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A NOTE ON FR-PERFECT MODULES

R. D. KETKAR AND N. VANAJA

This paper defines and characterizes projective FR-perfect
modules which is a generalization of semiperfect modules.
Using these some characterizations of semiperfect modules
are obtained.

Introduction* Let R be a ring with identity. All modules we
consider are unitary left iϋ-modules. A submodule N £ M is said
to be small in M if N + T = M implies T = M. An epimorphism

P -» M is called minimal if Ker(/) is small in P. A minimal epi-
morphism P->M, where P is projective, is called a projective cover
of M. We denote by J, the Jacobson radical of R. By J(M) we
mean the radical (intersection of all maximal submodules) of a
module M. If M is projective J(M) = JM. We call a module N
M-finitely related (Af-FR) if N=Mn/B, where B is finitely generated.
A module M is called FR-perfect if every M-FR module has a pro-
jective cover. Similarly we define finitely presented perfect (FR-
perfect) modules.

Our aim is to characterise M-FR perfect projective modules.
So we would like to find out equivalent conditions for a module
M/A to have a projective cover, where M is projective. In §1 we
do this when either A is finitely generated or JM is small in M.
In particular, we show that for a projective module M, M/A has a
projective cover if and only if f(A) is a direct summand of M/JM
and any direct decomposition f(A) 0 B of M/JM can be lifted up,
where the summand of M corresponding to /(A) is finitely generated
and f: M-+ MJJM is the natural projection. So for a projective
FR-perfect module every finitely generated submodule of M/JM is
a direct summand. That is M/JM is a regular i?/J-module (R. Ware
[8]). We prove some properties of regular modules which are used
later in proving that direct sum of FR-perfect projective modules
is FR-perfect projective if and only if each summand is so.

In §2, we give several characterizations of FR-perfect projective
modules. We prove that the following conditions are equivalent for
a projective ϋί-module M (i) M is FR-perfect (ii) M/JM is a regular
R/J module and any direct decomposition A 0 ΰ of M/JM can be
lifted up whenever A is cyclic (finitely generated) and the summand
of M corresponding to A is finitely generated and (iii) M/U has a
projective cover whenever U is cyclic (finitely generated). If further
JM is small in M then the above conditions are equivalent to (iv)
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M/JM is a regular R/J module and every direct decomposition of
M/JM can be lifted up and (v) M/JM is a regular R/J-module and
every direct summand of M/JM has a projective cover. Using these
we give some characterizations of semiperfect ring. We prove that
a projective module M is semiperfect if and only if JM is small in
M and M/U has a projective cover whenever U is countably generated.
We also show that a module M is semiperfect if and only if M is
FR-perfect projective, JM is small in M and M/JM is semisimple.

In §3, we define essentially finitely related perfect (EFR-perfect)
modules. We prove that if the singular submodule of R/J is zero,
then a projective iϋ-module is EFR-perfect if and only if it is FR-
perfect.

1* Preliminaries* This section contains properties fo projective
covers needed for our purpose. Proposition 1.7 is an important step
for proving our main theorem. This proposition may have its own
value. In a later part of this section we mention some results
about regular modules (R. Ware [8]) which will be used in §2.

PROPOSITION 1.1 (Exercise 15(2), P. 203 [1]). Let A, B be two
R-modules. If A and A@ B have projective covers, then B also has
a projective cover.

Since R/J is Jacobson semisimple, only projective modules over
R/J can have projective covers. Hence

PROPOSITION 1.2. // an R/J-module N has a projective cover as
an R-module, then N is projective as an R/J module.

PROPOSITION 1.3. Let N be a small submodule of an R-module
M. Let U be any submodule of M. Then M/U has a projective
cover if and only if M/(U + N) has a projective cover.

Proof. Since the natural map M/U -» M/(U + N) is minimal,
the proposition follows.

