<*>« Wn I CίΛ1 (cos θ) sin 0 - sin nθ \ < ε
n=N1

for all re[0, 1], θe[0, 2π\. Further, using the bound (2.6), we have

22μn! _CμL+! ^ c o g ^^ s i n ^ _ C ί + i ( c o s ^ s i n (

22μnl

Γ(n + 2μ

Γ(n + 2^
— 1

(n - 1)1 Γ(n + 2μ)

2)
2)

Thus there exists an N2 such that

Σ lαjr
2 ^

ί i 1 (cos 0) sin 0 - C£ίί (cos 0) sin < ε .

The convergence (2.8) of the first JV = max (Nlf N2) terms then
completes the proof.

Define

£fμ = Lμ + iL*μ .

If U and V are conjugate functions given by (2.2) and (2.5), then
F = U Λ- iV is & μ-pseudo analytic function of the first kind, and

F(r, θ) =

(2'1V) = — \ — Γ f(r cos θ + ir sin θ cos t) (1 + cos t) siτf-Hdt ,

where f(z) = Σ^=o α^ . If ί7 is regular on |«| < 1 (i.e., U and F
are C2 solutions of the system (1.5)), then the Sfμ associate / of F
is analytic on \z\ < 1, and the integral representation (2.11) holds
throughout the disk \z\ < 1.

As an immediate consequence of Theorems 1 and 2, we have the
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COROLLARY. Let f(z) = Σ?=o αΛ2w, where an are real, and

ϊίm \an\
1/n = 1/R, R>1. Then

lim

uniformly on \z\ ^ 1.

Thus analytic functions of a single complex variable appear as
a limiting case of μ-pseudo analytic functions.

With the exception of an explicit representation for the inverse
transform (L*)~\ our discussion of integral operators which gener-
alize the operations Re and Im, and examination of their relation-
ship with pseudo analytic functions is complete. The development
of an explicit representation for (LJ)"1 will be postponed to the
next section, since (as will be shown) both this transform and Lμ1

are closely related to the Poisson integral.

3* Function theoretic results on a disk* Since ultraspherical
expansions and their conjugates enjoy the same relation with
μ-pseudo analytic functions that is found between trigonometric
series and analytic functions, it is natural to expect analogs of
classical function theoretic results on a disk. Such results have
been obtained by Muckenhaupt and Stein [19] and include, in
particular, a Poisson integral formula for U, conjugate kernel,
analog of Fatou's theorem, Riese's theorem (E7—• V is a bounded
operator on Lv), and Hp theory. Our objectives in this section are
to examine the relationship between the Poisson integral formula
and the transform Lμ1, obtain new integral representations for the
Poisson kernel and conjugate kernel, develop an explicit integral
representation for (L?)"1, and to give an extension of Privaloff's
theorem [20] to ultraspherical expansions and their conjugates.

If U{θ) has ultraspherical expansion

U{β) = ±— Σ Γf

 n \ anC: (cos θ) ,
μ "=° Γ(n + 2μ)

then the Abel sum of this series

(3.1) U{r, θ) = ^ ± ^ anr«Cn (cos θ)
μ n=o Γ(n + 2μ)

is given by the "Poisson integral"

(3.2) U(r, θ) - [*U(φ)P(r, θ, φ) sin^φdφ ,
Jo

where the "Poisson kernel" P is
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P(r, θ, Φ) = IM^^- ± (» + y ^ (cos Θ)C: (cos
π noΓ(n + 2μ)

π Jo [1 —
d t

[1 — 2r(cos θ cos φ + sin θ sin φ cos t) + r2]^+1

(see [19, p. 25]). Gilbert's inverse transform Lμ1 is easily obtained
from the Poisson integral formula (3.2). Letting θ = 0 in (3.2) and
analytically continuing r to complex values z throughout the disk
\z\ < 1 yields

(3.3)

where

P{z, o, Φ)

U(z, 0) = U(φ)P(z,
Jo

_ μ 1-z2

π (1 — 2z cos φ +

_ μΓ(μ)Γ(l/2)

0, φ) ύtf*φdφ ,

zy
+1 J o s m

1 - z2

1/2) (1 - 2z cos φ

Since Cί(l) - Γ(n + 2μ)/n\Γ(2μ), we have

O 2 « - l oo

where / is the I,,, associate of U(r, θ). Thus (3.3) yields for |z |<l,

(3.3a) f(z) = Γ2(μ + V \' U(φ)- o

1 " f | 2λμ+1 sin^φdφ ,
π Jo (1 — 2z cos ^ + 22)^+1

which is the expression (1.9) for Lμ1 in the case where the integral
is taken over the unit half circle.

