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DENSITIES AND SUMMABILITY

A. R. FREEDMAN AND J.J. SEMBER

The ordinary asymptotic density of a set A of positive
integers is v(A)=lim,-.A(n)/n, where A(n) is the cardinality
of the set AN{1,2, ---,n}. It is known that the space of
bounded strongly Cesaro summable sequences are just those
bounded sequences that converge (in the ordinary sense)
after the removal of a suitable collection of terms, the
indices of which form a set A for which v(4)=0. In this
paper we introduce a general concept of density and then
examine the relationship, suggested by the above observa-
tion, between these densities and the strong convengence
fields of various summability methods. These include all
nonnegative regular matrix methods as well as the famous
nonmatrix method called almost convergence.

The characterization of the bounded strongly Cesaro summable
sequences mentioned above is significant in ergodic theory, where it
relates to the study of weakly mixing transformations ([4], p. 38;
[7], pp. 40-41).

The concept of a lower asymptotic density is presented axio-
matically in §2. Certain essential properties of these densities are
proved and the “natural density” associated with the lower density
is defined. The natural density has some of the properties of a
measure but, in particular, is not a countably additive function. Of
interest, therefore, are certain additivity properties (we call them
(AP) and (APO)), valid for some natural densities, that are approxi-
mations to countable additivity.

Section 3 contains examples of densities. Of particular interest
are those generated by nonnegative regular matrices, and another
called uniform density.

In §4 we investigate sequence spaces associated with a density.
One such space is the space w, of “nearly convergent” sequences
(Definition 4.2) and another is the strong summability field |¢,| of a
summability method S that is “related” to the density in the sense
of Definition 4.9. Whether or not the (APO) property holds for the
density turns out to be ecrucial in the comparison of the sequence
spaces @, and |c,]|.

We use the following notation: The set of positive integers will
be denoted by I. For A, BS I, we write A~B (A4 is asymptotical-
ly equal to B) if the symmetric difference A4B is finite. For two
sets A and B, the set-theoretic difference is denoted by A\B =
{x:x€ A, x¢ B}. Let ¢ denote the empty set. Sequences of real
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numbers will alternately be denoted by x, (x;,), or (%, @, ---). The
coordinatewise product of two sequences x, y will be denoted by
z-y = (z,49,). For a sequence z, we let |z| = (Jx;]), and if = is a
sequence and ! is some real number, we write x — I = (x, — ). We
let @ denote the linear space of all real-valued sequences, and m, c,
and ¢, will, as usual, denote the subspaces of @ consisting of the
bounded sequences, the convergent sequences, and the sequences
convergent to zero. Finally, if M = (a,,) is an infinite matrix and
x = (x,) is any sequence, the product M-x will denote the sequence
(y,), if it exists, where y, = >3, a,;x;.

2. Densities and the additivity property. A function 0, de-
fined for all sets of natural numbers and taking values in the closed
interval [0,1], will be called a lower asymptotic density (or just a
density) if the following four axioms hold:

(D.1) if A~B, then 6(A) = §(B);
(D.2) if AnB= @, then 3(A) + 6(B) < 8(A U B);
(D.3) for all 4, B, 6(4) + 8(B) <1 + 8(A N B);
(D.4) o) = 1.

If 6 is any density, we define 0, the upper density associated
with 6, by

5(4) = 1 — 6(1\A)

for any set of natural numbers A.
The first proposition lists the essential properties of 6 and .
The proofs are elementary and left to the reader.

PROPOSITION 2.1. Let 6 be a lower asymptotic density and o its
associated upper density. For sets A, B of matural numbers, we
hawve

(i) ASB=5(A) £4(B);

(ii) ACS B=3d(A)<4d(B);

(iii) for all A, B, 6(A) + 6(B) = (A U B);

(iv) @) =3@) =0;

(v) o) =1;

(vi) A~B=06(4) = d(B);

(vii) 0(4) < 0(A).

We will say that a set A S I has natural density with respect
to 0 in case 6(4A) = 6(A). We define

7, = {A: 8(A) = 6(A)} .
For Aew,, let v,(A) =0(A) (the natural density of A). In this
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paper we are mainly interested in sets A with natural density zero.
Note that A e, and v;(4) = 0 if and only if 6(4) = 0. Let

75 = {4:6(4) = 0} .

