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PRODUCTS OF CONJUGATE PERMUTATIONS

MANFRED DROSTE AND RUDIGER GOBEL

Using combinatorial methods, we will prove the follow-
ing theorem on the permutation group So of a countable set:
If a permutation pεS0 contains at least one infinite cycle
then any permutation of So is a product of three permuta-
tions each conjugate to p. Similar results for permutations
of uncoutable sets are shown and classical group theoretical
results are derived from this.

I* Introduction* We will deal with the symmetric group S» of
all permutations of a set of cardinality ^ v . Let us denote by \p\
the cardinality of the support [the underlying set without fixed
points], by (p)* the set of infinite cycles and by ps» the set of all
conjugates of some permutation peS». The following theorem is
shown in E. A. Bertram [3] and G. Moran [6] (see also [4]).

If s, pβSv, \s\ S \p\ and \p\ is infinite, then s is a product of
4 elements each conjugate to p. Furthermore, 4 is minimal with
this property. The latter follows by examining s = (123) and any
permutation p containing only transpositions (without fixed points)
in its disjoint cycle decomposition, cf. G. Moran [6, p. 76] and [4,
p. 288, 289]. If p is odd and s is even (with finite supports), then
obviously s $ (psή\ and similar examples with finite | p | show

Therefore, we have to exclude such examples in order to improve
the bound 4 of the theorem above. From the last two examples
follows our assumption \p\ — ^ v and from the first, the more specific
hypothesis \(p)c*\ ^ 1. It is the aim of this paper to show that
IPI = y$v and I (p)«, | ^ 1 will be sufficient to improve the bound:

THEOREM 1. Let s, pe So.

(a) // |(«)oo| ^ 1 and |(p)oo| ^ 1, then s is a product of two ele-
ments each conjugate to p.

(b) If I (s)oo I = 0 and \ (p)«> | ^ 2, then s is a product of two ele-
ments each conjugate to p.

(c) If |(s)oo| = 0 and \(p)<x>\ = 1, then s is a product of three
elements each conjugate to p.

Furthermore, the number of factors is minimal and may be re-
placed by any greater integer.

THEOREM 2. Let s,peSu and \{p)oo\ = #v. Then s is a product
of n elements each conjugate to p for any n ^ 2.
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If v = 0 and p is just one infinite cycle (without fixed points),
Theorem 1 sharpens various results of E. A. Bertram [2; pp. 275,
276, 278, 279, 281, 283].

If v — 0 it shows the range of validity of a conjecture in anothor
interesting paper of E. A. Bertram's [3; p. 322] which fails in general
as already shown in G. Moran [6] and independently in [4]. If p
consists of fc^ infinite cycles only [and v ^ 0], Theorem 2 is due to
A. B. Gray [5]. In addition, we obtain an interesting generalization
of 0. Ore's theorem [7; p. 313] that all elements of Su are commu-
tators: If w(xί9 - , xn) is a word of group theory with free variables
xl9 , xnf P. Hall calls a group G ^-elliptic of degree d, if any ele-
ment of G is a product of at most d ^-elements w(gu , gn) with
0u '' •> 0* e G' From Theorem 2 we derive:

Sv is w-elliptic of degree 2 for any word w. The degree 2 can-
not be improved in general.

In order to extend Ore's therem, that Su is w-elliptic of degree
1 if w = w(xlf x2) = xϊ1'X21'%i %29 to its full generality, it would be
interesting to classify all words w such that Su is w-elliptic of
degree 1.

2* Notation* K ^ M: K is a subset of M.
K\i)K', \JieiKi are disjoint unions; f\κ is the restriction of a

map / to K. af denotes the value of the mapping / at α, and so
maps are action from the right.

Z denotes the integers, Z° = Z\{0}.
N denotes the positive integers, JV0 = Nl) {0}, No* = Nϋ {°°}.
—N denotes the negative integers.
gG = {χ-χ g - χ; xeG} denotes the conjugacy class of g in the

group G.
Sv denotes the group of all permutations of a set M of cardi-

nality 5tfv.

Particular permutations are finite cycles of length n of M which
we denote by {xxx2 xJ = (ajJieίi,*] where [1, n] is the interval of
integers from 1 to n and xt e M. Infinite cycles are denoted by
( #_i x0 Xi ' •) = (Xi)iez> Sometimes it will be convenient to replace
the index sets [1, n] or Z of cyclic permutations by order isomorphic
sets; e.g., [n + 1, 2n]. Similarly Z° will often serve as an index set
for an infinite cycle. Then cycles act in the natural way (from left
to right) on their underlying set and are extended trivially to M.