Conversely, one obtains the Poisson integral formula by apply-
ing the Lμ transform to the expression for Lμ1. Letting r = 1 in
(1.9), we have for \z\ < 1

Lμ[f(z)] = Lμϊ
 Γ^μ + 1 ) Γ U(l, φ) ί ^

μ u J L π Jo ' ΨJ (1 - 2z cos ^
( 3 ' 4 )

ua, Φ)Lμ Γ LzLί Ί βitf w .
v ' ψ) μl (1 - 2zcos0 + ^2r+1 J

Now,

(3.5) _ o

1"f_L 2 W 1 = Σ ?L±JU G
(1 — 2z cos φ + 22)^+1 n=o μ

and the series converges uniformly for \z\ ^ p < 1, φ e [0, π]. Apply-
ing the L^ transform termwise to this series yields



ULTRASPHERICAL EXPANSIONS AND PSEUDO ANALYTIC FUNCTIONS 93

π -P(T,Θ,Φ).
Γ\μ +

Since U(r, θ) = Lμ[f(z)], (3.4) is the Poisson integral formula for U.
Note that this also yields an additional integral representation for
the Poisson kernel:

P(r, θ, φ)

<3 6 ) = ϋ Γ i-(*+ΐy cos ty g i n 2 ,_ l ί r f ί

π Jo [1— 2(x + ίy cost) cos φ+ix + iy cos t)2]μ+1

where (x, y) = (r cos 0, r sin 0).
Again let Z7(r, (?) be given by the series (3.1). Then the con-

jugate V(r, θ) of U has on the unit disk the representation

V(r, θ) = Γ 17(1, Φ)Q(r, θ, φ) s
Jo

where Q is the "conjugate Poisson kernel"

Q{r, θ, φ) = ̂ Σ Ά . Σ * 1 | n +;> r^(cos ΛC-ί(coβ 5) sin

(see [19, p. 35]). On applying the L* transform to the generating
relation (3.5), a routine computation yields an integral representa-
tion for Q similar to that found above for P:

Q(r, θ, φ)

(3.7) =z2H[* l-(x + iycost)
7Γ Jo [1— 2(x + iy cost) cos φ+(x + iy cos t)2]μ+1

Expressed in terms of the Lμ, L* integral operators, the representa-
tions (3.6) and (3.7) become

P(r θ ώ) - Γ ^ + 1) LP(T, θ, Φ) Lμ

and

Q{r, θ, Φ) = ΣOL±1LL* Γ \nA Ί .
V ' ' ψ> π ' L (1 - 2z cos φ + zψ+1 J

Thus, for 0 ̂  r < 1, θ e [0, 2π],

(3.8) F(r, θ) = Γ U(l, Φ)[P(r, θ, φ) + %Q{r, θ,
JO

where F — U + iV, and
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Pi,-,,. Λ + ,«,, o, Λ =

This result provides an analog of the Schwartz formula

(3.9) f(z) = -^-
2π

which recovers an analytic function / from its real part u. Notice
that on restricting θ = 0 in (3.8) and analytically continuing r to
complex values ζ in |ζ | < 1, the integral reduces to the expression
for the inverse transform Lμ1. This integral representation for
Lΰ1 might also be viewed as analogous to Schwartz's formula. For
Lμ provides a transformation from analytic functions to solutions of
an elliptic equation—in fact, is a continuous extension of the opera-
tion Re. And Schwartz's formula is nothing more than an explicit
integral representation for the transform Re"1. This observation
leads to the following analog of Privaloff's theorem [20]:

THEOREM 3. If

U{θ) = ^1± nl c , ( c o s θ)

satisfies a Lipschίtz condition of order a, 0 < μ < a < 1, on [0, π],
then its conjugate

V{θ) = 22<" Σ jη—cτ 7Γa*C^Ό* θ) S i n θ

°Γ(n + 2^ + 1)
satisfies a Lipschizt condition of order a — μ on [0, π].