The basic facts concerning v;, 7;,, and 7 are contained in Pro-
positions 2.2 and 2.3. We again omit the proofs.

ProrosiTION 2.2.
(1) If A~I, then A€7, and v;,(A) = 1.
(ii) If A~@ (.e., if A is finite), then Ae7n;.

ProrosITION 2.3.
(i) v, 1s finitely additive, i.e., if A, Ben, and ANB= ¢,
then AU Be, and
Y:(A U B) = v;(A) + v:(B) .

(11) If Au Az; Tty An 6772; then U?——-l Az 6772

(iii) If Aem,, then (I/A)en, and v,(I\A) = 1 — y,(4).

(iv) If Aen; and A~B, then Be7n, and y,(A) = v,(B).

A simple example shows that v; is never countably additive:
Taking A, ={i}, 1 =1,2, ---, we have 4,€7;,, 1 =1,2, --- and 4,N
A; =0 (1#7), but U, 4, =Tand v,(I) =1+ 0 = 32, v,(4,). How-
ever, for some densities, a similar property holds which we shall
call the additivity property. This property of densities has been
studied in other settings by Buck [1] and Freedman [2]. From its
statement it is apparent that it is an approximation to countable
additivity for v,.

ADDITIVITY PROPERTY (AP). If A,e7n;,, +=1,2, ---,and if 4,N
A; =@ (i +#j), then there exist sets B,, 1=1,2, --., such that
B~A;,,1=1,2,---, Uz, B;€7, and v,(Uz. B,) = 22, vs(B,).

In this paper we shall only need to consider a weaker property,
namely, the additivity property for sets of zero natural density.

ADDITIVITY PROPERTY FOR SETS OF ZERO NATURAL DENSITY (APO).
If A;enl, i=1,2, ---, and if A,NA4; = @ (i # j), then there exist
sets B;, 1 =1,2, --+ such that B,~A4,, i=1,2, --- and U, B; 7).

If the condition that the sets A, are disjoint is removed from
(APO), we get an apparently stronger property (APO’). However,
we can prove

PROPOSITION 2.4. The properties (APO) and (APOQ’) are equiva-
lent.
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Proof. Obviously (APO’) implies (APO). Now suppose (APO)
holds and let (4,) be any sequence of sets in 7). Define a pairwise
disjoint sequence (A;) in the usual way:

i
A{ = Au A;-H = 1‘1i-1-1\’L___J1 Aj .

Noting that A} e} we know, by (APO), that there exist sets Bi~ A
such that Uz, B/ en). Letting B, = UJi-, B;, it is easily seen that
B,~A, and U, B, = Uz, B..

The fact that (AP) implies (APO) is obvious. Whether or not
the reverse implication holds is an open question.

3. Examples of densities and the (APO). The term “asymptotic
density” is often used for the funection

n—oo

d(A) = lim inf ‘%’” ,

where A(n) is the number of elements in AN{1,2, ---,n}. If X,
denotes the characteristic sequence of A (thus X, is a sequence of
0’s and 1’s), and if C, denotes the Cesiro matrix

then A(n)/n is the nth term of the sequence C,-X,. Thus
d(4) = lim inf (C,-X,), .

This function satisfies axioms (D.1)-(D.4).

This example suggests that there may be a general way teo
produce a density from a summability method. We now show that,
for any nonnegative regular matrix, there is a natural way to do
this.

PROPOSITION 3.1. Let M be a nonnegative regular matriz and
let 0, be defined by
0y(4) = liminf (M-X,), .

n—oo
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Then 6y 18 a density (i.e., satisfies (D.1)-(D.4)) and, furthermore,
0x(A) = lim sup (M-X), .

Proof. For convenience we write 0 for 4.
(D.1). If A~B there exists a positive integer N such that
X.(7) = Xp(5) except, possibly, for 1 < j < N. Thus

(M2, — (M-Xp),| = i il a() — i @0 7a(3)
= 3 aul L) — %) = 3 aus— On—c0) .

It follows that lim inf, .(M-X,), = lim inf,(M-X;), and so 6(4) = d(B).
D.2) If ANB= @, then X,,; = X, + X;. Hence
0(AU B) = liminf (M-X,,5), = liminf (M-X, + M-Xz),

Nn—r00

= lim inf (M-X,),, + lim inf (M-X;)

f—0 n—0

= 6(A) + é(B) .

