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ON THE ABSOLUTE CONVERGENCE OF FOURIER

SERIES OF THE CLASSES H° n V\υ\

Z. A. CHANTURIA

In this paper the absolute convergence of the Fourier
series is studied for the class of the function / with the
modulus of continuity and the modulus of variation satif y-
ing the conditions ω(δ,f) = O(ω(δ)) and υ(n, f) = 0{υ(n))
respectively, where the modulus of continuity ω(δ) and the
modulus of variation υ(n) are given. In terms of these
properties the sufficient conditions of the absolute con-
vergence are established. We prove that these conditions
are unimprovable in certain sense.

1* Let / be a 2π periodic continuous function and let

an(f) = -1 \2πf(t) cos ntdt , n = 0, 1, - -
π Jo

&•(/) = — Γ/(*) s i n ntdt * ^ = 1, 2, •
π Jo

be the sequence of its Fourier coefficients.
The paper is devoted to the conditions of convergence of the

series

oo

(1) Σ(|α»(/)l + \bn

or of the series

(2) Σ K(/)l

where

if the complex form of the Fourier series is used.
The class of functions for which the series (1) (or (2)) converges

is denoted by A.
The problem in question has a long history (see monographs [1],

Chapter IX, [14], Chapter VI, [8]).
Let us introduce the classes which well be used in what follows.
If /eC(0, 2π) then the function

α>(δ,/)= max |/(x) • f(y)\
x.ye[Q 2τr]

37



38 Z. A. CHANTURIA

is called the modulus of continuity of the function /.
The modulus of continuity of an arbitrary function /eC(0, 2π)

has the following properties:
(1) α>(0) = 0,
(2) ω(β) is nondecreasing on <?,
( 3 ) ω(δ) is continuous on [0, π],
( 4 ) ω(δ, + δ2) ^ ω(δ,) + ω(δ2) for 0 ^ δ, ^ δ2 ^ ^ + δ2 ^ TΓ.

An arbitrary function α>(§) which is defined on [0, π] and has
the properties (l)-(4) is called the modulus of continuity.

If the modulus of continuity ω(δ) is given then Hω denoted the
class of functions /eC(0, 2π) for which ω(δ, f) = O(ω(δ)) when δ->0
is denoted.

S. N. Bernstein has proved ([1], p. 608), that if feHω and

then fe A.
Bernstein's theorem is best possible in the sense that if the

series

n)<O° '

then there exists the function /0~e~A in the class Hω.
This was proved by Bernstein for the class Hω under the

condition that there exists ε > 0 such that δ'^ωζβ) is decreasing.
S. B. Stechkin proved the same for arbitrary classes ([1], p. 625).

If the function / has bounded variation i.e., belongs to the
class V, then lesser smoothness of its modulus of continuity may be
required. That follows from the theorem of A. Zygmund [15]: If
feVf]Hω and

(3) ±λjωίλ\< oo

then feA.
In particular, the absolute convergence occurs when

(4) ω(δ) = θ ( ( l n i - ) ' ) , η>2.

Zygmund has pointed out that the latter statement is wrong
for Ύ] ^ 1, because the function

n=2 nlnn

1

sin nx



ON THE ABSOLUTE CONVERGENCE OF FOURIER SERIES 39

is absolutely continuous and has the modulus of continuity of order
O((ln 1/δ)"1). He has posed the question whether the absolute con-
vergence is true for 1 < η ^ 2.

R. Salem [9] has proved that if for any ε > 0 the modulus of
continuity ω(δ) satisfies the condition

then there exists the function f0 e V Π Hω which does not belong to
A. This implies that absolute convergence does not hold for the
class Hω, ω(8) = O((ln 1/δ)-'), V < 2

J.-P. Kahane ([8], p, 24) has sharpened Salem's theorem in the
following way: if the modulus of continuity satisfies the condition

ϊϊϊn n2ω(2~n) = oo
n—*oo

then there exists the function f0 e V Π Hω which does not belong to
A.

But neither Kahan's theorem gives the answere in the
logarithmic scale for ΎJ = 2 and this question has remained open
until recently.

Only in 1972 I. Wik [12] proved that there exists the function
of bounded variation satisfying the condition (4) for η = 2 for which
the absolute convergence does not hold.

As regards the general modulus of continuity the final answer
to the question was obtained by S. V. Bochkarev [3]. He has proved
that the condition (3) is necessary for the absolute convergence of all
Fourier series of the class V Π Hω.

In what follows we shall use the notation of the modulus of
variation of a function introduced by us in 1973 [4].

