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THE HOMOMORPHISM ON FUNDAMENTAL GROUP
INDUCED BY A HOMOTOPY IDEMPOTENT

HAVING ESSENTIAL FIXED POINTS

Ross GEOGHEGAN

/ : I - > l i s a periodic homotopy idempotent if / is homo-
topic to fk+1 for some positive integer k. Special cases are
homotopy idempotents ik=l) and period k homeomorphisms.
Let X be a compact polyhedron and let / have an essential
fixed point x; there is such, for example, when the Lefschetz
number is nonzero. During a homotopy H: f = fk+1

9 x traces
out a loop ω. Generalizing a theorem of Gottlieb, we show
(Theorem 1.2) that the possible values of [ω] in πt(X, x) are
severely restricted. In particular, some power of M[ω]) is
a commutator. The theorem is applied in a sequel paper.

1* Introduction* In [2], Gottlieb proved that if the group π

has a finite complex as K(π, 1) and if the Euler characteristic of
K(π, 1) is nonzero, then π has trivial center. The core of Gottlieb's
proof was the following

PROPOSITION 1.1 (Gottlieb). Let the compact connected polyhedron
X have nonzero Euler characteristic, let xe X, and let a) be the loop
at x traced out by x during some homotopy which begins and ends
at the identity map. Then, in π(X, x), [&)] = 1.

The main theorem in this paper is essentially a generalization
of Proposition 1.1. Let us call the map f:X-+X & periodic homo-
topy idempotent if / is homotopic to ( = ) fk+1 for some positive integer
k. The most important case is k = 1, when / is a homotopy idem-
potent. Our theorem requires that an essential fixed point of / be
used as base point. We carefully review the relevant fixed point
theory of Reidemeister, Nielsen and Wecken, in § 2; for now it is
enough to say that if the Lefschetz number of / is nonzero, then
/ has at least one essential fixed point. Gottlieb, in Proposition 1.1,
was looking at the case / = lx: in that case all points are fixed points,
and either all are essential or all are inessential depending on whether
the Euler characteristic is nonzero or zero. Here is our theorem:

THEOREM 1.2. Let f:X-+Xbe a periodic homotopy idempotent
on a compact polyhedron, and let x be an essential fixed point of f.
Using x as base point let H: f = fk+1. Then there are integers 0 <;

ω

m < n and a loop σ based at x such that, in πx(X, x), [ω\n~m =
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M-ft^Hlσ]"1). Hence when k = l fΔoΛn~m) is the commutator

Theorem 1.2 is proved in § 5. A simpler version, Theorem 3.1,
is proved first, because it illustrates the method while it avoids
technical difficulties. In fact Gottlieb's Proposition 1.1 is a corollary
of Theorem 3.1, while only the weak conclusion [&>]%~m = 1 can be
drawn from Theorem 1.2, when / = l x . Nonetheless 1.2, and not
3.1, is the useful result.

It has already been hinted that Theorem 1.2 is a theorem in
fixed point theory, but the applications we have in mind for it are
outside fixed point theory. The first application is to the problem
of splitting homotopy idempotents on finite complexes. The back-
ground material for that problem is disjoint from the background
material for Theorem 1.2. Hence we have separated the two: that
application is made in our paper [3], which is intended to be a sequel
to the present paper. However, to give a context for Theorem 1.2,
we will say where homotopy idempotents actually arise. Suppose X

d
dominates the space Y; this means there are maps 1 ^ 7 such that

u
dou^lγ. Then u<>d = u°(d <>u) °d, so nod is a homotopy idem-
potent. The problem of splitting, mentioned above, is the problem
of whether this is the only source of homotopy idempotents, when
X is a compact polyhedron. As we write, the answer is unknown.
See [3].

We have a possible second application of Theorem 1.2 in mind:
it is unclear whether the Nielsen number (see § 2) of a homotopy
idempotent can exceed 1; and the answer seems to be related to the
presence of Z-summands in KQ{πx{X, x)). We will develop this in a
later paper. (See note added in proof.)