PROPOSITION 1.4. Let A — ®ses As be an R-module such that
fs:P8—>As is a projective cover of As for every seS. If h:P-^A
is a projective cover of A, then there exists an isomorphism
g:®Ps->P such that (hog)\Ps = fs.

Proof Define / : © P8 -> © As by /1 Ps = /. for every seS. As
φ P8 is projective, there exists a homomorphism g: φ Ps —> P such
that hog — f. As h is a minimal epimorphism and / is onto, g is
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onto. As P is projective, g splits and ker(g) is a direct summand
of 0 P.. Now ker(ff) £ ker(/) = 0 ker(/8) £ 0 J ? s g J(® P.); since

Pβ) cannot contain a direct summand of 0 P8f keτ(g) = 0.

PROPOSITION 1.5 (cf. Nicholson [5, Lemma 1.6]). Let N be a
direct summand of a projective module P. Let M' be a submodule of
P such that P=N+M'. Then P = NφM for some submodule MQMf.

COROLLARY 1.6. Let M be any projective module. Then decom-
positions modulo JM can be lifted if and only if for any direct
summand D of M/JM there is a direct summand B of M such that
f{B) = D, where f: M—> M/JM is the natural map.

Proof. The only if part is trivial. Assume that the condition
is satisfied. Suppose M/JM — C φ f l . Let B be a direct summand
of M such that f(B) = D. Now clearly M = f~\C) + B. Then by
Proposition 1.5, we can write M = A® B where A £ f~ι(C). Then
M/JM = f(A) + D. But f(A) £ f(f~\C)) £ C. Since M/JM =C@D,
f(A) = C. This completes the proof.

The following proposition is an important step towards proving
the main theorem. It may also be of some independent interest.

PROPOSITION 1.7. Let M be a projective R-module, f: AT—> M/JM
be the natural map and A be any submodule of M. Assume either
(a) A is finitely generated or (b) JM is small in M. Then the
following conditions are equivalent:

(1) M/A has a projective cover.
(2) J l ί = C © Γ such that C £ A and An T is small in M.
(3) f(A) is a summand of M/JM and f(A) has a projective

cover as an R-module.
(4) There is a summand C of M (which is finitely generated

if A is finitely generated) such that f{C) = f(A).
(5) f{A) is a summand of M/JM and for any decomposition

M/JM = f (A) 0 B there is a decomposition M = C 0 D such that
f(C) = f(A), f(D) = B (where C is finitely generated if A is finitely
generated).

Proof. The equivalence of conditions (1) and (2) is well known
without (a) or (b). We prove (2) => (3) => (4) => (5) => (1).

(2) => (3). Since M=C@T, M/JM= f(C) 0 f(T). CQA implies
A = Cξ&(AnT). This together with A Π T is small in M shows
that f(A) = f(C). Hence f(A) is a summand of M/JM. Consider
the epimorphism g = f\C: C-> f(A); ker(g) = CΠ JM = JC, since C
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is direct summand of M. If A is finitely generated or JM is small
in M, then JC is small in C. In any case, g: C —> /(A) is a projective
cover.

(3 ) => (4). Let M/JM = /(A) 0 Γ and g: M/JM-* /(A) be the
corresponding projection map. Then g o / : M —> /(A) is an epimorphism
and further gof(A) = /(A). Let fo: P—>f(A) be a projective cover.
Then there exists h':M-+P such that gof = hoh'. Since /(A) =
# o /(A) and h is minimal fc'(A) = P. This means If = ker ti + A and
ker/z/ is a summand of M, and so M=ker/&'0 A' with A'QA by Prop-
osition 1.5. Hence there is a splitting monomorphism j : P—>M such
that j(P)QA. Let C=j(P). Then (g°f)\C:C->f(A) is a projective
cover. Then clearly /(C) = /(A). If A is finitely generated, then
so is /(A) and consequently its projective cover C is finitely generated.