(D.4) 6(I) = lim inf, ..(M-X,), = lim inf, ... >33, a,; = 1.
Before proving (D.3) we show that the formula for §(4) holds.
First note that X,, =1 — X,. Then, letting 1 =(1,1,1, ---),

5(A) =1 — (I\A) = 1 — lim inf (M- X,

=limsup (1 — M-X,,), = limsup (1 — M-1 + M-X,),

n—oo n—00

= lim sup (M-X,), .

The last equality holds since lim, ..(1 — M-1), = 0.
(D.3) Sinece X, o5 =X, + Xz — X, 5, We can write
1+06ANDB) =1+ liminf (M-X,,5),

n~—00

> 1 + lim inf (M-X,), + lim inf (M-X,),

n—00 n—oco

— lim sup(M-X,y5)n

n—oo

=1+ 8(4) + 8(B) — (AU B) = §(4) + é(B)
+ 0(I\(A U B)) = 6(A) + o(B) .

One simple, but interesting, example is the density 0, obtained
from the identity matrix J. In this case §,(4) = 0if I\A is infinite,
and otherwise 6,(A) = 1. Also, 73, consists of just the finite subsets
of the natural numbers and 7,, consists of the finite sets together
with the sets A for which A~1.
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We now show that the (APO) holds for any density obtained
from a nonnegative regular matrix as in Proposition 8.1. In fact,
the (AP) holds, but will not be proved here.

PROPOSITION 3.2. Let M be a monnegative regular matrix and
let 6 =0, be as in Proposition 3.1. Then if (A,) is a disjoint
sequence of sets in 7);, there exists a sequence (B;) of sets such that
B~A,1=12 .-+, and U, B,€"’.

Proof. Let M = (a,,) be nonnegative and regular. Then for
each n =1, 2, --- let s(n) be such that
f‘, Ay <—1— and s(n + 1) > s(n) .
n

i=8(n)+1
For each j =1, 2, --- select k(j) so that n = k(j) implies

3 @@+ + L4, 0) < % and k(G + 1) > k() -

The existence of %k(j) follows from Proposition 2.3 (ii). Further, for
n=k(1) let p(n) be such that k(p(n)) <n < k(p(n) + 1). Finally,
for m=1,2, -.-, we define

B, = A.\1,2, -+, s(k(m + 1))} .

Note that B,~A, for m =1,2, ---. Letting B = Uz, B;, we now
show that 6(B) = 0. Reasons for some of the steps in the following
string of inequalities will be given immediately thereafter.

(1) 0(B) = lim sup (M-X5).

n—»00

oo

= lim sup 3, @, Xx(%)

n—0 i=1

(2) < lim sup <—:7 + gamxa(i)>

n—o0

8(n)
= lim sup >; a,.X5(%)
=1

n—co

(3) = lim sup g‘j Qi Zo‘._o Xs,,(1)

n—oo

s(n) p(n)

(4) = lim sup 3} a,; >\ X;, (1)

n—>c0

8(n)

?(n)
< limsup >, a,; >, X4, (3)
i=1 m=1

n—oo

oo ?(n)
< limsup 3, a,; >, X, (9)
i=1 m=1

n—oo
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(5) < lim sup 1
we  p(n)

(6) =0.

Reasons. (1) Proposition 3.1; (2) follows from the definition of
s(n); (8) Since the B,’s are disjoint, we can write X,(3) = Sim_; X5 (9);
(4) We show thatif m > p(n)and i < s(n), then X, () = 0: m > p(n) =
E(m + 1) > k(@) + 1) >n=sl(m + 1)) >s(n)={1, 2, ---, s(r)}NB, =
@ =Xp, (1) = 0 for i < s(n); (5) follows since » = k(p(n)); (6) follows
since p(n) — o as n— oo. This completes the proof.

We now define another density, one which is closely associated
with the summability method introduced by G. G. Lorentz [5] called
“almost convergence,” and for which the (APO) fails. To this end
let

w(4) = lim| min = "} 2,69 | .
n—ool. m20 4 i=m+41
We shall call w the (lower) uniform density of A.
Here we state without proof some facts concerning the density
w: The limit in the definition of u exists for any set A. The func-
tion u is a lower asymptotic density (i.e., u satisfies (D.1)-(D.4) of
§2). The associated upper density # is

#(A) = lim| max L S° xm].
oo L m20 4 i=m4l
It follows that A €7, iff the sequence X, is almost convergent. Note
that if a set A contains arbitrarily long consecutive strings of in-
tegers (i.e., if for each N > 0 there exists k such that {k + 1, &k +
2, -,k + N} S A), then w(4) = 1.