Proof. Hardy and Littlewood [17] have shown the following:
an analytic function f(z) satisfies \f'{z)\ < C/(l — l^ί)1"" throughout
the disk ] z \ < 1 if and only if / satisfies a Lipschitz condition of
order a on \z\ ̂  1. On applying this result to the Schwartz
formula, a proof of the classical theorem of Privaloff obtains (see
[16, p. 414]). In an entirely similar manner, differentiating the
expression (3.3a) for Lj;1 and appealing to the result of Hardy and
Littlewood one obtains a Lipschitz condition of order a — μ on the
Lμ associate / of U (for details see [12]). That is, for f{z) =
ΣSU anz

n we have

ί/OO -

Since
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V(r, θ) = L*(f)

i (π

= — 1 f(r cos θ + ir sin θ cos t) cos t $m2μ-ιtdt ,
μΓ\μ))o

it is then easy to see that for 0 ^ rlf r2 ^ 1,

* θ2) I £ _ £ ^ _ [ ( r i cos θx - r2 cos 02

+ (n sin 0X - r2 sin ^2)
2](α-^)/2 .

In particular,

^

COROLLARY. Z/βί F(z) = Z7(r, β) + iF(r, ^) 6e μ-pseudoanalytic
on the open disk \z\<l. If U is continuous on the closed disk \z\ <̂
1, and

117(1, θλ) - U(l, Θ^^Klθ.-θ^, Q < μ < a < l ,

then F is continuous on the closed disk \z\ ^ 1, there satisfying a

Lipschitz condition of order a — μ, i.e.,

Proof. As in the proof of the previous theorem, the hypotheses
on U imply that the Lμ associate / of U satisfies a Lipschitz condi-
tion of order a — μ on the closed disk \z\ ^ 1. Since

F{z) - £fμ(f) = — J - — Γ /(s + i v cos ί)(l + cos t) si
μΓ\μ) Jo

the result is immediate.
Let U(r,θ) be given by the series (3.1), where |αJ1 M—>1 as

n—>oo. In [12] it was shown that if, further, on the boundary
circle U satisfies

(3.10) I U(l, θx) - Z7(l, Θ2)\ ^ λ ( | ^ - Θ2\) ,

where

then f(z) = L?(U) is bounded on | s | ^ 1. Thus F = ^fμ(f) is
bounded on |«| ^ 1, and we see that condition (3.10) is sufficient to
insure that the conjugate V of U is bounded on | s | <i 1. We note
that this result, as well as those of the above theorem and corollary,
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reduce in the limit as μ —* 0 to classical function theoretic results
which are known to be best possible.

It is also possible to express U interior to a disk in terms of
an integral of its conjugate V over the boundary circle. Such a
result leads immediately to an explicit integral formula for the
transform (L*)"1. Define

θ ό) -

rnC£(coa θ)C£i}(cos φ) sin φ .

Then for all r e [0, 1), θ e [0, 2ττ], we have

(3.11) U(r, θ) = Γ V(l, φ)Q*(r, θ, φ) sin^φdφ + UQ ,
Jo

where UQ — ?7(0, θ). This result is easily obtained by termwise
integration of the series expansion (2.5) for V. Now, restricting
θ = 0 in this expression and analytically continuing r to complex
values z, \z\ < 1, yields

U(z, 0) - Γ V(l, Φ)Q*(z, 0, Φ) sin^φdφ + UQ ,
Jo

where

Using the generating relation (3.5) we have

Further, J7(«, 0) = 21~2μμΓ(2μ)f(z), where / is the L* associate of
F. Thus we have the explicit integral representation for the
inverse transform

= ao+ (V(l, φ)H*(z, φ) si
Jo

where

H*(z ό) - 2 ^ + 1 ) Γ 1
H {Z' Φ) ~ Γ\μ + 1) l ( l - 2 ζ
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4* Singularities* As is well known, if u is a function which
is harmonic in a simply connected region Ω, then the conjugate v
of u is also harmonic throughout Ω, and thus u = Re (/) where
f(z) is analytic in β. We next obtain the analogous result for
generalized axisymmetric potentials, their conjugates, and μ-pseudo
analytic functions.