Cycles will be identified with subsets of M which carry a natural
order given by a bijection onto [1, n] or Z, and its fixed points will
not be mentioned explicitely. We will reserve z for the infinite
"shift-cycle" s = ( - 2 - 1 1 2 •) acting on Z°.
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It is well known that a permutation can be written uniquely as
a product of possibly infinitely many cycles, which act nontrivially
on pair wise disjoint subsets of M. For details we refer to H.
Wielandt [9].

If p e S» let {p)k be the uniquely determined set of all cycles
of length keN™ of this disjoint-cycle decomposition (DCD) of p, \ (p)k \
its cardinality, {p}k the set of all elements in the support of (p)k.
Let {p}t denote the set of fixed points of p. Let {p} = Ui^e voo {v)k
be the support of p and \p\ = \{p}\ its cardinality. We put (p) —

U i ^ e vco (P)h

The following well-known result will be used without mentioning
it again:

Two permutations a, h eSu are conjugate if and only if | (a)k | =
\(b)k\ for all keNoo, cf. H. Wielandt [9, Lemma 2.5, p. 6].

3* Essential constructions for Theorem l(a)* The essential
techniques of this paper are the following natural and elementary
cutting- and inserting-arguments:

If I and J are linearly ordered sets, write I ~ J if there is an
order-isomorphism from J onto /. If j is an immediate successor
of i in I, we will write j — i + 1 or i = j — 1 in the following.

Let c = (cjiβi be a cyclic permutation of a given set M with
/ ~ Z or / ~ [1, n] for some neN. If K Φ 0 is a subset of I with
the induced order and K — Z or K ~ [1, m] for some meN, we are
led to a new cycle (c4)<β*. This cycle acts in the natural way on
its support {c?, i e K) and all cif for i 6 I\K, are fixed points. This
process will be called "cutting off I\K (or {cίy i e I\K}) from c".

Now let I~ Z and let K = [1, w] for some neN be disjoint
from /. For ie I we will consider a new set X — I\3 K which car-
ries a natural order induced from i, I and K:

Let x ^ y for a?, i/ e X if one the following conditions is satisfied:
(a) x, yel and x ^ y with respect to the order in I.
(b) xy y eK and α? ^ y with respect to the order in K.
(c) xel, yeK and & <; i with respect to the order in /.
(d) y eI, xeK and i < y with respect to the order in I.

Then X ~ Z and this process will be called "inserting K into I at
i". If i + 1 is the successor of i in J, we will say "inserting K
between i and i + 1 (or after i)" as well.

Furthermore, let cke M be given for each keK. Assume {ct;
i 6 /} Π {ck; k6K] = 0 and that the mapping &H> C* for keK is one-
to-one (as well as i \-^ Cι for iel). Inserting K into I at i leads
naturally to a new cycle (c^^x which acts according to the order
of X on its support {cίf ieX}. This will be called "inserting {c^)ίeκ
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into (Ci)ieI at i" (or at ct or between i and i + 1 or between Ci and
ci+1 if there is no ambiguity).

More generally, for any permutation i on I consisting of at
least one infinite cycle in its DCD and any element x e {d}oo, we define
"inserting {c^)i&κ after xeM into d" b y " i n s e r t i n g (cτ)ieK i n t o t h a t

infinite cycle c of d which contains x in its support". We will define
a two-parameter family g(n, k) of infinite cycles acting on Z° for
all keNa, and 1 <* n <£ k. These cyles will be modified, in particular,
by cutting- and inserting-arguments.

3.1. Construction of g(n, k) e Szo for k e N™ and 1 <£ n ^ k:
(a) If me Z and 1 ^ n ^ keNf we define

g(n, k)0 = n — 1 if n Φ 1 ,

;)2 m = (2m — ΐ)k + w — 1 if m7>l and

)<Lm = —2mAj + ^ — 1 i / m ^ — 1 ,

;)2m+i = — [(2m + l)ft + w] i / m ^ 0 α^d

)2»-i = 2mfc — w i / m ^ 0 .

(a*) T/te^ put

0(1, *0 = (flr(l, ^ λ e z o = ( 0(1, &)_2 0(1, &)_! 0(1, ft)! 0(1, λ>)2 •) and

g(n, k) = (0(w, *;)<)<ez = ( 0(w, &)_2 g(n, k)^g{n, k)og(n, k\g(n, k)2 •)

for all lΦn<LkeN.

(b) 1/ fc = oo α^d 1 ^ 7t e iV, j e Z dβ^we

0(%, oo)0 = 2(n - 2)2 + 1 and g(n, oo)2 = 2^2 - 2n + 3 ,

, oo)2. = 2[(w + jf - 2j - 3w] + 5 /or j ^ 2 ,

, oo)2i = 2[(n - i - I) 2 -2n + j] + 7 for j ^ - 1 ,

(b*) Then put

0(1, oo) = 0(1, 2)

oo) = (g(n, o

for all 1 Φ n e N .