We use this last fact to show that the (APO) fails for u. Let
A=1{,24---,2", ---}and let A, ={i +a:acd},1=1,2, ---. It
is not difficult to show that each A, €7), since max,., n™" 3.7 m X, (7)
is approximately (log.n)/n. In order to show that the (APO) fails,
it suffices to show that, for any choice of sets B,~A,, w(U=, B;) > 0.
Thus, if (B,) is any sequence of sets with B,~A4,, 1 =1,2, ---, and
if N> 0, then for each 7, 1 <14 < N, there exists &k, so that 241 € B,
whenever n > k;. Taking k = max{k, k., ---, ky} and n >k, we ob-
serve that 2"+ 1eB, 2"+ 2€B, ---,2" + Ne By and therefore,
2" +1,2"+2, ---,2" + N} S U, B;,. It follows that Uz, B, con-
tains arbitrarily long consecutive strings of integers and, consequently
(Ui By) > 0.

4, Sequence spaces related to densities. If x is a sequence, [
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is a real number and A4 is a set of natural numbers with I\A infinite,
then by

we shall mean that the sequence x converges to ! in the ordinary
sense if we ignore the terms indexed by A4, that is,

DEFINITION 4.1. % —(Z—» ! in case for each ¢ > 0 there exists N > 0
such that |z, — | <e¢ whenever n = N, n¢A.

DEFINITION 4.2. For any density 4, let

@, ={rxew:3l realand ACS I with 6(4)=0 and w—(z)—%}.

We call o, the set of (0-) nearly convergent sequences.

PROPOSITION 4.3. For any density 6, o, is a linear space of
sequences with ¢ & ;.

Proof. The fact that ¢ & w; is immediate from the definition
and Proposition 2.2 (ii). Let 2 and y be in w, and let I, 1,, A, B
be such 1zhat 0(A) =0(B) =0, x @ I, and U l,., By Proposition
2.3 (ii) 6(AUB) =0, and it is clear that z= + y(m l, +1, con-
sequently # + y e w;. The remaining linear space postulates follow

easily.

PROPOSITION 4.4. Let 6 be a density. Then the (APO) holds for
0 iff w, is closed with respect to the topology of uniform convergence
on @.

Proof. Note that the topology referred to in the proposition is
not the usual linear topology of coordinatewise convergence. Assume
first that the (APO) holds and let y € w,. Then there is a sequence
{z*} in w, such that z™ — y uniformly. For each % there exists a
real number I, and a set of natural numbers A, such that 6(4,) =0

and w"—(—k—)) l,. We show that the sequence (I,) is Cauchy and the-
refore coﬁverges, in the usual sense, to some limit I. Let ¢ > 0 be

given. There exists N > 0 so that » = N implies |x? — y,| <¢/4 for
1=1,2 ---. If we take m, » = N, then there is an integer ¢ such
that |22 — 1,| < ¢/4 and |x* — 1,,| < &/4 (choose ©¢ A,U A4, and suffici-
ently large) and, therefore,

Ly — lal S |le — a2 | + |27 — ysl + |y, — o] + |o? — 1] <e.
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We now use the (APO). There exist sets B,~A, such that if £ =
Uz, B;, then 6(E) =0. We claim that y-—E—>l. If ¢ > 0 choose n
such that for all 7, |22 — ¥,| < ¢/3 and such that [l, — ]| < ¢/3. Since
A, is contained in E (except for at most finitely many points), there
is an N(=N(n)) such that, if 1= N and ¢ E, then ¢¢ A, and
lz? — 1,] <¢e/3. Hence, for ¢ = N and 1¢ F we have

ly, — U sy — ot + lod — L]+ |l — U <e,

and so yTl. It follows that y e w,.

