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A NOTE ON FR-PERFECT MODULES

R. D. KETKAR AND N. VANAJA

This paper defines and characterizes projective FR-perfect
modules which is a generalization of semiperfect modules.
Using these some characterizations of semiperfect modules
are obtained.

Introduction. Let R be a ring with identity. All modules we
consider are unitary left R-modules. A submodule N < M is said
to be small in M if N+ T = M implies T = M. An epimorphism

P LM is called minimal if Ker(f) is small in P. A minimal epi-

morphism PL M, where P is projective, is called a projective cover
of M. We denote by J, the Jacobson radical of R. By J(M) we
mean the radical (intersection of all maximal submodules) of a
module M. If M is projective J(M)=JM. We call a module N
M-finitely related (M-FR) if N = M"/B, where B is finitely generated.
A module M is called FR-perfect if every M-FR module has a pro-
jective cover. Similarly we define finitely presented perfect (FR-
perfect) modules.

Our aim is to characterise M-FR perfect projective modules.
So we would like to find out equivalent conditions for a module
M/A to have a projective cover, where M is projective. In §1 we
do this when either A is finitely generated or JM is small in M.
In particular, we show that for a projective module M, M/A has a
projective cover if and only if f(A4) is a direct summand of M/JM
and any direct decomposition f(A)@P B of M/JM can be lifted up,
where the summand of M corresponding to f(A) is finitely generated
and f: M-— M/JM is the natural projection. So for a projective
FR-perfect module every finitely generated submodule of M/JM is
a direct summand. That is M/JM is a regular R/J-module (R. Ware
[8]). We prove some properties of regular modules which are used
later in proving that direct sum of FR-perfect projective modules
is FR-perfect projective if and only if each summand is so.

In §2, we give several characterizations of FR-perfect projective
modules. We prove that the following conditions are equivalent for
a projective R-module M (i) M is FR-perfect (ii) M/JM is a regular
R/J module and any direct decomposition A B of M/JM can be
lifted up whenever A is cyclic (finitely generated) and the summand
of M corresponding to A is finitely generated and (iii) M/U has a
projective cover whenever U is cyclic (finitely generated). If further
JM is small in M then the above conditions are equivalent to (iv)
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M|JM is a regular R/J module and every direct decomposition of
M|JM can be lifted up and (v) M/JM is a regular R/J-module and
every direct summand of M/JM has a projective cover. Using these
we give some characterizations of semiperfect ring. We prove that
a projective module M is semiperfect if and only if JM is small in
M and M/ U has a projective cover whenever U is countably generated.
We also show that a module M is semiperfect if and only if M is
FR-perfect projective, JM is small in M and M/JM is semisimple.

In §3, we define essentially finitely related perfect (EFR-perfect)
modules. We prove that if the singular submodule of R/J is zero,
then a projective R-module is EFR-perfect if and only if it is FR-
perfect.

1. Preliminaries. This section contains properties fo projective
covers needed for our purpose. Proposition 1.7 is an important step
for proving our main theorem. This proposition may have its own
value. In a later part of this section we mention some results
about regular modules (R. Ware [8]) which will be used in §2.

PROPOSITION 1.1 (Exercise 15(2), P. 203 [1]). Let A, B be two
R-modules. If A and A@ B have projective covers, them B also has
a projective cover.

Since R/J is Jacobson semisimple, only projective modules over
R/J can have projective covers. Hence

ProposiTION 1.2. If an R/J-module N has a projective cover as
an R-module, then N is projective as an R|J module.

ProroOSITION 1.3. Let N be a small submodule of an R-module
M. Let U be any submodule of M. Then M|/U has a projective
cover if and only if M/(U + N) has a projective cover.

Proof. Since the natural map M/U — M/(U + N) is minimal,
the proposition follows.

PROPOSITION 1.4. Let A= @,.s A, be an R-module such that
fo P,— A, is a projective cover of A, for every seS. If h:P— A
18 @ projective cover of A, them there exists an isomorphism
9: D P,— P such that (hog)|P, = f,.

Proof. Define f: PP, —P A, by f|P, = f, for everyseS. As
@ P, is projective, there exists a homomorphism g: P P, — P such
that hog = f. As h is a minimal epimorphism and f is onto, g is
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onto. As P is projective, g splits and ker(g) is a direct summand
of @ P,. Now ker(g) € ker(f) = @ ker(f,) € @ JP, < J(P P,); since
J(@ P,) cannot contain a direct summand of @ P,, ker(g) = 0.