Finally, we remark that our interest is in homotopy idempotents
rather than periodic homotopy idempotents. Nonetheless, it seems
sensible to do Theorem 1.2 for periodic homotopy idempotents. The
only addition to the price is the need to use the classical Dirichlet
theorem on the existence of infinitely many primes of the form nk + 1,
for given k. And periodic homeomorphisms are thereby included,
though we have not yet found an application of 1.2 in that context.

We gratefully acknowledge the help of Po-chu Chiang (= Bo-ju
Jiang) who read an earlier version of this paper and made many
helpful comments.

2* Review of fixed point theory• We recall the principal con-
cepts of Nielsen-Reidemeister-Wecken fixed point theory. For details
see [1].
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Let f:X—>X be a map on a compact connected polyhedron.
Two fixed points x and y are f-equivalent if there is a path τ from
x = r(0) to 7/ = τ(l) such that τ and / o r are homotopic rel {0, 1}.
The /-equivalence classes are called fixed point classes: there are
finitely many, and each is a closed set.

With each class is associated an integer called its index. The
definition is homological, and is complicated to state in general (see
[1; p. 87]). But we will only need specifics for nice maps: in that
case there is a combinatorial definition which we now give. Suppose
X is a PL ^-manifold in Rn and that for some triangulation K of X
f is afδne on each simplex of K and has no fixed points in the
(n — l)-skeleton Kn~\ Let x e s be a fixed point in the ^-simplex s
(there can only be one in s by our supposition). The index of f at
x is ( — l)e{x) where e{x) is the number of real eigenvalues greater
than 1 of the linear map Tx defined by translating /1 s to the origin,
x being moved to 0. Of course eigenvalues are to be counted with
multiplicity. Equivalently, the index of / at x is sign det (/ — Tx)\
the equivalence can be proved using Jordan canonical forms. The
index of a fixed point class is then the sum of the indices of / at
each x in the class.

In the general case, the index of / at individual fixed points is
not defined, only the index of each fiexd point class.

A fixed point class is essential if its index is nonzero. The
number of essential fixed point classes is N(f), the Nielsen number
of /. We denote the set of essential fixed point classes by E(f).

We now describe the sense in which N(f) and the nonzero indices
are homotopy invariants. Suppose H is a homotopy from / to g.
Then H induces an index-preserving bijection aB\ E(f) —> E(g) in the
following way. First, suppose f{x) = x and g(y) — y. x is H-related
to y if there is a path σ from x = σ(0) to y = σ(l) such that σ( )
and H(σ(-)9 •) are homotopic rel {0, 1}. (One should think of σ(t) as
being an "up to homotopy" fixed point of Ht.) A fixed point class
F of / is H-related to a fixed point class G of g if some (equivalently
any) x e F is iϊ-related to some (equivalently any) y eG. It is a
theorem [1; p. 94] that if FeE(f) then there is exactly one G e E{g)
which is iϊ-related to F; moreover the /-index of F equals the g-index
of G. Define aH(F) = G. Clearly we have

PROPOSITION 2.1. If H' is a homotopy from g to h and if
H*H' is the concatenation of H and Hf {from f to h) then aHifH> —
aιvoaH. •

The sum of the indices of all fixed point classes is the Lef schetz
number L(f). Of course, if X is simply connected then there is only
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one fixed point class, whose index is L(f).
The geometrical meaning of N(f) is that for nice X(e.g., mani-

folds of dimension ^ 3) / is homotopic to a map having N(f) fixed
points, and this is best possible. We shall not use this.

By an essential fixed point of / we mean a fixed point whose
/-equivalence class is essential. As we have seen, if L(f) Φ 0, / has
an essential fixed point. The converse is false. The map / on the
"figure eight" which sends a to αr1 and b to b2 (α and b being
the two loops) has L(f) = 0 but both fixed points are essential [1;
p. 112].

PROPOSITION 2.2. Let x e X be a fixed point of both f and g, let
H: f = g and ω = H(x, •)• If the f-equivalence class of x is H-related
to the g-equivalence class of x then there exists a loop σ based at x
such that, in π^X, x), we have [co] = M ^ M " 1 .