(c) Let
k

9k = U 9(n, k) .
Λ = l

Next we modify 0(%, fc) and derive a second two-parameter family
of cycles:

3.2. Construction of h(n, k) e Szo for all k e N™ and 1 <* n tί k:
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Define h{n, k)2j = 2jk + n for all j ^ 0, h(n, k)2j = — (2j + ΐ)k + n
if j ^ —1 and h(n, k)2j+1 = — h(n,k)2j for all jsZ and keN. If
k = oo, put h{n, oo)2j = g(n, oo)_2i + l and h{n, °°)2j+1 = g(n, °°)_(2/+i)
for all n Φ 1 using (3.1).

define

h(n, k) = (ft(w, Λ0<)<βz = (

/or αίί neNand keNoo and put h(l, oo) = fe(l, 2).

LEMMA 3.3. ί/αcfc infinite cycle [which moves every element] of
a countable set is a product of two permutations each consisting of
k infinite cycles and no other cycles (including fixed points) for all

Proof. We may assume w.l.o.g. s e Szo and s = z is the given
infinite cycle and keN™. Elementary calculations show that the
cycles g(n, k) with 1 ^ n ^ k constructed in (3.1) define a decomposi-
tion of Z° into k subsets of cardinality fc$0. Hence gk = Πί=i 9(n, ^)
consists of k infinite cycles. Similarly hk = Π L i h(n, k) consists of
k infinite cycles, and z = gkhk can be checked elementwise (recall that
by our convention gk acts first).

LEMMA 3.4. Let p = a-b c be a product of three permutations
of SQ each consisting of fixed points and infinite cycles only. If
\(a)oo\ = |(6)oo| = 1, |{α} Π {6}| = °° and {a} (J {b} = {c}19 then p is a pro-
duct of two permutations g and h each consisting of just one infinite
cycle and with fixed points precisely {b}\{a} and {a}\\b} respectively.

Proof. Let Z be t h e index set of t h e following cycles. We
may assume w.l.o.g. a = (••• - 3 - 2 - 1 0 1 2 3 •••) and & = (••• - 3 *
— 2* — 1 * 0* 1* •) which have a set X of infinitely many numbers
in common. Assume c\{c} = TljejCj is i t s DCD wi th infinite cycles

Cj = (••• J-2J-lJθjlJ2 • ' • ) .

First we decompose X into \J\ countable subsets. Hence, the
numbers in X may be denoted as pairs j/n for neN0 and j e J. The
following modification of the cycle a leads to the infinite cycle g
which moves all the elements of {a} U {c} and no others: Insert j 0

into a between j/0 — 1 and j/0, and j _ k , j k between j/k — 1 and j/k
for all keN and je J. Define g to be the indentity on the set
{b}\{a}.

Next we modify b to obtain an infinite cycle h: Insert j k + 1 , j__k

into b between (jjk) and (j/k)b for all k e No, j eJ and define h to
be the identity on {α}\{b}.

We will show that p = g-h and distinguish between five cases:
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( i ) x 6 {a} and x + leX.
(ii) x e {a} and aj + l ί X
(iii) x = j _ k for some ά e N and jf 6 J .
(iv) sc = ^ for some keN0 and i e J.
( v ) ££{#}.
In case (i) we have x = j'/ft ~ 1 for some keN0 and i e J . Hence

x°k = (j/k - i r - i~k = (i/&)6 - U/k - l)ab = x*.
In case (ii) we have xgh = (a? + I)71 = a? + 1 = (x + l) δ = #α& = xp.
In case (iii) we get xgh = U = j j = j _ f c + 1 = j % = xc = xp.
In case (iv) we have α?ffΛ = i f = (j/k)h = j f c + 1 = j l = cc*\
In case (v) we have x e {b}\{a} and x9h = xh = xb = xab — xp. •

LEMMA 3.5. If s and p are permutations of a countable set each
containing at least one infinite cycle, then s is a product of two
elements conjugate to p.

Proof. For brevity, write m = | (p)«, 1. Then by our assumption
meNoo. Set k — 2 if m = oo, and k = m otherwise. We will con-
sider first the case |(β)oβ| = 1 which splits into four parts.

Case 1. 8 contains one finite cycle and p has no finite cycles in
its DCD.

First we label the underlying countable set in an appropriate
manner: Let / = (1* 2* n*) be the only finite cycle of s. If
c = (ϊ 2 n — 1) derive z* from the shift-cycle z acting on Z° in-
serting c into z after (2r + l)k for some positive integer r. Then
w.l.o.g. choose the underlying set M = ZQ ϋ {c} Ό {/} and s — z* f.
(This includes s = z(l*) if n = 1.

Observe again, that permutations are extended trivially to the
bigger set M.)