ProprosiTION 1.5 (cf. Nicholson [5, Lemma 1.6]). Let N be a
direct summand of a projective module P. Let M’ be a submodule of
P such that P=N+M'. Then P=N@® M for some submodule MCM'.

COROLLARY 1.6. Let M be any projective module. Then decom-
positions modulo JM can be lifted if and only if for any direct
summand D of M[JM there is a direct summand B of M such that
f(B) = D, where f: M — M|JM 1is the natural map.

Proof. The only if part is trivial. Assume that the condition
is satisfied. Suppose M/JM = CPH D. Let B be a direct summand
of M such that f(B) = D. Now clearly M = f~*C) + B. Then by
Proposition 1.5, we can write M = A@ B where A & f~*(C). Then
MJJM = f(A) + D. But f(4) < f(f(C)) < C. Sinece M/JM = COD D,
f(A) = C. This completes the proof.

The following proposition is an important step towards proving
the main theorem. It may also be of some independent interest.

ProOPOSITION 1.7. Let M be a projective R-module, f: M— M|JM
be the natural map and A be any submodule of M. Assume either
(@) A 1s finitely generated or (b) JM is small in M. Then the
Jollowing conditions are equivalent:

(1) MJ/A has a projective cover.

(2) M=C®T such that CZ A and AN T s small in M.

(3) f(A) 1s a summand of M/JM and f(A) has a projective
cover as an R-module.

(4) There is a summand C of M (which s finitely generated
if A is finitely gemerated) such that f(C) = f(4).

(5) f(A) is a summand of M/JM and for any decomposition
M|JM = f(A)@ B there is a decomposition M = CP D such that
f(C) = f(A), f(D) = B (where C is finitely generated if A is finitely
generated).

Proof. The equivalence of conditions (1) and (2) is well known
without (a) or (b). We prove (2) = (38) = (4) = (5) = (1).

(2)=(8). Since M=CP T, M/[JM= f(C)D f(T). C< A implies
A=CHANT). This together with AN T is small in M shows
that f(4) = f(C). Hence f(A) is a summand of M/JM. Consider
the epimorphism g = f|C: C— f(A); ker(g) = CNJM = JC, since C
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is direct summand of M. If A is finitely generated or JM is small
in M, then JC is small in C. In any case, g: C — f(A) is a projective
cover.

(8)=(4). Let M/JM= f(A)P T and g: M/JM — f(A) be the
corresponding projection map. Then go f: M — f(A) is an epimorphism
and further go f(A) = f(A). Let h: P— f(A) be a projective cover.
Then there exists h': M— P such that gof = hoh'. 'Since f(4) =
go f(A) and h is minimal A'(4) = P. This means M = ker b’ + A and
kerh' is a summand of M, and so M=kerh'@ A’ with A’'C A by Prop-
osition 1.5. Hence there is a splitting monomorphism j: P— M such
that j(P)SA. Let C=j(P). Then (gof)|C: C— f(A) is a projective
cover. Then clearly f(C) = f(A). If A is finitely generated, then
so is f(A) and consequently its projective cover C is finitely generated.

(4)=(5). Assume (4). f(A) = f(C) is a direct summand of
M|JM, since C is a direct summd of M. Let M/JM = f(A)P B be
any decomposition. We have M/JM = f(C) P B; consequently M =
C + f~%(B). By Proposition 1.5, M =C& D, where D< f-*(B). Clearly
this is the required decomposition.

(5)=1(1). Assume (5). Write M =C @ S such that f(C)= f(4).
Let {a,} be a set of generators for A. Write a, = ¢, + s, ¢, €C, 5, €S
for each ¢. Then f(a,) = f(c;) + f(s;). But M/JM = £(C)D f(S) and
f(A) = f(C) together imply f(s,) = zero i.e., s, JM. Let C' = X¥Re,
We have

f(C") = f(ZRe) = 3f(Re,) = If(Ra,) = f(ZRa,) = f(A) = f(C) .

Consequently, C’' 4+ JM = C + JM. Since C is direct summand of
M, C' 4+ JC=C. If A is finitely generated so is C by as-
sumption and therefore JC is small in C. If JM is small in M,
then JC is small in C. In any case we have C'=C. From a, =
¢, + 8, for each t we see that A+ S =C"+ 8" =C + S’ where §’' =
YRs,. Since each s, e JM, we see that S’ is small in M (if the indexing
set of ¢ is finite or JM small in M). By repeated use of Proposition
1.3, we see that M/A has a projective cover if and only if M/(A+S') =
M/(C + S’) has a projective cover. This is so if and only if M/C =
S has a projective cover. But S is itself projective. This completes
the proof.

