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SOLVABILITY OF NONLINEAR OPERATOR EQUATIONS

W. J. CRAMER, JR. AND WILLIAM 0. RAY

Let X and Y be Banach spaces, P: X-» Y a Gateaux
differentiable operator having closed graph. Suppose

( i ) for each R>0 there is a δ>0 such that

dPΛB(O;l))^B(O;δ) whenever
(ii) P'^K) is bounded whenever el(K)QY is compact;

then P is an open mapping of X onto Y. Similar results
are obtained for compact Gateaux differentiable operators
using a local version of (i); the same local version gives a
domain invariance theorem for Gateaux differentiable
operators having closed graph. Related results deal with
M. Altman's theory of contractor directions and theory of
normal solvability as developed by F. E. Browder and others.

1* Introduction* Let X and Y be Banach spaces and P: X—> Y
a nonlinear operator. In this paper we consider the global implica-
tions of certain local assumptions on P and, in particular, derive
general conditions under which P will be an open mapping of X
onto Y. While our hypotheses are motivated by differentiability
conditions on P, our results will apply to operators which need not
even be continuous.

A 1959 theorem of R. S. Palais [17] provides the prototype for
our results; Palais' theorem states that if P: Rn —> Rn is a continu-
ously differentiable mapping, then in order for P to be a diffeomor-
phism it is necessary and sufficient that

(1.1) 0 is not an eigenvalue of dPΛ for any x

and

(1.2) || Px || > oo as || x || > oo .

We are primarily interested in extending the surjectivity portion
of Palais' conclusion to operators acting on arbitrary Banach spaces;
our methods, in addition, will show the operators we consider are
open maps.

Extensions of the above type have recently been obtained for
continuously Frechet differentiable operators P acting on a Banach
space X (see § 3 for definitions). In [13] R. Kacurovskii shows that
if (1.1) and (1.2) hold and if (/ — P) is completely continuous, then
P is a homeomorphism of X onto X. M. Krasnoselskii has also
observed this result is true [16], and in addition has observed that
if (1.1) is strengthened to
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dPx is a continuously invertible linear operator for each

x and supίlKcZP.)-1!!: \\x\\ £ r} < oo for each r > 0

then the assumption that (J — P) is completely continuous may be
dropped while retaining the conclusion of Kacurovskii's theorem.

In each of the above results, the Inverse Function Theorem
implies that P is an open map; a modified Newton-Kantorovich
procedure then easily gives surjectivity (see Theorem 4 of [14]) and
an elementary covering space argument gives injectivity (see [16]).
The arguments rely heavily on continuous differentiability of P
and, in this case, the proof of surjectivity is a special case of the
contraction mapping principle.

The above results can be thought of as showing that the problem
y = Px is well-posed (in the sense of Hadamard) in that they show
that

(1.3) the solution x exists for each y;

(1.4) the solution is unique;

and

the solution depends continuously on the initial data y
(1.5)

(i.e., P is an open mapping).

It will be a consequence of our more basic results that the conclu-
sions (1.3) and (1.5) will hold for Gateaux differentiable operators
having closed graph, and also for operators satisfying a coercive
condition somewhat weaker than (1.2). In addition, we are able to
obtain a domain in variance result for Gateaux differentiable operators
which will play much the same role in our theorems as the Inverse
Function Theorem plays in the earlier results.

In place of the contraction mapping principle, our basic tool is
the following maximal principle of H. Brezis and F. E. Browder [2]:

PROPOSITION B. Let (X, d, <0 be a partially ordered metric
space and let φ:X-*[0, oo) be an arbitrary function. Suppose

(1.6) S(x) = {y e X: y ^ x) is closed for each x e X

(1.7) x ^ y and x Φ y imply φ{y) < φ(x); and

(1.8) any nondecreasing sequence is relatively compact.

Then there is an xoeX for which S(x0) = {x0}.

The above is striking not only because it includes such well-
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known results as Ekeland's theorem [11] and Caristi's reformulation
of the same [10] as easy corollaries, but also because of the elegant
simplicity of its proof. For a discussion of related results, the
reader is referred to [2] or [12].

We now turn to our results. In § 2 we prove our basic mapping
theorem and then derive from this in § 3 our results for Gateaux
differentiable operators. We conclude in § 4 with some remarks
which relate our results to M. Altaian's theory of contractor direc-
tions and to the theory of normal solvability.