Now suppose the (APO) fails to hold for 6. Then there exists
a sequence of digjoint sets A,, A, --- of natural numbers such that
0(A)=0,1=1,2 ---, and also such that for any choice of (B,
with B,~A,, i =1,2, ---, we have 64U, B;) > 0. Evidently, if we
remove one set, say B;, from this union we still get the same con-
clusion—namely, for any j=1,2, ---, 6(U,; B) >0. We define a
sequence {x"} that converges uniformly to a sequence y, where each
x"ew; and ¥y ¢ w,. Let
Lifica, where 1<j<n
=123
0 otherwise
and let

i. if there exists j such that i€ 4;
yi= 47

0 otherwise.

It is easily seen that z"cw, and that |2? — y,| <1l/(n + 1), ¢ =1,
2, -+, so that {#"} —»y (uniformly). However, if [ is a real number
and E is a set for which y—z;)»l, then for all but at most one »

(in the case that I = 1/5 for some j) we have, evidently,

(A, NE)~A, .
Letting B, = A,CE, n=1,2,8, ---, we have o(E) = é(Uz-,B,) > 0.
It follows that y ¢ w,. This completes the proof.

Since the sequences z" and ¥ defined above are bounded we im-
mediately obtain the

COROLLARY 4.5. w,Nm = w,N\m iff 6 satisfies the (APO).

We note that, in our prime example (ordinary asymptotic
density and Cesiro summability), the space @; N m coincides with the
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space of bounded strongly Cesaro summable sequences. In this case
the density and the summability method are related, both being
produced from the Cesaro matrix. In relating densities and sum-
mability methods in general, we are led to investigate methods that
we call R-type summability methods. If S is a summability method
with domain, or convergence field, ¢s, let the strong convergence
field associated with S be

les| = {x€w: 3l such that S(lxz —1]) = 0}.

The set |¢s| need not be a subspace of ¢s. (For example, if ¢s is
the set of all convergent series with S(x) = 3.2, «;, then |¢g| is the
set of all constant sequences.) It is a subspace, however, for those
methods given in

DEFINITION 4.6. An R-type summability method (RSM) is a linear
functional S with domain ¢s;, where ¢g is a subspace of @, and such
that S satisfies the following two properties:

(P1) S is regular (i.e., ¢ S ¢s and S(x) = lim, z, for x<e¢).

(P2) if |x|ecs with S(z|) =0 and yem, then y-reey and
S(y-x) = 0.

We let

¢k ={rew: S(x) = 0};
les] = {x€w:3l such that |z —l|ecd};
les|° = {rew:|x|eck}.

We remark that ¢} is a subspace of ¢g and that (P2) can be briefly
written: m-|es]’ S c.

Our next three propositions establish that the summability
methods under consideration are reasonable ones.

PROPOSITION 4.7. For any summability method S, the condi-
tion (P2) is equivalent to the condition that |cg|® be solid (i.e.,
m-les|” = |esl).

Proof. Assume condition (P2) holds, let y € m and x € |cs|°. Let-
ting 7 be the sequence of +1’s such that |y-2| = 9¥.2.), and noting
that 7-y e m, we can write

ly-x| = Qyx) = -y)-xem-|cs| .

By (P2), |y-x|ect and, therefore, y-xe|cs|. Conversely, suppose
that |cs|® is solid and let x€|egl’. Writing ¢ = 2+ — x~, where zf =
max{x; 0} and x;=—min{zx, 0}, we observe that z* = ¢t-x, where
tem. Thus z*€|csl’. Since |x+| = a*, it follows that 2+ ec}. Simi-
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larly, ©— €¢% and, since ¢% is a subspace, x €¢}. Condition (P2) fol-
lows.

PROPOSITION 4.8. If S is an RSM, then |cg C cs.

Proof. If xe|cs| then, for some I, |x — I]| € ¢ which implies, by
definition, that  — le|¢s|. It follows by (P2) that x —lect. It
follows from (P1) and the linearity of S that xzee¢; (and that

S(x) =1).

PropoSITION 4.9. If S is an RSM, then |cs| and |cs|’ are sub-
spaces of c¢s and ¢k, respectively. Furthermore, ¢ < |cs| and
6 S ]6510-

Proof. Condition (P2) implies that |cs|° S ¢% and Proposition 4.8
gives the inclusion |¢s| S ¢;. To show that « + ye|cg° whenever
x€lcs|” and yelcsl’ let » and = be sequences of +1’s such that

e +y|l=7n2+7y.

Again (P2) implies that 7.2 and z-y are in ¢%, and therefore since
¢ is a subspace, |z + y| e ck. By definition it follows that « + y e |¢s|".
We omit the other details, which are routine.