In order to define the elements g* and h* conjugate to p such
that s = g*-h*f we choose g = gm and h = hm defined in (3.1) and (3.2)
respectively, acting on Z°. Let e = (1* 12* 2 w — 1 w*) (and, in
particular, e = (1*) if w = 1). We obtain g by inserting e into
#(1, m) after the element (2r + l)fc = g(l, m)2r+2. Similarly, insert e
into Λ(l, m) after the element -(2r + 3)fc - 1 = [(2r + l) fe]ff(1'm) =
flr(l, m)2r+3 = h(l, m)_2r_3 to obtain h. Let g* = ^ Π?=2ί/(w, w) and
fc* = h'ΐ[n=2h(nf m). The new elements consist of m infinite cycles,
since all cycles of g and h remain unchanged, except for the two
first ones g(l, m) and h(l, m), which are "enlarged". Thus g*f fe*
are conjugate to p, and their product g*-h* equals s.

Case 2. s contains no finite cycles and p has, beside infinite
cycles, only one finite cycle of odd length 2n + 1.
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In this case we need two cycles / = (1* 2* (2n + 1)*) and
e = (ϊ 2 2n + 1) of length 2n + 1. They are disjoint and contain
no integers. Chose two different natural numbers x and y. Then
we obtain an infinite cycle z* acting on Z° \J {e} Ό {/} by inserting e
into z after the element (2a? + ΐ)k and / into z after the element
(2y + l)k. We choose s = z* w.l.o.g. Next we take g = gm from
(3.1) and insert (2 4 2n ϊ 3 2n + 1) into the cycle g(l, m) of g
after the element (2x + ϊ)k = g(l, m)2x+2 which leads to a product gr

of m disjoint infinite cycles acting on (Z°) Ό {e}. Similarly, take
h = hm from (3.2) and insert (1* 3* (2n + 1)* 2* 4* 2n*) into
the cycle h(l, m) of h after the element — {2y + 2>)k — 1 = fe(l, m)_2ί,_3

to get a product /&' of m disjoint cycles acting on (Z°)Ό{f}. Finally,
put g* — gf -f'1 and fe* = lπf -e~x, which are the required elements,
obviously conjugate to p and with product s by construction. For
later use we remark that if p has only one fixed point (i.e., n = 0)
then the fixed point 1*(1) of g*{h*) is an element of the infinite cycle
fc(l, m) ((/(I, m)) of

Case 3. s contains no finite cycles and p has, beside infinite
cycles, only one finite cycle of even length 2n in its DCD.

Let s~z w.l.o.g. and choose any natural number r. Next we define
g* acting on Z° by a modification of g — gm taken from (3.1). First,
cut the interval [ — 2r — 2n + 1, — 2r] from the first cycle g(l9 m) of
g to obtain a permutation g''. The missing numbers are #(1, m)_2(r+i) =
2fcr + 2/bi and ί/(l, m)_2r_2ί_1 = -2&r - 2fcί - 1 for 0 ^ i ^ % - 1 and
0 ^ ί ^ w — 1. Multiplication of gf with the disjoint cycle of length
2n (-2kr - 2{n - ΐ)k - 1, 2kr + 2{n - 1)Λ, -2kr - 2{n - 2)& - 1, ,
2&r + 2k, —2kr — 1, 2&r) will define g*. Then #* is obviously con-
jugate to p. Similarly, take h — hm from (3.2) and cut the interval
[2r, 2r + 2n — 1] from h(l, m). This leads to a product hf of m cycles
acting nontrivially one the set Z\{0, 2kr + 2kj + 1, —2kr ~ 2kt ~ 1;
0 ^ j £ n - 1, 0 ^ t ^ n - 1}.

Multiplication of K with the disjoint cycle of length 2n (2kr + 1,
-2kτ ~ 1, 2ftr + 1 + 2&, , 2kr + 1 + (n - ϊ)2k, -2kr -l-(n- l)2k)
leads to a permutation h* conjugate to p.

Elementary calculation shows s = g*-h*.

Case 4. |(s)oo| = 1 (and no other restriction).
The inserting-argument described in Cases 1 and 2 can be applied

simultaneously for all finite cycles of s and all odd cycles of p using
(possibly infinitely many) different natural numbers r, x, y.

For even cycles of p, apply Case 3 (possibly infinitely many times
simultaneously) at different numbers r at a distance such that the
cutting described above can be carried out at disjoint intervals
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separated by nonempty open intervals of the index set Z\ Thus
we get permutations g*, h* conjugate to p with s — g*-h*; further-
more we can carry out the cutting and inserting so that g* and h*
have infinite cycles gr resp. In! in their DCD with \{g'}C){h'}\ = oo
and {#*}i £{/&'} resp. {^*}iG {gr}. (Compare the remark at the end of
Case 2.)