(4)=>(5). Assume (4). /(A) =/(C) is a direct summand of
•M/JM, since C is a direct summd of M. Let Λf/JΛf = /(A) 0 J5 be
any decomposition. We have MjJM— f(C)@B; consequently M =
C + f~\B). By Proposition 1.5, M=C@D, where DC /"'(J?). Clearly
this is the required decomposition.

( 5 ) => (1). Assume (5). Write M = C 0 S such that /(C) - /(A).
Let {αj be a set of generators for A. Write at = ct + s*, cteC, steS
for each ί. Then /(α4) = /(ct) + /(βt). But Λf/JΛf = /(C) 0 f(S) and
/(A) = /(C) together imply /(sf) = zero i.e., st e Jilf. Let C" = JJίCf,
We have

/(C) = / ( ^ c t ) - */(Λct) = ^/(Λαt) = /(^Λα4) - /(A) = /(C) .

Consequently, C" + JM = C + Jilί. Since C is direct summand of
M, C + JC = C. If A is finitely generated so is C by as-
sumption and therefore JC is small in C. If JM is small in M,
then JC is small in C. In any case we have C = C. From αt =
ct + st for each ί we see that A + S' = C + S' = C + S' where S' =
i/JίSί. Since each sf e JM, we see that Sf is small in M (if the indexing
set of t is finite or JM small in M). By repeated use of Proposition
1.3, we see that M/A has a projective cover if and only if M/(A + S') =
M/(C + SO has a projective cover. This is so if and only if M/C =
S has a projective cover. But S is itself projective. This completes
the proof.

A module M is called regular if M is projective and every cyclic
submodule of M is a direct summand of M (R. Ware [8, Definition
2.3]). R. Ware has proved that if M is a regular j?-module, then
every finitely generated submodule of M is a direct summand [8,
Proposition 2.1] and φ s P s is regular if and only if each Ps is regular
[8, Page 239].

We need the following propositions to prove our main theorem.
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PROPOSITION 1.8 (R. Ware [8, Theorem 2.12]). An R-module P
is regular if and only if P is isomorphic to a direct sum of principal
left ideals of R, each of which is a regular module.

PROPOSITION 1.9. Let U be a direct summand of φβe5Af8, where
each Ms is a regular R-module. Then U = φter^t where each Ret

is a direct summand of Ms for some se S.

Proof. By Proposition 1.8 it is enough to prove the result when
U is cyclic and hence when the set S is finite. If the cardinality
of S is 1, the result is obvious. Assume the result whenever the
cardinality of S ^ n — 1. Let S = {slf , sn} and U be a direct
summand of φ s e 8 Ms. Suppose / : MSl 0 0 MSn —> M8n is the natural
projection and g = f\U. As g(JJ.) is a direct summand of M8%,
it is projective and U = ker(gr) 0 g(U). Since ker(#) is a direct
summand of MSί 0 •• 0 MSn_χ, the result follows from the induction
hypothesis.

2* FR-Perfect modules• In this section we define the concept
of PR-perfect modules and obtain our main theorem. Using this
some characterizations of semiperf ect rings and modules are obtained.

A module N is said to be M-finitely related (Λf-FR) if N = Mn/B,
where B is finitely generated. A module N is called M-finitely
presented (Λf-FP) if N = Pj U, where P is a direct sum of copies of
M and U is a finitely generated submodule of P. A module M is
called FR-perfect (FF-perfect) if every M-FR(ikf-FP) module has a
projective cover. M is called semiperfect if it is projective and
every factor module of M has a projective cover.

THEOREM 2.1. Let R be a ring and M be any projective R-module.
Let f:M-+ M/JM be the natural map. Then the following are
equivalent.

( i ) M/JM is a regular R/J-module and for every direct decom-
position A 0 B of M/JM, where A is cyclic, there exists a decom-
position M — C 0 D, where f(C) = A, f(D) — B and C is cyclic.

(ii) M/JM is a regular R/J-module and for every direct
decomposition A φ δ of M/JM, where A is finitely generated, there
exists a direct decomposition M = C 0 D, where f(C) = A, f(D) = B
and C is finitely generated.