Note that if S is an RSM, then it follows from Propositions 4.8
and 4.9 that ¢S |¢g) S ¢;. Furthermore, it is easy to see that if x
is a convergent sequence and if [ is any real number for which
|z — l|leck, then I = S(x) = lim, 2,. An RSM is therefore “strongly”
regular. In case S is a matrix method of summability, this ter-
minology agrees with that used in [6] (p. 191).

We now compare the sequence spaces w, and |¢s| as they relate

to a density 4.

DEFINITION 4.9. A density ¢ and an RSM S are related in case,
for each subset A of the natural numbers,

0(A) =0 = X, e|esl°.
ProPOSITION 4.10. If 6 and S are a related density and RSM,
then
w,Nm < |es| S @,

(where @, denotes the closure of w, with respect to the topology of
uniform convergence on ®).

Proof. Let xew,Nm. Then there exists a real number ! and
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a set A of natural numbers such that 6(4) = 0 and oc—zz)» l. Since
0(A) = 0, we have X,e|cs|’. Writing

e—1l=@—-0DX,+ @ —1)Xn4

and noting that « — lem, we have, by Proposition 4.7, (¢ — 1)-X, ¢
les|’. Further, (x — 1)-Xp.€¢ S |es|* by Proposition 4.9. It follows
that ¢ — I €|¢s]° and, consequently, that xe|esl|.

Next consider any ze|¢g|. If 7 is such that |x — I| e |¢s|°, define

m:{MLm—u;%},n=Lgm

We claim that 6(4,) = 0. Define a sequence b by

if i€ A,
bi= X; —

0 otherwise .
The sequence b is bounded and so b-(x — I) €|cs|° by Proposition 4.7.

But b-(x — 1) = X,,, thus X, €|cs|’. Since 6 and S are related, this
means that 6(4,) = 0. Now define {y*} by

z, if iZn,
2, if ¢>mn and 1

y: = € ,Ul 4

llifi>n and iel) A
i=1

If E, = U, 4,, then 6(¥,) =0 and clearly y"—(—l;]—» I, so that y"c w,

for each n=1,2, ---. Also |97 — x| <1/n and thus {y*} — z uni-

formly. Therefore ¢ ®,.

COROLLARY 4.11. If 6 and S are a related density and RSM,
and if the (APO) holds for &, then

|cs[ﬂm=waﬂ’m.

In case |cs| is a closed subspace of w, then (independently of the
validity of the (APO))

leslNm =w,Nm .

5. Concluding remarks. The results are illustrated most clearly
in the case of matrices. If M is any nonnegative regular matrix,
it is readily seen that the summability method defined by M is an
RSM and that the method is related (in the sense of Definition
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4.9) to the density o6, (Proposition 3.1). By Proposition 3.2 the
(APO) bolds, and we therefore have |¢,|Nm = w;, Nm = @,, N'm. In
the special case where M = J (the identity matrix), we have |¢,|N
m=®,,Nm=cNm=c. Itis interesting to note here that w,, is
itself equal to ¢, since 0,(4) =0 if and only if A is finite. (Thus
the condition that « converge to ! except on a set Ae7;, is equi-
valent to the ordinary convergence of x to [.)

In case M = C,, the Cesaro matrix, we obtain |o,| E w, and the
relationship between strong Cesaro summability and ordinary asym-
ptotic density mentioned several times previously (|o.|Nm = @, N m).

As a nonmatrix illustration of the results, if we let S be the
summability method defined by S(xz) = [ if and only if ™, a.)/n—1
uniformly with respect tom =0, 1, 2, - - -, then the convergence field
consists of the space of almost convergent sequence introduced by
Lorentz [5]. The associated strong convergence field is the space
|AC| of strongly almost convergent sequences studied in [3] (x is
strongly almost convergent in case there exists ! such that
G |e; — U])/n — 0 uniformly with respeet tom =10,1,2, ---). It
can readily be checked that almost convergence is related to the
uniform density function discussed in §3. Since |AC]| is closed in
the topology of uniform convergence, we have, by Corollary 4.1.1,

|AC|=|AClnm=w,Nm.

However, since the (APO) fails to hold for this density (see §3) we
have the strict inclusion

o, Nm S [AC]| .
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