Now we will drop the restriction |(s)oo| = 1 and consider (3.5)
in general. Because of Case 4 we may assume |(s)oo| ^ 2. Hence we
may decompose s into a product wv of permutations with disjoint
supports {u} and {v} such that u contains just one infinite cycle and
all the finite cycles (including fixed points) of s and v consists of all
the other infinite cycles in the DCD of s. Let C be the complement
of {v} in the underlying set. Let us consider for a moment u as a
permutation on C. By Case 4 there are permutations g* and h* on
Csuch that u = g*-h* and \(g*)n\ = \(h*)n\ = \(p)n\ for all ^eiVoo and
there are two infinite cycles g', hr in the DCD of g*, h* respectively
with [gr] n {hf} infinite, and so that {/&'} includes all points fixed by
g*, {gf} contains all points fixed by h*. Let g+ (h+) be the product
of all the other cycles in the DCD of g* (h*). Thus we have g* =
g+-g' (h* = h+-hr), and

(*) {g% £ {g+l n W) «h% s {A+h n {g'}).

Now consider g\ hf, v as permutations of the set D — ({#'} U {h'}) ϋ
{v}. Apply Lemma 3.4 to get gf-hf v — g-h on D, where g (h) con-
sists precisely of one infinite cycle and fixes the points of the set
ty}\W) (W}\W}) Now consider again all permutations as acting on
a l l of M. W e h a v e s = u v = g* -h* >v = g+ g' h'' v h+ = (g+ g) -{h - h + ) .
Since {g+} Π {g} = 0 we have

{g+-gl = {g+h n {gl = {g+h n ( W l ) = {̂ *}i by (*).

Therefore \(g+-g)n\ = \(g*)n\ = I(#)J f ° r ^ n eiVoo. A similar argument
holds for h-h^. Hence g+-g and h-h+ are the required elements. Π

4* Essential constructions for Theorem l(b)* As in §3, we
first define a permutation on a countable set which will be modified
by a cutting- and inserting-argument. In this section we will very
frequently make use of the permutations a(k) for k e Z acting on Z
defined by xa{k) — x + k for all x e Z. Then a(k) consists of \k\ in-
finite cycles if k Φ 0, the permutations a(k) and a{~k) are inverse
elements and α(0) is the identity. In the following, an interval
[m, n] will be identified with the cyclic permutation (m, m + 1, , n)
which acts trivially on the remaining points of Z. The following
notion will be useful:
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DEFINITION 4.1. Let {sέ; ie Z} be a decomposition of Z into finite
(naturally ordered) intervals st such that

( i ) if x e 8i9 y e s3- and x ^ y, then i <. j ;
(ii) if x e sif then x < 0 iff i < 0.

For ie Z let σ(i) = 1 if i ^ 0 and σ{i) = — 1 i/ i < 0. T/iew the
permutation s — ILezS*(ί) acting on Z will be called a uniform per-
mutation.

Observe that s maps negative integers onto negative integers
and that s leaves NQ invariant. Under the action of s any negative
integer moves at most one step down and any nonnegative integer
moves at most one step up, i.e.,

is ^ i — 1 for all i e — N and is ^ i + 1 for all ieN0 .

Here is a typical example

* = . . . (-6) ( - 4 - 5 ) ( - 1 - 2 - 3 ) (01 2 3) (4 5 6 7) (8)

In this case s_2 = [-5, -4], s_x - [-3, -1], s0 = [0, 3], s, = [4, 7] - .
It is clear that every permutation on Z without infinite cycles is
conjugate to a uniform permutation.

Immediately from (4.1) follows:

LEMMA 4.2. Any permutation of a countable set without infinite
cycles is a product of two (conjugate) permutations each consisting
of precisely k infinite cycles for any natural number k ^ 2.

Proof. We may assume that s is uniform, say s = ILezS?(ί).
Let a = a(k) and b — a( — k) defined as above, then the product c =
ΐίi^-i8i{t)-a operators after "Lenin's tactics": Hence every number
moves at least one step up under the action of c. Consequently, c
consists of infinite cycles only. Since c coincides with a on the posi-
tive integers, c decomposes into exactly k infinite cycles. The dual
argument shows that d = δ IL^o^ consists of precisely k infinite
cycles as well. Since a-b = 1, we get s — c d.

The following lemma generalizes (4.2) and will be used to show
(4.4), which is exactly the part (b) of Theorem 1.

LEMMA 4.3. Let s be a permutation of a countable set M without
infinite cycles and let G and H be subsets of {s} with the following
properties:

( i ) // {sj f)G Φ 0, then {sJ §£ G and {sj (Ί H = 0 and if
{Si} Π H Φ 0 , then {sj §£ H and {sj Π G = 0 for all cycles sz of s.

(ii) {sJ n (G U H) — 0 for infinitely many cycles st Φ 1 of s.
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Then for every natural number k ̂  2, there are permutations g and
h on M such that s = g h, {g}γ = G, {h}x — H and gy h consist of
exactly k infinite cycles and fixed points.