(iii) M/JM is a regular R/J-module and every cyclic {finitely
generated) submodule of M/JM has a projective cover as an R-module.

(iv) M is FR-perfect.
(v) M/U has a projective cover for ever finitely generated

submodule U of M.
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(vi) M/U has a projective cover for every cyclic submodule U
of M.

Proof, (i) => (iii). Let A be a cyclic submodule of M/JM. Since
M/JM is regular, we can write M/JM = A($B. By (i) M = C 0 D
where f(C) = A. Since ikf/C = D is projective, by (1) => (3) of Pro-
position 1.7, we see that A = f(C) has a projective cover. Since any
finitely generated submodule of M/JM is a finite direct sum of cyclic
submodules of M/JM, we get the result.

(iii) => (iv). In view of Proposition 1.9 any direct sum of copies
of M also satisfies condition (iiii). Thus it is enough to prove that
M/U has a projective cover whenever U is finitely generated. But
this is clear in view of (3) ==> (1) of Proposition 1.7.

(iv) ==> (v) is obvious.
(v)=*(ii) . Using (1) =* (5) of Proposition 1.7 we get this.
(ii) => (vi). Using (5) => (1) of Proposition 1.7 we get this.
(vi) => ( i ) . This follows from (1) => (5) of Proposition 1.7 and

the fact that the projective cover of a cyclic module is cyclic.

COROLLARY 2.2. Let M be a projective module such that JM is
small in M. Let f:M-^ M/JM be the natural map. Then the
following are equivalent.

(a) M is FR-perfect.
(b) M/JM is a regular R/J-module and any direct decomposition

of M/JM can be lifted to a direct decomposition of M.
(c) M/U has a projective cover whenever f(U) is finitely

generated.
(d) M/JM is a regular R/J-module and every direct summand

of M/JM has a projective cover as an R-module.

Proof, (a) => (b). As M/JM is a regular R/J-moάxήe it is enough
to prove that a direct decomposition φsesl^ of M/JM, where each
V8 is cyclic, can be lifted up. Let f8: P8 — Vs be projective covers
for every seS. Since JM is small in M, by Proposition 1.4, ikf=0P',
where f(Pf

s) = V8 for every seS.
(b) => (c). Let U Q M be a submodule such that f(U) is finitely

generated. Then f(U) is a direct summand of M/JM. By assumption
we can write M = CφT such that f{C) = f(U). Then since JM is
small in M, by (4) => (1) of Proposition 1.7, M/U has a projective cover.

(c) ==> (a) is obvious in view of Theorem 2.1.
(b) ==> (d). Let M/JM = F 0 W. Then there exits a decomposition

A © B of M such that f(A) - V and f(B) =W. Let g = f | A. Then
ker(#) = JA is small in A since JM is small in M. So g: A-+V is
a projective cover of V.
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(d) => (a). This is clear by Theorem 2.1 (iii) => (iv).

COROLLARY 2.3. Let M be a protective R-module and JM be
small in M. If M is FR-perfect then M ~ (BsesRes, where each e8

is an idempotent in R.

PROPOSITION 2.4. Let M— ®seSM8, be a a projective R-module.
M is FR-perfect if and only if each Ms is FR-perfect.

Proof. The only if part is obvious. For the converse, it is suf-
ficient to prove for finite direct sums in view of Theorem 2.1 (iii).
This can be easily seen by using Proposition 1.9 and Theorem 2.1 (iii).

COROLLARY 2.5. A protective module is FR-perfect if and only
if it is FV-perfect.