2* Basic result* In this section we derive our basic mapping
result. In §3 we explore the consequences of this result for the
Gateaux differentiate operators, and in § 4 further extend these
results to more general mappings.

If (X, d) is a metric space, we denote by B(x; r) the set

B(x; r) = {weX: d(w, x) <: r} .

Also, if P: D Q X-+ Y, where Y is a Banach space, we say P has
closed graph if whenever xn - ^ ^ in I and Pxn —> y0 in Y, then
x0 6 D and P(xQ) = y0.

THEOREM 2.1. Let (X, d) be a complete metric space, D £ X, Y
a Banach space, P: D -* Y a mapping having closed graph and
B: [0, °°)—»[0, oo) a continuous nondecreasing function satisfying

s~1B(s)ds < oo for each b > 0. Suppose for some fixed weD and
0

constants q e (0, 1), a > 0, M> 0 and a = M\\Pw\\eι-q that

(2.1) (1 - q)-1^ s~1B(s)ds ^ a .
JSuppose further that, corresponding to each x e B(w; a) f] D there is

an x e D and an ee (0, 1] such that

(2.2) \\Px-(l-ε)Px\\ £qe\\Px\\

and

(2.3) d(x,x)^εB(M\\Px\\) .

Then there is an x0 e B(w; a) Π D for which Px0 = 0.

Proof Set E = Dx[0, oo), define a metric p on E by

ρ((x; s), (y, t)) = max {| t - s |, d(x, y), \\ Px - Py ||} ,

and define φ: E->[0, oo) by φ(x, έ)=\\Px\\. Since Phas closed graph,
E is a complete metric space and φ: (E, p) —> [0, oo) is continuous.
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We now define a partial ordering on E by saying (x, s) ̂  (y, t)
if and only if

(2.4) s ̂  t

(2.5) \\Px - Py\\ <; λ±ί{\\Px\\ - ||P^||)

(2.6) \\Py\\ ̂  \\Px\\e-{1-qnt-8)',

and

(2.7) d(x, y) ̂  [B(M\\ PX \\ e^e^^du .

It is clear that " <; " is antisymmetric and reflexive, and that (2.4),
(2.5) and (2.6) are transitive. To see that (2.7) is transitive as well,
suppose (x, s) ̂  (y, t) ̂  (z, r) and apply (2.7) and (2.6):

d(x, z) ̂  d(x, y) + d(y, z)

|Pa?||e1-^1-*^-

xWe'-'e^^du + ['B(M\\Px\\(?-qell-q)l-u))du

- [r B(M\\Px\\e{1-qHs-u))du ,

so {x, s) ̂  (z, r).

Next, for (x, s) e £7, define

S(x,s) = {(y,t)eE:(y,t)^(x,s)}

and observe that S(x, s) is a closed subset of (E, p). Also observe
that (2.6), (2.7) and (2.1) imply that S(w; 0)QB(w; a): if (x, s) e S(w, 0)
then

d(x, w) ̂  J

^ (1 — tf)-1! v~rB(v)dv ^ a ,

making the change of variables v — M\\Pw\\eι~qe~[ι~q)u.
Now set S = S(w; 0); it will suffice to show that P has a zero

in S. Thus we suppose Px Φ 0 for all x e I?(w; α) and apply the
Brezis-Browder maximal principle to obtain a contradiction. Notice
φ: S-> [0, oo) and, by 2.7 and 2.6, if (x, s) ̂  (y, t) and (x, s) Φ (y, f),
then φ(y, t) < φ{x, s). Also, if (xf s) e S, then S(x, s) is a closed set
and is a subset of S by transitivity of " <̂  ".

All that remains before applying Proposition B is to verify that,
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if {(xn9 tn)} S S is a nondecreasing sequence, then {(xnf tn)} is pre-
compact. Since each (xnf tn) e S, (2.6) implies

(2.8) \\P(x.)\\£\\P(w)\\e-«-»*.

Now fix n < m; we will use (2.8) to show that {xn} is a Cauchy
sequence in (X, d):

d(xn, xj ^ Σ d(xk+1, xk)

m — X f ί i + i

^ Σ\

i, i .e.,

(2.9) d(xnf xm) ̂  \ mB{M\\Pw\\eι~qe~{ι~q)u)du .