A function U is said to be a regular generalized axisymmetric
potential on a region Ω if it is a C2 solution of equation (1.4)
throughout Ω\{y = 0}, and dU(x, 0)\dy = 0 for all (x, 0) eiλ If ?7 is
regular in a neighborhood of the origin, it has the expansion (2.2).
The conjugate V of Z7 is said to be regular in a region Ω if it is
a C2 solution of the system (1.5) throughout Ω\{y=0} and V(x, 0) =
0 for all (x, 0) e ΰ . If V is regular in a neighborhood of the origin,
it has the expansion (2.5). We say that a region Ω is axiconvex if
it is connected and (x, y)sΩ implies (x, Xy)eΩ for all λ e [ — 1, 1].

The following result is owing to Gilbert [15]:
Let U be a generalized axisymmetric potential and / be its Lμ

associate. Then (xf ±y) is a singularity of U iff x ± i$/ is a
singularity of /.

In particular, the axiconvex regions of regularity of U and /
coincide (this result has also been obtained by Erdelyi [10]). Hence
given U regular on an axiconvex region Ω, we have

V(r, θ) = L*(f) = -—1—f* /(r cos θ + ir sin 0 cos t)
μΓ2(μ)jo

where / is analytic on Ω. Thus it is immediate that V is of class
C2 throughout Ω and V(x9 0) = 0. Further, using the identity

Γ f{x + iy cos t) sin2μ+1tdt
J

f(χ + ii/ cos ί) cos t si

it is easy to verify that V is a solution of the system (1.5) through-
out Ω\{y = 0}. Thus V is also regular on Ω. We state this result
as a theorem.

THEOREM 4.1. If U is a generalized axisymmetric potential
which is regular on an axiconvex region Ω, then its conjugate V
is also regular on Ω.

The following result is also immediate.

THEOREM 4.2. F is μ-pseudo analytic on an axiconvex region
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Ω if and only if its .2^ associate f is analytic throughout Ω.

Proof. If F is ^-pseudo analytic on Ω then U is regular on Ω,
and by Gilbert's result / is analytic on Ω. Conversely, if / is
analytic then U = Lμ{f) is regular on Ω, and by the last theorem
its conjugate V is regular on Ω. Thus F= U + iV = S^ if) is
^-pseudo analytic on Ω.

5* Polynomial approximation* One of the most striking roles
the transformation u ~ Re (/) plays in the study of harmonic
functions lies in the theory of uniform polynomial approximation.
While Fourier series techniques yield the uuiform harmonic polyno-
mial ΣΛ=O τk (dn cos kθ + bk sin k θ) approximation to harmonic func-
tions on a disk, they do not provide an adequate tool for dealing
with such problems on more general regions. But in the latter case
results obtain immediately using the operation Re to draw on the
theory of uniform polynomial approximation for analytic functions,
a rich and highly developed area.

Similarly, when dealing with more general elliptic equations,
separation of variables and Fourier series expansion yields approxi-
mations on certain regions having a very simple geometry. Thus,
for example, separation of variables for the equation (1.4) expressed
in polar coordinates leads to the Gegenbauer polynomials, and the
uniform approximation via partial sums of the series (2.2) to solu-
tions which are regular on a disk. It is natural to expect similar
approximations on regions having a more complicated geometry.
Just as in the case of harmonic functions, using integral operators
which generalize the operations Re and Im, we shall obtain such
results with ease.

Bers has developed a theory of "formal power7' approximation
for pseudo analytic functions which closely resembles the theory of
polynomial approximation for analytic functions of a single complex
variable. Recall that u + iv is a /J-pseudo analytic function of the
second kind if and only if u and v satisfy the system (1.7). In this
case, Bers' formal power Z{n)(X, 0, z) of degree n, centered at 0,
with real coefficient λ is given by

Z{n\\, 0, z) - λZ(Λ)(l, 0, z)

where
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1 κ/> dη, YiS)(y) = 3\ rj»Ym(fl)d7}, • • •

o Tfμ Jo

(cf. [9, pp. 389-90]). The formal powers Z{n)(X9 0, z) given above
are /^-pseudo analytic functions of the second kind. That is, writing

Z{n\X, 0, z) = un + ίvn, un, v% real ,

then un and vn satisfy the system (1.7). Since [1, iy~2μ] is a
generating pair for μ-pseudo analytic functions (see [9, p. 389]),
the corresponding formal powers of the first kind are

W{n)(X, 0, z) = u% + iy~2μvn .