REMARK. G and H are disjoint subsets of the support of s by
construction. We obtain (4.2) for G = H = 0 .

Proof. Case 1. Let s be without fixed points. W.l.o.g. choose
s to be a uniform permutation so that G £ — JV, HQN and
min (βt) ί G U H f or all i e Z . This is possible by (i). Because of (ii)
we may further assume that UJ=1 {s<+/} Π (G\J H) = 0 for infinitely
many positive and infinitely many negative ie Z. Let c, d be defined
as in (4.2). We observe that for every infinite cycle cL of d and
ieZ: I{cL,}n U U {**+;}I ̂  1, hence we get

(iii) For every infinite cycle cL e (d) and <?«> 6 (c) the sets
({do*} Π iV)\(G U if) and ({<**>} Π -N)\(G U £Γ) are infinite.

Next we use the argument of (4.2), but a more complex version.
Define a map d*: Z—> Z by #d* = a? for all $ e i ϊ and xd* — max ({$**;
n e iV}\if) for all x e Z\H. Thus, d* fixes every element of H, and
for x $ H, xd* = #d, unless xd 6 H, in which case xd* = xd%, where
w e JV is first with xd% e H. The map d* is obviously injective and
well defined, since H Q N. lί y eH, then #d* = ̂/ and if y e Z\H,
define x = min ({yd~m; m e N}\H), which exists by (iii). Hence xd* = y
by definition of d* and d* is surjective as well. Therefore d* is a
permutation of Z whose set of fixed points is H, and whose only
nontrivial cycles are k infinite cycles.

We note that xd* < x whenever x$H. As in (4.2) we put c* =
β d*"1, which operates again after "Lenin tactics": If xseZ\H, then
xc* = (x'Y*"1 ^ (x'Y'1 > x because k ̂  2. If ίcs 6 if, then xs Φ min {sj
for all i ^ 0 by assumption on iϊ, hence α? Φ max {βj for all i ^ 0
and ^c* = x8 — x + 1 > x. Therefore c* has infinite cycles only. Since

c*-i restricted to negative integers coincides with c1, both permu-
tations have the same number k of infinite cycles. Finally, we modify
c* and d* to get the required permutations g and h. Put #3 = x
for all # 6 G and α' = min ({xc*n; n e N}\G) if x e Z\G. Again by (iii),
the map g is surjective and therefore a permutation of precisely k
infinite cycles, whose set of fixed points is G and with no finite
cycles of length > 1. We put h = g^-s. Therefore it remains to
show that h decomposes into the fixed point set H and k infinite
cycles. If xeH, then x e {sj for some i ^ 0, hence Xs'1 ̂  0 and so
Xs"1 $ Gy and also by 0 <: xs~x < xs~lc* we have xs~ίc* g G whence xs~lc* =
x8~l9. Hence x8~lg = xs~lc* = x^1 = x. Therefore xh = x9~ι's = x8'1" =

x, i.e., H is a set of fixed points under h. If xeZ\(G U if), there
is an n e N such that xh = α?'"1" = x(c*"W)s = a^*""1^"1* ^ ί̂ *̂5"1 "̂"1 -
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xc'Λ~n ^ x. Therefore xh < x, if n :> 2. But if n = 1 then also
#fe — χd* < x by x ί H. If x e G, we have xh = xs — x — 1 < x. There-
fore h has only infinite cycles outside H. Restriction of h~ι to N
shows the number of infinite cycles to be k. Therefore h decomposes
into the fixed point set H and k infinite cycles. Hence (4.3) is shown
in this case.

Case 2. s may have fixed points.
First, we remark that s moves infinitely many points, G (J H C [s]

and I {s}\(G U H) | = °° by assumption of (4.3). Because of Case 1
there are permutations g' and hf acting on {s} such that s = g'-h' if
restricted to {s}. Also {gf}1 = G, {hr}1 — H and gr, h' decompose into
fixed points and k infinite cycles only. Next, we enlarge the domain
of gf and hr to obtain the required permutations g, h acting on the
whole of Z. Since {s}\(G U H) is infinite, it is possible to select a
set X of \{8}x\ elements from {s}\(G U H) labelled by {s}2. Insert t
after xteX into gf and after xf into K for all t e {s}lβ The resulting
elements satisfy (4.3).

LEMMA 4.4. // s and p are permutations of a countable set, the
first containing no infinite cycles, the second containing at least two
infinite cycles, then s is a product of two permutations conjugate
to p.

Proof. We consider three cases.

Case 1. p has a finite number, k Φ 1, of infinite cycles and s
has infinitely many fixed points.