Now recall {tn} is a nondecreasing sequence, and consider the
two cases:

I. £Λ—> oo as n-> ©o. Making the change of variables t; =
Λf||Pic;||e1-ffβ-cl-ff>lfc in 2.9 gives

(2.10) d(α?n, xj £ (1 - ?)

where ak = M| |P^| |β 1" gβ" ( 1~ g ) ί f c. Since α%, α m - ^ 0 as w, m -> oo and
v^B^dv < oo for all 6 > 0, it follows that {#J is a Cauchy

0

sequence in (X, d).
II. tn-^too as w—> oo. Once again, the right side of (2.10) goes

to zero as n, m —> oo and thus {xn} is Cauchy.
We next show that {Pxn} is a Cauchy sequence in F. By (2.5),

{||Pa?Λ||} is a nonincreasing sequence and thus convergent, so, for
n < m,

^ ( | | P t e . | |

and thus {Pxn} is a Cauchy sequence in Y.
Since {xn} C B(w; α) and both {#J and {P^J are Cauchy sequences,

it follows from the assumption that P has closed graph that there
is an Xoo 6 B(w; a) such that xn —> x™ and Pxn -+ Pxoo as n —> oo. Now
if ίΛ—> oo as ^—> oo, then (2.6) implies
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|| Pxoo || = lim || Pxn || ^ lim || Pw \\ e-
a-q)t* = 0 ,

i.e., Pxoo = 0, contrary to our assumption. Thus there is a too e [0, oo)
such that tn-*too as n —> oo. Since S is closed, (&«,, too) 6 S and we
have shown nondecreasing sequences in S are convergent, more than
was required.

Now by Proposition B there is an (xQf t0) 6 S for which S(x0, ί0) =
{(«o, t0)}. Choose #0££> and εe(0, 1] in accordance with (2.2) and
(2.3). We will show that (xOf t0 + ε)^(cc0, t0), from which (x0,
(cc0, t0), an obvious contradiction.

Rewriting (2.2), we obtain

\\Pxo- PxoW ^ (l + g)e| |Pso | !

and

(2.11) \\Px0 - Pa?0|| ^ (1 - (1 - ?)ε)||Pa?0|| .

Combining the above yields

"̂ " ^ (II PT II II P¥ Ih
U l ^ ^ l l l l ^ ^ l l

<
z
l — q

so (2.5) holds. Moreover, (2.11) and the MacLaurin's Series for e*
imply

| |P»oll ^ \\Pxo\\e-{1-q)ε ,

so (2.6) holds. Finally, we derive (2.7) from (2.3) and the fact that

6 6(0,1]:

d(x0, xo)^εB(M\\Pxo\\)

= \£B(M\\Px0\\e°)du
JO

^ ['B(M\\Pxo\\e{1-q){1-*))d
Jo

and thus (2.7) holds.

3* Gateaux differentiable operators* Let X and F be Banach
spaces and P:X—>Y a (nonlinear) operator. We call P Gateaux
differentiable at x if there is a function (called the Gateaux Varia-
tion of P) dPx: X-> Y such that, for each yeX

(3.1) lim
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If dPx is a bounded linear operator and if the limit (3.1) is attained
uniformly for y e B(Q; 1), then P is Frechet-differentiable. If the
map x —> dPx is continuous from X to the bounded linear operators
mapping X to Y, then P is continuously Frechet differentiable. Easy
examples of mappings from R2 to R1 show that Gateaux differentiable
operators need not be continuous, that the Gateaux variation need
not be linear and, even when it is linear, need not be a Frechet
derivative. It is clear, however, that the Gateaux variation is
homogeneous, i.e., dPx{Xy) = XdPx(y) for all xeR.

The following lemma provides the basic link between this
section and §§ 2 and 4 of this paper.

LEMMA 3.1. Let P:X-^Y be Gateaux differentiable at x and
suppose, for some 3 > 0,

(3.2) dPx(B(0; 1)) 2 B(0; δ'1) .

Then for each y e Y there is an x e X and ε e (0, 1] for which

(3.3) || Pά - Px - e(y - Pa) 11 rg ± || y - Px\\

and

(3.4) Use - x \ \ ^ δ ε \ \ y - Px\\ .

We remark that if P is Frechet differentiable and dPx is
invertible, then we may take δ= IK^PJ"1!!, and the hypotheses of
the lemma are fulfilled. The assumption (3.2) will replace inver-
tibility of dPx in the results of Kacurovskii and Krasnoselskii.