These powers are in fact homogeneous polynomials of degree n in
x and y. For convenience let W{k\z) = W{k)(l, 0, z). A /^-pseudo
analytic polynomial of degree n is then a sum Σ£=o akW

{k)(z), where
an Φ 0. The polynomials W{n) may also be computed as the £?μ

transforms of the powers zn. That is,

= — - — Γ (x + iy cos t)%l + cos t) sm2μ-ιtdt
μΓ\μ)h

(cf. [8, pp. 175-177]). By either evaluating the integral (5.2) or
proceeding inductively according to (5.1) the first few formal powers
are easily computed as

W{0)(z) = 1

Ww(z) = 1 [(2μ + l)x + iy]
μ + 1

Wm(z) = 1 [(2^ + l)x2 - t + i2xy]
2»μ + 1

Wω(z) = 3

(2μ

X \(2μ + 3 ) ( 2 ^ + X ) x* - (2μ + S)xψ + ί[(2μ
{ 3

Notice that W(n)(z) -> z* as μ -* 0.
Bers has obtained an analog of Runge's theorem regarding the

uniform approximation of pseudo analytic functions by formal
powers [4, p. 119]. We consider the rate of convergence of the
approximating polynomials in the case of μ-pseudo analytic functions.

Let Cl (Ω) denote the closure of a region Ω. We say F is μ-
pseudo analytic on Cl (Ω) if it is / -̂pseudo analytic throughout some
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larger region Ωf z> Ω.

THEOREM 5.1. Let Ω be a bounded axίconvex region. If F is
μ-pseudo analytic on C1(J2), then there exist μ-pseudo analytic
polynomials

WM=άo

such that

,ι ^ M
\F -

where || || denotes the sup norm over Cl (Ω), M is a constant inde-
pendent of n9 and R > 1.

Proof. By Theorem 4.2 the j£fμ associate / of F is analytic on
Cl(β). Thus there exist polynomials Pn(z) = Σk=obkz

k such that

m a x \f{z) - pn(z)\ = \\f ~ pn\\ ^ — - ,
zeCl(i2) / ί w

where R > 1 and M is a constant independent of % (see [25, pp.
75-76]). Now

n

22/i

Γ(2μ + 1) S>

are μ-pseudo analytic polynomials of degree n—call them Wn{z).
Then

\\F - Wn\\ - \\^μ{f -pn)\\

^ 2]/ π i, /. _ π

M

~ Γ{μ + 1)Γ(JM + 1/2) R%

While the general theory of pseudo analytic functions enjoys
an analog of Runge's polynomial approximation theorem, with the
exception of the preceding result, no information regarding the rate
of convergence of the formal power approximants seems to have
been obtained. When proceeding in analogy with classical function
theory, severe difficulties are encountered owing to the fact that
pseudo analytic functions do not form an algebra (i.e., products of
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pseudo analytic functions need not be pseudo analytic). Neverthe-
less, the preceeding theorem, as well as close analogies with func-
tion theory, suggests that formal power approximants to functions
which are regular in the closure of a region may in general converge
at a geometric rate.

We next obtain results which are more constructive in nature.
It is possible to introduce analogs of the Faber polynomials. Recall
that for a bounded simply connected Ω, if w = φ(z) = z + ao + aίz~1-\
maps the compliment of Ω onto the circular region \w\ > p, then
the Faber polynomials fn(z) of degree n for Ω are defined by the
generating relation

H'(t) = Σ/•(*)*-,
ψ(t) — Z =̂°

where ψ = φ~λ (see [22, p. 130]). We define

and call Fn the μ-pseudo analytic Faber polynomials for Ω.

THEOREM 5.2. Let Ω be a bounded axiconvex region, w — φ{z)~
z + α0 + axz~~ι + map the compliment of Ω onto the circular
region \w\ > p, and let ψ — φ'1. If F(x, y) is μ-pseudo analytic on
the region BB bounded by ΓR = {z: \Φ(z)\ = R}, then Fcan be expanded
into a series of μ-pseudo analytic Faber polynomials

(5.3) F(x, y)= ± anFn(x, y),

where

(5.4) an =
 μ Γ ^ ) \ F(ψ(z), 0)z-k->dz, p<r<R.