A module M is called regular if M is projective and every cyeclic
submodule of M is a direct summand of M (R. Ware [8, Definition
2.8]). R. Ware has proved that if M is a regular R-module, then
every finitely generated submodule of M is a direct summand [8,
Proposition 2.1] and @@, P, is regular if and only if each P, is regular
{8, Page 239].

We need the following propositions to prove our main theorem.
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ProposSITION 1.8 (R. Ware [8, Theorem 2.12]). An R-module P
18 regular if and only if P is isomorphic to a direct sum of principal
left ideals of R, each of which is a regular module.

PROPOSITION 1.9. Let U be a direct summand of @,.sM,, where
each M, is a regular R-module. Then U = @,.r Re, where each Re,
18 a direct summand of M, for some s€S.

Proof. By Proposition 1.8 it is enough to prove the result when
U is eyclic and hence when the set S is finite. If the cardinality
of S is 1, the result is obvious. Assume the result whenever the
cardinality of S<n —1. Let S=1{s, ---,s,} and U be a direct
summand of @,.s M,. Suppose f: M, - -G M, — M,, is the natural
projection and g = f|U. As g(U) is a direct summand of M, ,
it is projective and U = ker(9) @ g(U). Since ker(g) is a direct
summand of M, & --- @ M, _, the result follows from the induction
hypothesis.

2. FR-Perfect modules. In this section we define the concept
of FR-perfect modules and obtain our main theorem. Using this
some characterizations of semiperfect rings and modules are obtained.

A module N is said to be M-finitely related (M-FR) if N = M"/B,
where B is finitely generated. A module N is called M-finitely
presented (M-FP) if N = P/U, where P is a direct sum of copies of
M and U is a finitely generated submodule of P. A module M is
called FR-perfect (FP-perfect) if every M-FR(M-FP) module has a
projective cover. M 1is called semiperfect if it is projective and
every factor module of M has a projective cover.

THEOREM 2.1. Let R be a ring and M be any projective R-module.
Let f: M — M|JM be the natural map. Then the following are
equivalent.

(1) M|IM is a regular R/J-module and for every direct decom-
position A@Q B of M|JM, where A is cyclic, there exists a decom-
position M = C&@ D, where f(C)= A, f(D) = B and C is cyclic.

(ii) M|JM is a regular R/[/J-module and for every direct
decomposition AP B of M|JM, where A is finitely generated, there
exists a direct decomposition M = C@P D, where f(C) = A, f(D)= B
and C is finitely generated.

(iii) M|JM is a regular R/J-module and every cyclic (finitely
generated) submodule of M/JM has a projective cover as an R-module.

(iv) M is FR-perfect.

(v) M/U has a projective cover for ever finitely generated
submodule U of M.
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(vi) MJ/U has a projective cover for every cyclic submodule U
of M.

Proof. (i) = (iii). Let A be a cyclic submodule of M/JM. Since
M|JM is regular, we can write M/JM =A@ B. By i) M=C@H D
where f(C) = A. Since M/C = D is projective, by (1) = (38) of Pro-
position 1.7, we see that A = f(C) has a projective cover. Since any
finitely generated submodule of M/JM is a finite direct sum of cyeclic
submodules of M/JM, we get the result.

(iii) = (iv). In view of Proposition 1.9 any direct sum of copies
of M also satisfies condition (iiii). Thus it is enough to prove that
MJU has a projective cover whenever U is finitely generated. But
this is clear in view of (8) = (1) of Proposition 1.7.

(iv) = (v) is obvious.

(v)=(ii). Using (1) =>(5) of Proposition 1.7 we get this.

(ii) = (vi). Using (6) = (1) of Proposition 1.7 we get this.

(vi)=(1i). This follows from (1) = (5) of Proposition 1.7 and
the fact that the projective cover of a cyclic module is cyeclic.

COROLLARY 2.2. Let M be a projective module such that JM 1s
small in M. Let f: M— M/JM be the natural map. Then the
following are equivalent.

(@) M 1s FR-perfect.

(b) M/JM is a regular R|J-module and any direct decomposition
of M|JM can be lifted to a direct decomposition of M.

(¢) M/U has a projective cover whenever f(U) is finitely
generated.