Proof. For any loop σ in X, the loop (x, •)*(#(•), 1)*(<?(•), •) is
homotopically trivial in X x /, where σ(t) = σ(l — t). Hence ω*
(g°σ)*H(σ( ), •) is trivial in X. By hypothesis σ can be chosen so
that H{σ{-), •) is homotopic to σ. Π

3* A first theorem, which implies Proposition 1*1* We now
make our first application of the fixed point theory reviewed in § 2
to periodic homotopy idempotents. The theorem we get, Theorem
3.1, is not really suitable for our purposes, because the hypotheses
are too strong. However: it is easily proved, it illustrates the
method of proof of our "better" Theorem 1.2, and it implies Gottlieb's
Proposition 1.1.

THEOREM 3.1. Let f:X-^Xbe a periodic homotopy idempotent
on a compact polyhedron and let x be an essential fixed point of f.
Using x as base point, suppose there exists a pointed homotopy F:
f ~ fk+1. Let H: f = fk+1 be another homotopy. Then there are in-

tegers 0 ^ m < n ^ N(f) and a loop σ based at x such that, in
, x),

[Compare 3.1 with 1.2. In 1.2 we do not assume that any base
point preserving homotopy exists, and we cannot conclude that
n

Proof of 3.1. The existence of F means that x a s a fixed point
of fk+1 is essential, since it is ^-related to x as a fixed point of /.
Hence x is an essential fixed point of frk+1 for all r > 0. Now
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consider

E(f) -fϋ* E(fk+1) - ^ - - — E(fNk+1)

where N = N(f) and α M + 1 abbreviates aHo{fikxl) (in the notation of
§2). These are N bijections between JV-element sets each of which
has a preferred element, the class of x. For some m < n an_Un o. . o
αm,»+i maps the /mfc+1-class of x to the /%fc+1-class of x. So a? is H-
related to itself, where H is the concatenation (Ho(fmk x 1)) * *
(.ffo (/<—"* x 1)). The theorem follows, by Proposition 2.2, since

Proposition 1.1 is an immediate corollary of Theorem 3.1. Just
set / = lx; all x are lx-equivalent, so all are essential because X(X)ΦQ.
If X is a K(π9 1), obstruction theory allows one to build a homotopy
H: lx = 1Γ if and only if [co] is in the center of π = it^X, x); hence

ω

Gottlieb's theorem that π has trivial center. Note that Stallings
[7] reproved this by a method which does not give Proposition 1.1.

4* Fixed points of iterates of a map* The purpose of this
section is to prove

PROPOSITION 4.1. Let p be an odd prime and f:X—>X a map
on a compact polyhedron. Let G be an essential fixed point class of
fp. Then at least one of following is true: (a) N(fp) ^ p; (b) p
divides the fp-index of G (c) G contains an essential fixed point off.

In § 5 we will apply this to a periodic homotopy idempotent /, in
which case (a) and (b) must fail for suitable large p, forcing (c).

To prove 4.1 we need some lemmas.

LEMMA 4.2. Let f:X—>Xbe a map on a compact PL n-mani-
fold in Rn and let ε > 0. There is a triangulation K of X and a
map g:X-*X such that (i) g is uniformly within ε of f and
g{X) c int X; (ii) g is affine and nonsingular on each simplex of
K) and (iii) the periodic points of g lie in the interiors of n-simplexes
of K, and those of period p are isolated, for any p.

This is a general position lemma. In preparation for the proof
we look at the affine case. If a: Rn —» Rn is affine, call the associated
linear map Ta{-) = a(-) - α(0). Note that TβoTa= Tβoa.

LEMMA 4.3. // det(Ta — I) Φ 0 then a has exactly one fixed
point.
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Proof, a fixes (/ — Ta)~ιa(ϋ). Suppose a fixes y and z; Ta(y—z) =
y — z so y = z since Ta — / is nonsingular. •

Proof of Lemma 4.2. By [4; p. 94] we can find K and # satis-
fying (i) and (ii); this is the K we want, so just assume / satisfies
(i) and (ii). K has r vertices and s w-simplexes.