Further

lim sup \an \
1/n = 1/R ,

and the series (4.3) converges uniformly on Cl (Ω) at a geometric
rate.

Proof. Since F is μ-pseudo analytic on BR, Theorem 3.2 insures
its Jyfμ associate / is analytic on BR. Thus

(5.5) f(z) = Σ anfn(z) ,
Λ = 0

where fn are the Faber polynomials for Ω, and
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2πι hz)=
dz, p<r<R

(see [22, p. 138]). Also, \bn\
ίln -> 1/R, and for zedΩ, \fn(z)\ι>% -+ p.

Taking the /> transform of (5.5) we have

(5.6) F(x, y) = Σ α-F.fo 2/).

Let |ΐ || denote the sup norm on Cl (Ω). Since

l l^ l l = l l ^ ( Λ ) l ! ^ c | i Λ I I ,

we have

lim\\Fn\\ι/n ^ lim||/Jl ι / u £ p .

Since \an\
1/n—>R > p, the series (5.6) converges uniformly on Cl(ιO).

Also restricting F(x, 2/) = ί7(cc, y) + i V(x, y) to the x-axis and analy-
tically continuing to complex variables yields

F(z, 0) - U(z, 0) - ^ " '
μΓ(2μ)

where / is the S/^μ associate of F. Thus the expression (5.4) obtains
for the coefficients an.

It is also possible to obtain uniform polynomial approximation
to ^-pseudo analytic functions via polynomial interpolation. Let Ω
be an axiconvex region and Cn = {zk — xk + iyk}ΐ^0 be a set of n + 1
points on dΩ. Define

and

Vk(z;CΛ)= V(Cn)\,k=t.

If V{Cn) Φ 0, and F is any function defined on dΩ, then

Ln(z; Cn; F) = ± F{zk) ^ ' ' ^

is the unique / -̂pseudo analytic polynomial of degree n which inter-
polates to F on Cn. Further, it is easy to show that for % = 1, 2, 3 •
there exist CnadΩ such that V(Cn) Φ 0. The result is clearly true
for n = 1 i.e., if Cι = {zQ, zλ] where zQ Φ zlf then

= x t - x0 2
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Suppose there exist C%_x = {z0, zl9 , z^adΩ such that ViC^) Φθ.
Then letting Cn = {z0, , sΛ_i, z j , we have on expanding F(C%) by
the first row,

V(CJ = V(Cn^)W^(zn) + b^W^KzJ + • + δ0 ,

where the coefficients δfc are functions of zQ, zlf , zn_t. By hypothe-
sis F(Cft_x) Φ 0, and thus F(CJ is a ^-pseudo analytic polynomial of
degree n in 3Λ. Since the zeros of a nonconstant pseudo analytic
function are isolated [4, p. 18] we easily have a znedΩ such that
V(Cn) Φ 0.

THEOREM 5.3. Let Ω be a bounded axiconvex region and C*
maximize |F(CJ | over Cl(i2).

lim LΛ(z;C*;F) = F(z)

uniformly on Cl (42) for every function F which is μ-pseudo analytic
on Cl (42). Further, the convergence is at a geometric rate, i.e.,

ii π _ j . ii < fa + 2)M

where |] |] denotes the sup norm over Ω and the constants M, R>1
are as given in Theorem 5.1.

Proof. By Theorem 5.1 there exist μ-pseudo analytic polynomials
p% of degree n such that

Since V(C*) Φ 0, the /^-pseudo analytic polynomial of degree n
assuming n + 1 given values at the points z0, zu - , zΆe C* is
unique. Thus

Ln(z; C:; p%) = ± V^p±
and

\F(z) - Ln(z; C. ; F)\ £ \F(z) - pn(z)\ + \PM - Ln(z; CX\ F)\

= \F(z)-pM\ ±[pn(zk) -
V(C )

M ί, , Φ
ί(2; cp)

(n + 2)M
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By taking real and imaginary parts of the μ-pseudo analytic
functions involved, the previous theorems yield results regarding
the uniform approximation to solutions of the elliptic equations (1.4)
and (1.6) by polynomial solutions of the equations. For further
results regarding the approximation of solutions of equation (1.4)
see [11] and [13].
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