(d) M|JM is a regular R|J-module and every direct summand
of M/JM has a projective cover as an R-module.

Proof. (a)=(b). As M/JM is a regular R/J-module it is enough
to prove that a direct decomposition @,.sV, of M/JM, where each
V, is eyelic, can be lifted up. Let f.: P, —V, be projective covers
for every seS. Since JM is small in M, by Proposition 1.4, M=@P;,
where f(P;) =V, for every seS.

(b) = (¢). Let U< M be a submodule such that f(U) is finitely
generated. Then f(U) is a direct summand of M/JM. By assumption
we can write M = C@ T such that f(C) = f(U). Then since JM is
small in M, by (4) = (1) of Proposition 1.7, M/U has a projective cover.

(e) == (a) 1is obvious in view of Theorem 2.1.

(b) = (d). Let M/JM =V @ W. Then there exits a decomposition
A @D B of M such that f(A) =V and f(B) =W. Letg= f|A. Then
ker(g) = JA is small in A since JM is small in M. So ¢g: A—V is
a projective cover of V.
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(d) = (a). This is clear by Theorem 2.1 (iii) = (iv).

COROLLARY 2.3. Let M be a projective R-module and JM be
small in M. If M is FR-perfect then M = @,.s Re,, where each e,
18 an idempotent in R.

ProPOSITION 2.4. Let M = @,.s M,, be a a projective R-module.
M is FR-perfect if and only if each M, is FR-perfect.

Proof. The only if part is obvious. For the converse, it is suf-
ficient to prove for finite direct sums in view of Theorem 2.1 (iii).
This can be easily seen by using Proposition 1.9 and Theorem 2.1 (iii).

COROLLARY 2.5. A projective module is FR-perfect if and only
of 1t 18 FP-perfect.

REMARK. W. K. Nicholson [5, Page 1107] calls a module M
semiregular if for every m e M, there exists a decomposition M =
P Q where P< Rm, P is projective and Rm N Q is small in M.
If M is projective, then M is semiregular if and only if M/Rm has
a projective cover for every me M. By Theorem 2.1, a projective
module is semiregular if and only if M is FR-perfect. Theorem 2.1
(ii) = (iv) is an improvement of Proposition 1.17 of [5]. We do not
know whether if M is a projective R-module and M/JM is a finitely
generated R/J-regular module, then M is finitely generated. If this
is so then the finitely generated condition on C in Theorem 2.1 (ii)
can be removed. Also Proposition 1.17 of [5] will be then be true
without JM being small in M. For a projective module M to be
FR-perfect, JM need not be small in M. Let R be a ring which is
semiperfect but not perfect. Then M, a countable direct sum of
copies of R, is FR-perfect but JM is not small in M. We do not
know whether every FR-perfect projective module is a direet sum
of cyclies.

A module Q is called Quasi-projective if for every exact sequence
@— A— 0, the induced sequence Hom(Q, @) — Hom(Q, A) — 0 is exact.
Let M be an R-module. A minimal epimorphism f: Q@ — M is called
a quasi-projective cover of M if @ is quasi-projective and Q/T is
not quasi-projective whenever T < ker(f).

LEMMA 2.6 ([6, Lemma 3.2]). A module A is projective if and
only if there exists an epimorphism P— A with P projective and

AP P quasi-projective.

LEMMA 2.7. If P@ A has a quasi-projective cover where P is
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projective and A is an epimorphic image of P, then A has a pro-
jective cover.

Proof. Let g:Q— P& A be a quasi-projective cover. As P is
projective @ splits. We can write @ = P,@ g'(4) where P, = P.
Then there is an epimorphism f:P,— A. We note that g|g—*(4):
g~'(A) — A is a minimal epimorphism. Hence there is an epimorphism
from P, onto g~'(4). Then Lemma 2.6 shows that g—*(4) is projective.
Hence A has a projective cover.

COROLLARY 2.8. For a projective module M conditions in
Theorem 2.1 are equivalent to:

(vil) every M-FR module has a quasi-projective cover.

(viiil) (MJU) @ M has a quasi-projective cover whenever U is
finitely generated.

(ix) (M/U)YD M has a quasi-projective cover whenever U is
cyclic.

In particular by taking M = R we get the following result. The
equivalence of (1) and (2) is already proved in [7, Proposition 5].

COROLLARY 2.9. The following are equivalent for any ring R

(i) R s left FR-perfect.

(ii) R/J is Von-Neumann regular and idempotents can be lifted
modulo J.