Proof of Lemma 3.1. First observe that if y = Px, we may
take x = x and let ε be arbitrary; thus without loss of generality
we suppose that y — Px Φ 0. Set w = δ^Wy — Px\\~\y — Px), so
weBiO δ-1). By (3.2), there is a veB(0;l) such that dPx(v) = w, so
if v = δ\\y - Px\\v, dPx{v) = (y - Px). By Gateaux differentiability
of P, there is an ε e (0, 1] such that

i | | P ( x + ev) - P{x) - εdPx(v)\\ £±\\y - PiB\\ .

Taking x = x + εv, we obtain from the above that

|| P ( 5 0 _ p { x ) - ε{y _ p { x ) ) || ^ ± ii tf _ Px ii

so (3.3) holds. Also, since ||t;|| ^ 1,
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| | f l c - a ? | | = e | | i ; | | ^εδ\\y - Px\\

so (3.4) holds as well.

We begin by proving a domain invariance result which can be
thought of as an "inverse function theorem" for Gateaux differen-
tiable operators.

THEOREM 3.2. Let X and Y be Banach spaces, P:X-+Y a
Gateaux differentiable operator having closed graph and U £ X an
open set. Suppose for each w e U there is a δ(w) > 0 and a(w) > 0
such that, if \\x - w\\ £ a(w) then dPx(B(0; 1)) 2 B(0; (δO))"1). Then
P(U) is an open set in Y.

Proof. Fix w e U and choose a <̂  a(w) so small that B(w; a) £
U; set M = δ(w) and δ = a(2Mem)-\ It will suffice to show
P(B(w;a))^B(P(w);δ). To this end, fix yeB(P(w);δ) and set
P(x) — y — P(x); it suffices to show there is an x0 e B(w; a) such that
P(x0) = 0. Observe that

21| P{w) || Mem ̂  2δMem ^ a

and so (2.1) of Theorem 2.1 holds wi th B(s) = s, q = l/2 and M=δ(w).

Moreover, by Lemma 3.1, for each xeB(w;δ) t h e r e is an xeX and

an ε e (0, 1] such t h a t

\\Px-(l-e)P(x)\\^±\\P(x)\\

and

\\x-x\\<LMε\\P(x)\\

so that (2.2) and (2.3) hold. Theorem 2.1 then gives a zero for P
in B(w; a), and thus P(B(w; a)) 2 B(P(w); δ).

The above theorem easily yields our extensions of the results
of Kacurovskii and Krasnoselskii.

THEOREM 3.3. Let X be a Banach space, P.X-^X a Gateaux
differentiate operator having closed graph and suppose (I — P) is
a compact operator (i.e., I—P sends bounded sets to precompact
sets). Suppose for each weX there is an a(w) > 0 and a δ(w) > 0
such that if \\x-w\\<>a(w) then dPx(B(0; l))25(0; (δ(w))"1). Suppose
also

(3.5) P~\K) is bounded whenever cl (K) is compact.
Then P is an open mapping of X onto X.
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In Kacurovskii's result, it is assumed that P is continuously
Frechet differentiable, (/ — P) is completely continuous, and that 0
is not an eigenvalue of dPx for any x. In this case, (/ — dPx) is a
compact linear operator (see, for example, Schwartz [20], Theorem
1.40) and 1 is not an eigenvalue of (I — dPx). The Fredholm alter-
native then implies dPx is continuously invertible for each x. Since
the collection of invertible operators in BL{X) (the bounded linear
operators acting on X) is open in BL(X) and P is continuously
differentiate, it follows that, for fixed w, we may choose a(w) so
small that

s u p f l K d P . ) - 1 ! ! : \ \ x - w\\^ a(w)} = δ(w) < oo ,

and hence the assumption that dPx(B(0; 1)) 2 B(0; (δ(w))-1) is fulfilled.
Clearly the assumption (3.5) is more general, in infinite dimensions,
than (1.2).

Proof of Theorem 3.3. By Theorem 3.2, P{X) is open; thus it
suffices to show P(X) is closed. Let {xn} £ X satisfy Pxn —> y for
some y e Y. Since {Pxn} is precompact, {xn} is bounded, and so
{xn — Pxn} is precompact. By passing to subsequences, we may
suppose that xn — Pxn —> xQ as n^oo. Since Pxn —> y, it follows that
xn-> x0 + y and, since P has closed graph, that P(xQ + y) = y,
establishing that P has closed range.