Let F be the space of maps X —> R* which are affine on each
^-simplex of K. Then feF and F = Rnr. Let A be the space of
affine maps Rn —> Rn. Let Mn(R) be the space of real n x n matrices.

We will show that for each integer p > 0 the elements of F
having isolated period p points all in the interiors of w-simplexes are
open and dense in F. By the Baire Category Theorem this is enough.

We construct a nonzero polynomial map

9 = ̂ °^°^°Φi Rnr = F > R

as follows. φx: F'—• As maps h to (au •••, a8) where at is t h e affine

map defined by h\σt. ψ2: A
s -> Mn{R)s maps (α^ , as) to (Λ, , A8)

where At is t h e m a t r i x of Ta.. ό3: Mn(R)s —> Mn(R)sP maps (Al9 - , Aβ)

to {#«!,...,<p)} where (ix, •••,%) ranges over t h e s^ ordered ^-tuples

picked from {1, , s}, and

-β(ί, ~ ip) — \Aiλ Aίp — I)

x (Ah A<p_ι + Ah - . . Aip_2 + + A iχ + /) .

ψt. Mn(R)sP-> R maps (jB(<1,...,tp,) to Πaiiu^-.v det B(il...tip). φ1 and ̂ 2

are linear, φs and ζ54 are polynomial, φ is nonzero because φ(0) =
( — l)71^. Hence 9-1(0) is nowhere dense in F.

If he F, the graph of /^ lies in the union of the graphs of the
maps aho > oaip. If φ(h) Φ 0 then each of those compositions has
one fixed point, by Lemma 4.3, so the period p points of h are iso-
lated. The same matrices Ah Aip occur for translates h + η,
Ύ] eRn, so h + η also has isolated period p points when φ(h) Φ 0. We
claim that when φ(h) Φ 0 and rj is in a dense open subset of Rn, the
(isolated) period p points of h + η miss the (n — l)-skeleton of K.

If a is affine and det (Ta — I) Φ 0 then, as in 4.3, the unique
fixed point (I — TJ^αCO) of a misses the polyhedron P if and only
if α(0) misses the polyhedron (/ — Ta)(P). We apply this, with
P = Kn~\ to each αίχ° oaip a(x) = Γα(α;) + α(0), and by induction

ip

atlo. o α < (0) = Σ Γβ.β...β β <.(α< ί + 1(0)) .

Iί ηe Rn, and β( = α, + 57, t h e n Γα ί = Γ ? i

Σ
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Now Ta. o...oα. = Ta. o . . o Tα. , so the fact that φ(h) Φ 0 ensures that
Σy=o Ta. o...βαί. is nonsingular for every (^, , ip). Thus for a dense
open set of '^'s, βh° °βip(0) misses Kn~\ for all p-tuples (il9 •••,
ΐ p). This proves the claim, and therefore the lemma. •

01

If p is prime, nonfixed period p points of a map g occur in
'bits {x, gix), - , gp~\x)} containing p distinct points.

LEMMA 4.4. Let g be the map obtained in Lemma 4.2, p a
prime, and {x, g(x), , gp~\x)} an orbit. Then the index of gv at
gr(x) {see § 2) is independent of r.

Proof. gp is afRne and nonsingular on a small neighborhood of
x, so the lemma boils down to showing that if To, , Tv_λ are linear
maps on Rn, sign det (I - 2> . . o Tp_x) = sign det (/ - 2\o... o τp_λ° TQ),
which is obvious (conjugate by To). D

LEMMA 4.5. Let g be the map obtained in Lemma 4.2, and let
G be an essential fixed point class of gp, p an odd prime. Then G
consists of entire fixed point classes of g, as well as nonfixed period
p points of g. If N(gp) < p, the nonfixed period p points occur in
G in entire orbits.