(iii) R/J is Von-Neumann regular and every cyclic (finitely
generated) left ideal of R/J has a projective cover as an R-module.

@iv) R/U has a projective cover whenever U is finitely generated
left ideal of R.

(v) R/U has a projective cover whenever U is a principal left
ideal of R.

(vi) R s right FR-perfect.

(vii) R s right (left) FR-quasi-perfect.

Theorem 19.27 of [3] tells us that there exists plenty of FR-
perfect rings. We rephrase it in our notation.

ProroSITION 2.10 (C. Faith [3, Theorem 19.27]). If Q is a quasi-
injective module, then the endomorphism ring of Q 1is self injective
FR-perfect ring.

COROLLARY 2.11. Any self injective ring is a FR-perfect ring.

From the proof of Theorem 5.6 of [4] we get,
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THEOREM 2.12. If M is an FR-perfect module and if P is a
projective cover of M, then P is FR-perfect.

A factor module of an FR-perfect module need not be FR-perfect.
Let R be a Von-Neumann regular ring which is not semisimple.
Then R as a module over itself is an example. But if M is an FR-
perfect module, then M/U is FR-perfect whenever U is finitely
generated.

E. A. Mares [4, Theorems 3.3, 3.5, 4.3 and 5.1] has proved that
a projective module M is semiperfect if and only if it has the
following properties (1) M/JM is semisimple (that is every submodule
is a summand), (2) Every direct decomposition of M/JM can be lifted
to a direct decomposition of M and (8) JM is small in M. We give
below some characterizations of a projective semiperfect module.

It can be seen from Proposition 1.7 that a projective module M
is semiperfect if and only if JM is small in M, M/JM is semisimple
and every submodule of M/JM has a projective cover. From Corollary
2.2 we get

ProPOSITION 2.13. A projective module M 1is semiperfect if and
only if it is FR-perfect, JM is small in M and M|JM is semisimple.

A module is called finite dimensional if it contains no infinite
direct sum of nonzero submodules.

THEOREM 2.14. Let M be a projective FR-perfect module. If M
is finite dimensional, then M is semiperfect.

Proof. Let U be a submodule of M/JM. We show that U is
finitely generated. Suppose not. Let m,c U. Then M/JM = Rm,P
N, and this decomposition be lifted to a decomposition M = T, P L,.
There exists m, e U such that m, ¢ Rm,. Let m, = rm, + n,, n, € N,.
Then N, = L,/JL, = Rn,@® N, and this decomposition can be lifted
to a decomposition L, = T, @ L,. Hence if U is not finitely generated,
then M is not finite dimensional. Thus M/JM is a Noetherian and
regular module and so is a finite direct sum of simple modules.
Hence M is a semiperfect.

THEOREM 2.15. A projective module M is semiperfect if and
only if M|/U has a projective cover for any countably generated
submodule U of M and JM is small in M.

Proof. The ‘only if’ part follows from Mares’ result [4, Theorem
3.3]. Conversely suppose that the conditions are satisfied. By



150 N. VANAJA AND R. D. KETKAR

Theorem 2.1, (v) = (iv), M is FR-perfect. Then by Corollary 2.3, M
is a direct sum of eyeclics. Clearly any direct summand of M also
satisfies the conditions. Hence by [4, Theorem 5.2], it is enough to
prove the result when M is cyclic. Let f: M — M/JM be the natural
map. Let A be a countably generated submodule of M/JM and let
U be a countably generated submodule of M such that f(U) = A.
Since M/U has a projective cover, M = K@D P, where K U and
PNU is small in M. As K is cyclic, A = f(U) = f(K) is cyeclic.
Hence M/JM is Noetherian. As M/JM is regular, it is semisimple.
Using Corollary 2.13 we see that M is semiperfect.

COROLLARY 2.16 (Nicholson [5, Corollary 2.10]). Let R be a ring.
Then R is semiperfect if and only if R/U has a projective cover
whenever U is a countably gemerated left ideal.

Let R be a ring which has ascending chain condition on left
ideals Re, ¢ = ¢. It is easy to see that such a ring R also satisfies
descending chain condition on left ideals Re, ¢ =e¢. We show that
for such a ring R any projective FR-perfect module M is semiperfect
if and only if JM is small in M.

THEOREM 2.17. Let R be a ring with ascending chain condition
on left ideals Re, ¢* =e. Then a projective FR-perfect module is
semiperfect if and only if JM is small in M.