Denote by M the underlying countable set.
Decompose the fixed point set {s^ into subsets A and B of cardi-

nality \A\ = \M\{p}co\ and \B\ — ^ 0 . Next we define two permuta-
tions g and h. Let g\A = (&L)-1 such that | ( # | J , | = \(h\A)i\ = \(p)A
for all i e N which is always possible. It follows from (4.2) that
there are permutations g', hr restricted to X — B U {s} such that
six = 9f'h' and gf, hf consist of k infinite cycles only. Therefore put
g\χ = gf and h\x = hf and (4.4) is shown in this case.

Case 2. p has a finite number, k Φ 1, of infinite cycles and s
has only finitely many fixed points.

Let (lj - - m3) with 1 ^ j ^ n e N™ be an enumeration of all of
the finite cycles of p and let F — {ljf , mά\ 1 ^ j <; n}. Since (s)
[= set of all (finite) nontrivial cycles of s] is infinite, there are in-
jections *:2<7->(s), (ij-^if) and °:F->(s), (i5-*tf) such that F* Π
F° = 0 and # = (s)\(F* U F°) is infinite. Notice that {v} Φ 0 for
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every ve(s). Let / be a choice function defined on the set {{v}; v e (s)},
i.e., f(v)e{v} for ve(s). Define for each j cycles j * and j° (of dis-
joint supports) by j * = (/(I?), . . ., /(w*)), j° = (/(1°), , f{m°)).
Then the permutation *j (°j) defined by *j = j * ΠΓii i* (°i =
ΠΓiiίy i°) is easily seen to be a nontrivial cycle of length Ξ> 2my >
m, ^ 1 since | {*j} \ = Σ S 1 {if} [, ({°j} \ = ΣΓΐ I {i?} \. Let G = {/(%*);
ueί 1 } , f ί = { / M ̂ e n Notice that G £ Ui 0'*}, ί ί C U i b ' 0 } .
Now apply 4.3 to s* - (Π; i*) * (IL 3°) = (II; *i) Π ^ v(Πy °Λ
Notice that the right hand side is a disjointed product of nontrivial
cycles. Also G Π {*j} = {i*} and since \{j*}\ ̂  m5- < \{*j}\ we see
that {*j}\GΦ 0 . Similarly, {°j}\H^ 0 . This with |J5| = ̂ 0 implies
(i) and (ii) of Lemma 4.3. Hence there are permutations g* and h*
such that s* = g*-h*, {#*h = G and {/̂ K = H and #*, /&* decompose
into fixed points and |(p)«>| infinite cycles only. Finally, put g —
(Πi^i*)" 1 '^* a n ( i ^ = Λ' ' d l ^ i i 0 ) " 1 which are conjugate to p such
that s — g-h.

Case 3. p has infinitely many infinite cycles.
Since s has no infinite cycles, we decompose the underlying set

into infinitely many s-invariant infinite subsets M(i) for ieN. Then
apply Case 1 and Case 2 to s€ = s\MU) such that ŝ  = ^I ΛΌ l(̂ i)oo| =
I(ftĵ I = 2 for all ieN, gi9 hi have no finite cycles for all i ^ 2 and
I (0i) I - I (hX I - I (p)Λ I for all n e N. Then g = ΠΓ=i 0* and fc - ΠΓ=i K
are conjugate to p and s = g-h.

5. Essential constructions for Theorem l(c)*

LEMMA 5.1. If s and p are permutations on a countable set
such that s contains no infinite cycles and p precisely one infinite
cycle, then s is a product of three permutations conjugate to p.

Proof. Case 1. s has finite support.
Decompose the fixed points {s}1 into an infinite set A and a set

B of cardinality \({p) U {p}i)\{p}oo\. Obviously, there is an element
teS0 with \(t)n\ = \(p)J for all neN^ and {t}^-= A ϋ {s}. From
| s | < co follows ((̂ ~1β)oo[ ^ 1 and an application of (3.5) for t~xs leads

to elements u, v conjugate to P [as is t] such t h a t t~ιs — uv or s = tuv.

Case 2. If s has infinite support, decompose {s} into an infinite

s-in var iant set A and a set B w i th | ({p} (J {p}d\{p}™ I ̂ \B\. Let i?*

be a subset of B w i th cardinality |J5* | = \({p} U {ί>}i)\{2?}oo|- Next we

define a permutat ion t conjugate to p. P u t t\B* such t h a t | ( ίU ) J =

\{p)n\ for all weiV. Let s\A = U^zS, w i th s, = (1,2, ••• m<) given

in its DCD. We "glue the cycles t o g e t h e r " and let t\{s.]X{mi} — s^s^m^
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and m\ = li+1. Next insert the elements in {s}λ (J (B\B*) elementwise
into t after l έ for arbitrary different co-ordinates is Z. The result
is one infinite cycle which completes our permutation t. Since
(li+i)*"1* = h for every ieZ, we have \(t~1s)oo\ ^ 1. As in Case 1 we
conclude s e (ps°y.