Proof. The first part is immediate: if g{%) = xeG and g(y) = y,
where x is (/-equivalent to y, then x is ^-equivalent to y, so y e G.
The second part is divided into cases. Case 1: G contains a fixed
point y of g; let x e G be a nonfixed period p point; y is ^-equivalent
to x, so gr(y) = y is ^-equivalent to gr{x), 0 ^= r ^ p — 1, so the orbit
of x lies in G. Case 2: G contains two or more elements of an orbit;
then all the elements of that orbit are ^-related because p is prime.
Case 3: G has no fixed points of g and contains exactly one member
of the orbit {x, g(x), , gv~\x)}. Then G contains at most one
member of each orbit, because for all period p points y, gr(x) is gp-
equivalent to gr(y) whenever x is ^-equivalent to y (g(y) Φ y in Case
3). Furthermore the ^^-equivalence class of each gr{y) can contain
no fixed points of g, by the analysis in Case 1, and only gr(y) from
the orbit of y, by the analysis in Case 2. Thus in Case 3 we find
p disjoint #?-equivalence classes G, g(G), , gp~\G). They have the
same 0p-index by Lemma 4.4. So we have p essential fixed point
classes of gp, contradicting N{gp) < p. •

LEMMA 4.6. Let g be the map obtained in Lemma 4.2 and let
g(x) — x. If p is odd, g and gp have the same index at x.

Proof, g and gp are afRne on a small neighborhood U of x. Let
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Tx be the linear map defined by translating g\U. If λέ is an eigen-
value of the linear map Tx with multiplicity mif then λ? is an eigen-
value of (Tx)

p with multiplicity mf [6; p. 171]. If Xt is nonreal and
λ? is real, the same is true of λ<, so the extra contribution to the
index is an even power of — 1. If λ< is real λ? > 1 if and only if
λj > 1 since p is odd. So the indices are the same. •

Proof of Proposition 4.1. Replace X by X', a regular neighbor-
hood of X in some i?%, and fbyf' = iofor where r is a retraction
X' -^ X and i is inclusion X-+X'. The fixed point classes of / ' are
those of /, and their indices are the same, since the "commutativity"
of indices [1; p. 53] equates the indices of / ' = io(for) with those
of / = (for)oi. The same is true of (f)v versus fp. So we need
only prove the proposition for / ' . We now drop the primes.

By homotopy in variance (§2) it is enough to prove the proposi-
tion for g:X-*X obtained from / by Lemma 4.2, ε being small
enough to ensure g homotopic to /.

Suppose (a) and (c) fail to hold. Then G contains no essential
fixed point of g, and N(gp) < p. By Lemmas 4.4-4.6, the contribu-
tion of the fixed points of g lying in G to the βrMndex of G must
be zero, while the contribution from nonfixed period p points must
be divisible by p. So (b) holds. •

5* Proof of Theorem 1*2*

PROPOSITION 5.1. Let f = fh+1 be a peridic homotopy idempotent
on a compact polyhedron. Then there are infinitely many primes
p of the form rk + 1, such that every essential fixed point of f is
an essential fixed point of fp.

Proof. By Dirichlet's theorem [5] there are infinitely many
primes of the form rk + 1. For all but a finite number of such primes
p, N{fp)<p and p does not divide any /p-index. Hence every essen-
tial fixed point class G of fp contains an essential fixed point of /,
by Proposition 4.1. So G must contain an entire essential fixed point
class of /, since /-equivalence implies /^-equivalence for fixed points
of /. Since / is homotopic to fp, N(f) = N(fp), so there are no es-
sential classes of / left over. •

Proof of Theorem 1.2. The proof is like that of Theorem 3.1,
but we no longer know that x is an essential fixed point of every
frk+1. Instead, using Proposition 5.1, we have N = N(f) primes
Pi < Ί>2 < ' < VN of the form pt = rjt + 1 such that x is essential
for fpκ As in that proof we consider N bisections
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E(f)

and conclude that [ω]r^ri = [σ]-/;^1^]-1) . •

Added in proof, April 1981. Theorem 1.2 is related to an al-
gebraic theorem of Bass. See my paper Fixed points in finitely
dominated compacta: the geometric meaning of a conjecture of H.
Bass (especially Appendix II). The paper will appear in "Shape
Theory and Geometric Topology," Lecture Notes in Math., Springer-
Verlag.
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