REMARK. W. K. Nicholson [5, Page 1107] calls a module M
semiregular if for every meM, there exists a decomposition M =
P(BQ where P £ Rm, P is pro jective and Rm Π Q is small in M.
If M is pro jective, then M is semiregular if and only if M/Rm has
a pro jective cover for every me M. By Theorem 2.1, a projective
module is semiregular if and only if M is FR-perfect. Theorem 2.1
(ii) <=> (iv) is an improvement of Proposition 1.17 of [5]. We do not
know whether if M is a projective i?-module and M/JM is a finitely
generated J?/J-regular module, then M is finitely generated. If this
is so then the finitely generated condition on C in Theorem 2.1 (ii)
can be removed. Also Proposition 1.17 of [5] will be then be true
without JM being small in M. For a projective module M. to be
FR-perfect, JM need not be small in M. Let R be a ring which is
semiperfect but not perfect. Then M, a countable direct sum of
copies of R, is FR-perfect but JM is not small in M. We do not
know whether every FR-perfect projective module is a direct sum
of cyclics.

A module Q is called Quasi-projective if for every exact sequence
Q —> A —> 0, the induced sequence Hom(Q, Q) —> Hom(Q, A) -> 0 is exact.
Let M be an iϋ-module. A minimal epimorphism / : Q —> M is called
a quasi-pro jective cover of M if Q is quasi-projective and Q/T is
not quasi-projective whenever T £ ker(/).

LEMMA 2.6 ([6, Lemma 3.2]). A module A is projective if and
only if there exists an epimorphism P —> A with P projective and
A Φ P quasi-projective.

LEMMA 2.7. J / P φ A has a quasi-projective cover where P is
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protective and A is an epimorphic image of P, then A has a pro-
jective cover.

Proof. Let g:Q->P@A be a quasi-projective cover. As P is
protective Q splits. We can write Q = P10 g~ι{A) where P1 = P.
Then there is an epimorphism f:Pι-*A. We note that g\g~\A):
g~\A) -» A is a minimal epimorphism. Hence there is an epimorphism
from Px onto g~~\A). Then Lemma 2.6 shows that g~ι{A) is projective.
Hence A has a projective cover.

COROLLARY 2.8. For a projective module M conditions in
Theorem 2.1 are equivalent to:

(vii) every ikf-FR module has a quasi-pro jective cover.
(viii) {M/U)φM has a quasi-pro jective cover whenever U is

finitely generated.
(ix ) {M/ U)@ M has a quasi-pro jective cover whenever U is

cyclic.

In particular by taking M = R we get the following result. The
equivalence of (1) and (2) is already proved in [7, Proposition 5].

COROLLARY 2.9. The following are equivalent for any ring R
( i ) R is left FR-perfect.
(ii) R/J is Von-Neumann regular and idempotents can be lifted

modulo J.
(iii) R/J is Von-Neumann regular and every cyclic {finitely

generated) left ideal of R/J has a projective cover as an R-module.
(iv) R/ U has a projective cover whenever U is finitely generated

left ideal of R.
(v) R/U has a projective cover whenever U is a principal left

ideal of R.
(vi) R is right FR-perfect.
(vii) R is right (left) FR-quasi-perfect.

Theorem 19.27 of [3] tells us that there exists plenty of FR-
perfect rings. We rephrase it in our notation.

PROPOSITION 2.10 (C. Faith [3, Theorem 19.27]). If Q is a quasi-
injective module, then the endomorphism ring of Q is self injective
FR-perfect ring.

COROLLARY 2.11. Any self injective ring is a FR-perfect ring.

From the proof of Theorem 5.6 of [4] we get,



A NOTE ON FR-PERFECT MODULES 149

THEOREM 2.12. If M is an FR-perf ect module and if P is a
projeetive cover of M, then P is FR-perf ect.

A factor module of an FR-perf ect module need not be FR-perf ect.
Let R be a Von-Neumann regular ring which is not semisimple.
Then R as a module over itself is an example. But if M is an FR-
perf ect module, then M/U is FR-perf ect whenever U is finitely
generated.