We remark that if one weakens the assumption that ||cc — w\\ 5*
a(w) implies dPx(B(0; 1)) 2 B(0; (^(w))"1) to the assumption that each
dPx have dense range, then the conclusion that P is surjective
remains valid. The proof is an easy application of Caristi's theorem
(see, for example, [15]).

We next turn to Krasnoselskii's result.

THEOREM 3.4. Let X and Y be Banach spaces, P:X-+Y a
Gateaux differentiate operator having closed graph, and suppose
(3.5) holds. Suppose in addition that

(3.6) For each R^O there is a δ(R) > 0 such that if \\x\\ ^ R
then dPx(B(0; 1)) 2 B(0; (δ(Λ))-1).
Then P is an open mapping of X onto Y.

Condition (3.6) is again a (nonlinear) extension of the condition
(1.1').

Proof of Theorem 3.4. As before, Theorem 3.2 implies that P
is an open mapping and hence it suffices to show that P has closed
range. Thus we choose y e Y and {xn} Q X such that Pxn —> y.
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From condition (3.5), {xn} is a bounded sequence and thus we may
choose R > 0 so that B(xn; 1) C B(0; R) for each n. Moreover, we
may choose n so large that

Setting P(x) = y — Px, we again have (2.1) fulfilled, this time with
a = 1, M = δ(R) and q — 1/2. Lemma 3.1 again implies that (2.2)
and (2.3) hold for P, and thus gives a zero for P. This shows that
y 6 P(X), and thus that P{X) = F.

We list here one final corollary for Gateaux differentiable operators.

THEOREM 3.5. Let X and Y be Banach spaces, P: X—> Y a
Gateaux differentiable operator having closed graph and suppose
there is a 8>0 such that for each xeX dPx(B(0; 1)) 2 B(0; <?). Then
P is an open mapping of X onto Y.

The surjectivity conclusion of this theorem was proved in [19]
for Frechet differentiable operators; the proof extends with little
change to this slightly more general setting. The domain invariance
is, of course, an immediate consequence of Theorem 3.2.

Finally, we remark that the sequences considered in the proof
of Theorem 2.1 are, in the context of Frechet differentiable operators,
iterations of the map x: —> x — ε{dPx)~1{Px) where εe(O, 1]. In the
case ε = 1, the resulting sequences reduce to the Newton-Kantorovich
iteration for locating zeros of P. In this sense, the Brezis-Browder
principle provides an abstract Newton-Kantorovich scheme for solv-
ing nonlinear equations (although, in general, the proofs are not
constructive).

4* Contractor directions and normal solvability* In a series
of fascinating papers M. Altman has developed a generalized notion
of differentiability which is essentially based on the same idea as
in our Lemma 3.1 in the case that dPx is an invertible linear
operator. Altaian's theory, which is extensively described in his
book [1], is predicated on his concept of contractor directions; our
remarks below are based on this reference. (We give here a some-
what more general formulation of contractor directions than that
which appears in Chapter 5 of [1].)

Let X be a complete metric space, D £ X, Y a Banach space
and P:D-+Y. In addition let g:D->[0, oo) be an arbitrary func-
tion, ge(O, 1) and B: [0, oo) —>[0, oo) a continuous nondecreasing
function for which
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s~1B(s)ds
o

for all b > 0. We will call P A-differentiahle if, for each y e Y
and for each x e D there is an x e D and an ε e (0, 1] for which

(4.1) \\Px - Px - εy}\ ^ qe\\y\\

and

(4.2) d(x,x)£εB(g(x)\\y\\).

The above definition differs slightly from Altaian's "B — g differen-
tiability" (see pg. 116 of [1]) in two ways. First he assumes
g: [0, oo)-*[o, oo) is continuous and replaces (4.2) with

(4.2') d{x,x)^sB{g{\\x\\)\\y\\).

Secondly, instead of assuming (4.1) and (4.2') hold for all y e Y and
x 6 X, he denotes by Γ(x) the collection of all y e Y for which there
exists an xeD and εe(0, 1] such that (4.1) and (4.2') hold (Γ(x) is
then called the contractor direction set for P at x). Basic to most
of his results, however, is the condition that Γ(x) = Y for all xeX
(see, for example, Lemma 1.1, pg. 88 or Lemma 2.1, pg. 92 of [1])
and thus the A-differentiable maps include the essential features of
the B — g differentiate maps. Lemma 3.1 clearly supplies the moti-
vation for the above definitions: If X is a Banach space, P is
Frechet differentiate and dPx is continuously invertible for all x,
then (4.1) and (4.2) hold with B(s) = s and g(x) = UdP.)-1^ The
results of § 3 can easily be reformulated in this context. There is
no significant variation in the proofs, and so we omit them.