6* Proof of the theorems and consequences*

Theorem 1 follows directly from (3.5), (4.4) and (5.1). The mini-
mality of the factors is either obvious or follows from an example
due to M. Perles, which can be found in E. A. Bertram [2; p. 277,
Theorem 2.2]. The number of factors can be enlarged, as follows
immediately from part (a) of Theorem 1.

Proof of Theorem 2. Let \{p)oo\ = \^u and decompose s = ILe/S*
such that (s<) <; (s) and each ^ has a countable infinite domain St.
Next we split (p)k — {JieiP(i, k) with finite—possibly empty—subsets
p{i, k) for all keNco and take p(i, oo) to be any set of two elements.
There are permutations ci and c[ acting on St with ^ — c^c\ on St

and \(ct)k\ = |(c )fc| = \p(i, k)\ for all keNoo as follows from (3.5) and
(4.4). Hence c = J\ίeIci and c' = ILe/e' are conjugate to p and
satisfy s — c-cf.

As in Theorem 1, the number of factors can be enlarged. There
are two interesting consequences of this kind of theorem.

COROLLARY 6.1. (R. Baer [1], J. Schreier and S. Ulam [8], cf.
[4, § 4].) The alternating group and S(σ) = {peS>; \p\ < #σ} for all

σ <i v + 1 constitute a Jordan-Holder-chain of Sv.

This follows already from E. A. Bertram [3] for v = 0 and is
shown in [4] for v ^ 0.

The other consequence is a generalization of a theorem by 0.
Ore. With the notation given in § 1, we have

COROLLARY 6.2. Sv is w-elliptic of degree 2 for any word w.
The degree is minimal in general.

REMARK, (a) Corollary 6.2 follows already from a result of
A. B. Gray [5] by the subsequent argument. It is, however, false
for finite symmetric groups (take the commutator word w = xx ° x2 =
xΓ1 itr1 *#i*#2 &nd a n y odd permutation).

(b) If w = x1°x2, then Sv is w-elliptic of degree 1; cf. 0. Ore
[7] or R. Gobel and M. Droste [4, p. 289, Corollary 4.2].

Proof of the corollary. Let w(xlf , xn) Φ 1 be any nontrivial
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word of Group Theory and let F = (e^ i < ωv> be a free group of
rank \^u with free generators et; let ωv be the first ordinal with
cardinality fc$v. Then we have

( + ) for every xeF: x-w(elf , en)
m = x iff m = 0 , and

(++) for every k and r with n < k < ωv and r < ωv:

ek w(el9 , en)
m = er iff m = 0 and k — r .

Embed a:F<=^Sv via right regular representation and identify Sp

with all permutations of F. Put p = w(el9 , eJα = w(βf, , e£)
and e? = «<β Then p consists of no finite cycles, but of precisely ^ v

infinite cycles as follows from (+) and (++). Hence Su = (ps»)2 from
Theorem 2: If seS», there are g,heSv such that s — pg-ph —
W(S9

19 •••, 8 g

n ) ' W ( 8 Ϊ , ••', S ί ) .

In order to show the minimality of the degree, consider w(x) — x2.
However, infinite cycles are not squares, since every square has at
least two cycles in its DCD.

REMARK. The above argument yields that all elements of Fa,
especially slf •• ,8Λ, consist of precisely )&v infinite cycles and no
finite cycles (including fixed points).

REFERENCES

1. R. Baer, Die Kompositionsreihe der Gruppe aller eineindeutigen Abbildungen einer un-
endlichen Menge auf sick, Studia Math., 5 (1934), 15-17.
2. E. A. Bertram, Permutations as products of conjugate infinite cycles, Pacific J. Math.,
39 (1971), 275-284.
3. , On a theorem of Schreier and Ulam for countable permutations, J. Algebra,
24 (1973), 316-322.
4. M. Droste and R. Gobel, On a Theorem of Baer, Schreier and Ulam for Permuta-
tions, J. Algebra, 58 (1979), 282-290.
5. A. B. Gray, Infinite symmetric and monomial groups, Ph. D.-Thesis, New Mexico
State University, Las Cruces, N.M. 1960.
6. G. Moran, The product of two reflection classes of the symmetric group, Discrete
Math., 15 (1976), 63-77.
7. O. Ore, Some remarks on commutators, Proc. Amer. Math. Soc, 2 (1951), 307-314.
8. J. Schreier and S. Ulam, Uber die Permutationsgruppe der natiirlichen Zahlenfolge,
Studia Math., 4 (1933), 134-141.
9. H. Wielandt, "Unendliche Permutationsgtuppen", Tubingen 1959/60; reprinted, York
University, Toronto, Canada, 1967.

Received February 2, 1979, and in revised form May 14, 1980.

FACHBEREICH 6-MATHEMATIK

UNIVERSITAT ESSEN, GHS

D-4300 ESSEN, GERMANY