E. A. Mares [4, Theorems 3.3, 3.5, 4.3 and 5.1] has proved that
a projeetive module M is semiperfect if and only if it has the
following properties (1) M/JM is semisimple (that is every submodule
is a summand), (2) Every direct decomposition of M/JM can be lifted
to a direct decomposition of M and (3) JM is small in M. We give
below some characterizations of a projeetive semiperfect module.

It can be seen from Proposition 1.7 that a projeetive module M
is semiperfect if and only if JM is small in M, M/JM is semisimple
and every submodule of M/JM has a projeetive cover. From Corollary
2.2 we get

PROPOSITION 2.13. A projeetive module M is semiperf ect if and
only if it is FR-perf ect, JM is small in M and M/JM is semisimple.

A module is called finite dimensional if it contains no infinite
direct sum of nonzero submodules.

THEOREM 2.14. Let M be a projeetive FR-perf ect module. If M
is finite dimensional, then M is semiperfect.

Proof. Let U be a submodule of M/JM. We show that U is
finitely generated. Suppose not. Let mxe U. Then M/JM = Rmx($
Ni and this decomposition be lifted to a decomposition M = TΊ φ Lx.
There exists m2eU such that m2 g Rmx. Let m2 = rmγ + n2, n2 e Nt.
Then Nt — L1/JLι = Rn2 φ JV2 and this decomposition can be lifted
to a decomposition Lx — T2 φ L2. Hence if U is not finitely generated,
then M is not finite dimensional. Thus M/JM is a Noetherian and
regular module and so is a finite direct sum of simple modules.
Hence M is a semiperfect.

THEOREM 2.15. A projeetive module M is semiperfect if and
only if M/U has a projeetive cover for any countably generated
submodule U of M and JM is small in M.

Proof. The 'only if part follows from Mares' result [4, Theorem
3.3]. Conversely suppose that the conditions are satisfied. By
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Theorem 2.1, (v) ==> (iv), M is FR-perfect. Then by Corollary 2.3, M
is a direct sum of cyclics. Clearly any direct summand of M also
satisfies the conditions. Hence by [4, Theorem 5.2], it is enough to
prove the result when Mis cyclic. Let f:M—> M/JMbe the natural
map. Let A be a countably generated submodule of M/JM and let
ί/be a countably generated submodule of M such that f(U) = A.
Since M/U has a projective cover, M = Kφ P, where KQU and
P f] U is small in M. As K is cyclic, A = /(Z7) = /(-SQ is cyclic.
Hence M/JM is Noetherian. As M/JM is regular, it is semisimple.
Using Corollary 2.13 we see that M is semiperf ect.

COROLLARY 2.16 (Nicholson [5, Corollary 2.10]). Let Rbe a ring.
Then R is semiperfect if and only if R/U has a projective cover
whenever U is a countably generated left ideal.

Let R be a ring which has ascending chain condition on left
ideals Re, e2 — e. It is easy to see that such a ring R also satisfies
descending chain condition on left ideals Re, e2 — e. We show that
for such a ring R any projective PR-perfect module M is semiperfect
if and only if JM is small in M.

THEOREM 2.17. Let R be a ring with ascending chain condition
on left ideals Re, e2 = e. Then a projective Y^Ά-perfect module is
semiperfect if and only if JM is small in M.

Proof. Let A be a cyclic summand of M/JM. Then M=C@D,
f\C:C-*C/JC=A is a projective cover, where f:M->M/JM is
the natural map. As A is cyclic, C is cyclic and hence C = Re, e2 — e.
From the given condition on R we see that C is a finite direct sum
of indecomposable modules. Let C = 0£= 1 Ct, where each C< is a
indecomposable cyclic projective module. Then

A = φ Ai9 f(Ct) = CJJCt = A< .

As At is regular, if it is not simple, then At is decomposable. As
any direct decomposition of At can be lifted to a direct decomposi-
tion of Ci9 this would imply that Ĉ  is decomposable. Hence A is a
direct sum of simple modules. As M/JM is a regular module, it is a
semisimple module. If JM is small in M, then Proposition 2.13
shows that M is semiperfect.