THEOREM 4.1. Let X, D, Y, q, B, g and P be as above, and sup-
pose P: D —> Y is A-differentiable and has closed graph. Suppose
for each w eD there is a δ > 0 and an M > 0 such that d(w, x) <̂  δ
and xeD implies g(x) ^ M. Then P(D) is an open subset of Y.

THEOREM 4.2. Let X, D, Y, q, B, g and P be as above, and
suppose P: D-> Y is A-differentiable and has closed graph. Suppose
X is a Banach space and for each R > 0

(4.3) sup {g(x): || x || ^ R, x e D} < oo

and that P~\K) is bounded whenever cl (K) is compact. Then P is
an open mapping of D onto Y.

The surjectivity portion of Theorem 4.2 appears in [1] (Theorem
1.3, pg. 125) for B — g differentiate maps; notice we make sub-
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stantially weaker assumptions on the mapping g. We also observe
that Altaian's proof of his result (which predates the Brezis-Browder
principle) relies on an intricate transίinite induction scheme which
our technique avoids altogether. In addition, our technique yields
the new domain invariance principle embodied in Theorem 4.1.

We conclude with some remarks relating the above results with
the theory of normal solvability. Let X and Y be Banach spaces
AeBL(X, Y), and let A* denote the adjoint mapping from F* to
X*. If A has closed range, then a classical result of Hausdorff [13]
states that A(X) = (N(A*))L, the annihilator in Y of the null space
of A*; in this case the linear equation Ax — y is called normally
solvable.

The nonlinear case was first considered by Pohozhayev [18],
who assumed that P: X —> Y is a continuously Gateaux differentiate
operator with weakly closed range satisfying

(4.4) |(Px -yo\\ = dist (yo; P(X)) — y0 - P(x) 6 (N(dfx*))L ,

and showed that this condition is sufficient to guarantee yoeP(X).
If P is linear and Y is reflexive, this reduces to Hausdorff's result.

In a series of papers [3-9], Browder has considerably sharpened
and generalized Pohozhayev's result. He supposes X is a topological
space, P: X —> Y and defines [4] the asymptotic direction set of P
at x by

where

-P(x)\ ueX, ξ^O, ||P(u)-P(x)\\<e} .

He then shows [6, 8] that sufficient conditions for y e P(X) are P
has closed range and: there exist r > 0 and q < 1 such that

(4.5) B(y; r) Π P(X) Φ 0

and

(4.6) if Fix) e B(y; r) then dist (y - P{x), D(x)) ̂  q \\ y ~ P(x) \\ .

He also shows that if P is continuously Gateaux differentiate, then
(N(dP*))λ Q D(x) (Proposition 1 of [6]) and hence (4.4) follows from
(4.5) and (4.6) upon taking r = dist (y; P(X)).

In their paper [15], Kirk and Caristi show that (4.6) can be
further weakened to

for each w e B(y; r) Π P(X) with w Φ y
(4.7) there is a u e P ( X ) and ξ ̂ 1 such that

\\ζ(u — w ) — (y — w ) | | ̂  q\\w — y\\
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(that (4.6) implies (4.7) is a routine consequence of the definition).
We now observe that (4.7) is the same as (4.1), except for the

additional condition weB(y;r). Since it follows readily from (4.7)
that \\u - y\\ <: r (see (2.3) of [15]), we observe that (4.1) and (4.7)
are essentially the same, and thus both Theorems 4.1 and 4.2 can
be regarded as normal solvability results of the same type as those
of Browder. In this sense, these results are a continuation of
Browder's development of the theory of normal solvability.

The authors are indebted to Professor L. Talman for bringing
[16] to their attention and for somewhat sharpening their statement
of Theorem 3.3.

Added in proof. I. Ekeland has recently informed us [21] that
some of the results of § 4 of this paper (in particular, the surjectively
conclusion of Theorem 4.2) have been independently obtained by G.
Lebourg. In addition, Lebourg has constructed examples relating
to the necessity of some of the hypotheses of this theorem.
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