Proof. Let A be a cyclic summand of M/JM. Then M=C& D,
flC:C—C/JC = A is a projective cover, where f:M— M/JM is
the natural map. As A is cyclie, C is cyclic and hence C= Re, ¢*=e.
From the given condition on R we see that C is a finite direct sum
of indecomposable modules. Let C = @},C;,, where each C; is a
indecomposable cyclic projective module. Then

A=®A, F(C)=CJIC, = 4,.

As A, is regular, if it is not simple, then A; is decomposable. As
any direet decomposition of A; can be lifted to a direct decomposi-
tion of C,, this would imply that C; is decomposable. Hence A is a
direct sum of simple modules. As M/JM is a regular module, it is a
semisimple module. If JM is small in M, then Proposition 2.13
shows that M is semiperfect.

COROLLARY 2.18. A ring R is semiperfect if and only if R 1is
FR-perfect and R satisfies ascending chain condition on left ideals
Re, ¢ = e.
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THEOREM 2.19. Let M = @,.s M, be a FR-projective module.
If P is a direct summand of M such that JP is small in P, then
P is a direct sum of cyclic submodules which are isomorphic to
direct summands of the modules M, s S.

Proof. Let f: M — M/JM be the natural map. By Proposition
1.9, we see that f(P) = @,.;Q;, where each Q, is a cyclic summand
of f(M,) for some s;€S. Since M,, is FR-perfect projective there
exists a cyclic summand P, of M, such that f(P;) = @, [Theorem
2.1, (i)]. For each %, f|P;: P,— @, is a projective cover. As JP is
small in P, by using Corollary 1.4, it is easy to see that P= P P,
(external direct sum).

As any semiperfect module is a direct sum of indecomposables
[4, Corollary 4.4], we get the following theorem of E. A. Mares as
a corollary.

COROLLARY 2.20 (E. A. Mares [4, Theorem 5.5]). Let P be a
direct summand in a direct sum of semiperfect modules, F =
D... M, = PP Q, and let JP be small in P; then P is a direct sum
of indecompasable submodules which are isomorphie to direct sum-
mands of M, i€ l.

3. EFR-Perfect modules. In this section we generalize the
concept of FR-perfect modules. A submodule U of a module M is
called essential in M if KN U = 0 implies K = 0 for any submodule
K of M. A module U is called essentially finitely generated (EFG)
if it contains a finitely generated essential submodule. A module
N is called M-essentially finitely related (M-EFR) if N = M*/U, where
U is an EFG submodule of M*. A module M is called EFR-perfect
if every M-EFR module has a projective cover.

The following proposition gives a characterization of EFR-perfect
modules.

PROPOSITION 3.1. Let M be a projective R-module such that JM
is small in M. Then the following conditions are equivalent

(i) M is EFR-perfect.

(ii) M s FR-perfect and for every EFG submodule U of M*,
(U + JM™|JM* is finitely generated for every n.

(iii) M is EFR-quasi-perfect.

Proof. The equivalence of (i) and (iii) follows from Lemma 2.7.
(ii) = (1i). Since M" also satisfies condition (ii) for every integer
n, it is enough to prove M/U has a projective cover whenever U is an
EFG submodule of M. By Corollary 2.2, M/U has a projective cover.
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(i)=(ii). Let U be an EFG submodule of M". Let f,: M"—
M"/JM" be the natural map. As M"/U has a projective cover,
M=K@T where KU and UN T is small in M". Suppose
fu(K) = f,(U) is infinitely generated. Then f,(K) is an infinite
direct sum of cyclics and hence by Proposition 1.4, K is an infinite
direct sum of cyclics and U= K@ (UN T). So U cannot be an EFG
module.

If M ts an R-module, Z(M) = the singular submodule of M =
{m € M|anng(m) is essential in R}.

LEmMMA 3.2 [2, Proposition 1.1(v)]. Let A and B two R-modules.
If f: A— B is an epimorphism, Zz(B) = 0 and C is essential sub-
module of A, then f(C) is essential in B.

PROPOSITION 8.3. Let R be a ring such that Z(R/J) = 0. Then
a projective R-module M is EFR-perfect if and only if it is FR-
perfect.

Proof. Any EFG submodule of a regular module is finitely
generated. If U is an EFG submodule of M, then (U + JM)/JM is
an EFG submodule of M/JM.

COROLLARY 3.4. Let R be a Von-Neumann regular ring. A
projective R-module M 1is FR-perfect if and only if it is EFR-
perfect.
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