COROLLARY 2.18. A ring R is semiperfect if and only if R is
FR-perfect and R satisfies ascending chain condition on left ideals
Re, e2 = e.
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THEOREM 2.19. Let M=φseSM8 be a FR-projective module.
If P is a direct summand of M such that JP is small in P, then
P is a direct sum of cyclic submodules which are isomorphic to
direct summands of the modules Ms, seS.

Proof. Let / : M-> M/JM be the natural map. By Proposition
1.9, we see that /(P) ~(BieIQi, where each Qi is a cyclic summand
of f(Ms.) for some 8t e S. Since MH is FR-perfect projective there
exists a cyclic summand P< of MH such that /(P<) = Qt [Theorem
2.1, (i)]. For each i, f\Pt: Pi;—> Qi is a projective cover. As JP is
small in P, by using Corollary 1.4, it is easy to see that P ~ ® Pt

(external direct sum).
As any semiperfect module is a direct sum of indecomposables

[4, Corollary 4.4], we get the following theorem of E. A. Mares as
a corollary.

COROLLARY 2.20 (E. A. Mares [4, Theorem 5.5]). Let P be a
direct summand in a direct sum of semiperfect modules, F =
φiei Mi = P φ Q , and let JP be small in P; then P is a direct sum
of indecompasable submodules which are isomorphie to direct sum-
mands of Mif iel.

3* EFR-Perfect modules* In this section we generalize the
concept of FR-perfect modules. A submodule U of a module M is
called essential in M if K Π U = 0 implies K = 0 for any submodule
K of M. A module U is called essentially finitely generated (EFG)
if it contains a finitely generated essential submodule. A module
N is called M-essentially finitely related (Λf-EPR) if N~ Mn/U, where
U is an EFG submodule of Mn. A module M is called ΈFR-perfect
if every ikf-EFR module has a projective cover.

The following proposition gives a characterization of EFR-perfect
modules.

PROPOSITION 3.1. Let M be a projective R-module such that JM
is small in M. Then the following conditions are equivalent

( i ) M is EFR-perfect.
(ii) M is FR-perfect and for every EFG submodule U of Mn,

(U + JMn)jJMn is finitely generated for every n.
(iii) M is FiFR-quasi-perfect.

Proof. The equivalence of (i) and (iii) follows from Lemma 2.7.
(ii) => ( i ) . Since Mn also satisfies condition (ii) for every integer

n, it is enough to prove M/ U has a projective cover whenever U is an
EFG submodule of M. By Corollary 2.2, M/U has a projective cover.
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( i ) => (ii). Let U be an EFG submodule of M*. Let fn: Mn -•
Mn/JMn be the natural map. As Mn/U has a projective cover,
Mn = K 0 T where K £ U and U Π T is small in M*. Suppose
fn(K)=fn(U) is infinitely generated. Then fn(K) is an infinite
direct sum of cyclics and hence by Proposition 1.4, K is an infinite
direct sum of cyclics and U = Kφ (U Π T). SoU cannot be an EFG
module.

// M is an R-module, Z(M) = the singular submodule of M =
{m e M \ annB(m) is essential in R).

LEMMA 3.2 [2, Proposition l.l(v)]. Let A and B two R-modules.
If f: A-> B is an epimorphism, ZR{B) = 0 and C is essential sub-
module of A, then f(C) is essential in B.

PROPOSITION 3.3. Let R be a ring such that Z(R/J) = 0. Then
a protective R-module M is ΈtFR-perfect if and only if it is FR-
perfect.

Proof. Any EFG submodule of a regular module is finitely
generated. If U is an EFG submodule of M, then (U + JM)/JM is
an EFG submodule of M/JM.

COROLLARY 3.4. Let R be a Von-Neumann regular ring. A
protective R-module M is FR-perfect if and only if it is EFR-
perfect.
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