DEFINITION. Let / be a bounded 2ττ-periodic function. The
modulus of variation υ(n9 f) of the function / is defined for non-
negative integers n as follows:

υ(0, /) = O

and for n ^ 1

υ(n, f) = sup Σ l/(Wi) - f(tik) | ,

where Πn is an arbitrary system of n disjoint intervals (t2k9 t2k+1),
k = 0, 1, , n - 1 i.e., 0 ^ ί0 < t± ^ t2 < ^ t2k_2 < t2i^ ^ 2π.

The modulus of variation of any function is nondecreasing and
upwards convex. Functions of an integral argument with such
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properties will be said to be modulus of variation. If the modulus
of variation υ{n) is given, then by V[υ] we denote the class of 2π-
periodic functions for which υ(n, f) = 0(υ(n)) when n —• oo.

Note that the Jordan class V = V[l] and the class of 2ττ-periodic
bounded functions M(0, 2π) = F W ; if 0 ^ a ^ /3 ̂  1, then V[l] c
F M c V[nβ] c ikΓ(O, 2τr). In general, if υ^n) ^ ίλ>(w), n = 0, 1,
then F M c F W .

In [4] we have extended Zygmund's theorem to the wider
classes V[na] Π Hω and in [5] under some restrictions on ω the
necessity of the obtained condition has been proved.

2* In the present paper we extend the Zygmund and Bochkarev
theorems to the classes V[υ] f] Hωl.

The following theorem is valid.

THEOREM 1. Let fe Hω n V[υ], υ(n) = o(n)\ υ(l) = ω(ΐ) = 1,

φ{n) = max ίm; ^^- ^

If

Σ(6) Σ-( Σ

then fe A.

We shall deduce this theorem from the following theorem of
0. Szasz ([1], p. 609). If / satisfies the condition

(Γ2?r ] 1/2

where ω2(δ, f) = max0 < f e^ |\ \f(x -r h) — f(x) \ dxϊ , then fe A.
Although Theorem 1 is a corollary of the Szasz theorem it

seems that our theorem is expressed in terms which are more ap-
plicable in the field under consideration than those of the Szasz
theorem.

In order to prove Theorem 1 we need the following lemma.

LEMMA 1. Let o(n) be a modulus of variation and υ(n) = o(n),
υ(l) > 0. Then there exists a natural number n0 such that υ(ri)jn

1 Several results of this paper were published in [6] without proofs.
2 This condition is natural since for continuous / υ{n, f) = o(n) (see 0
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is decreasing for n Ξ> n0.

Proof Since υ(n) is upwards convex, for any n ^ 1

υ(n) — υ(n — 1) ^ υ(n + 1) — υ(n) ,

therefore

n

y(%) = Σ \pΦ) — (̂fe — 1)] ^ w[w(n) — ί>(^ — 1)]

i.e.,

^ ^ ^ L>(^) — L>(^ — 1)

or

υ(n)

n ~ n — 1

So we have proved, that υ(n)/n does not increase. Now it is
necessary to prove that υ(ri)/n is decreasing beginning with a certain
n0. Assume the contrary. Then there exists a sequence {nk}%=1 such
that

o(n) ι>0% + 1) & _ i o
, /c — i, ^,

or

+ 1) — o(nk) , fc = 1, 2,

i.e.,

•I nk

— Σ [o{m) — o(m — 1)] = υ(nk + 1) -

But as υ(n) — υ(n — 1) does not increase it follows from the last
equality that for n = 1,2, , nk + 1 we have

υ(n) — υ(n — 1) = υ(ί)

therefore

o(n) = ^ιy(l) , 1 ^ n ^ nk + 1 .

Since {nk} is an infinite sequence the last equality is valid for
all n, i.e., υ(n) Φ o(ri). This contradicts the conditions of the lemma.

Proof of Theorem 1. Let
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c -
C2 —

and c0 = max {clf c2}.
Then ω(δ, /) ^ coα)(δ), 3 6 [0, π] and υ(n, f) ^ cou(w), W ̂  0.
We have

i f /) - max Γ|/(* + h) - /(x)|2ώx = Γ|/(ί» + K) - f(x)\*dx ,
% / oα^i/ Jo Joo

where 0 < hn ^ 1/n.
Let ZΛ = [2π/hn], then since / is periodic

(7) α^-ί, /) = y- Γ Σ [fiix + Λλ ) ~ Λx + (fc -

Consider the sum

£•(*) = Σ [/(» + fcΛ J ~ /(« + (ft - l)δJ]2 , 0 ^ x ^ 2ττ .
fc = l

Assume that x0 e [0, π] is the point of maximum of the function

Consider the sets

SL = {k eN; \f(x0 + M J - f(x0 + (k - l)hn)\ = 0} ,

Sm= [ke N; co^p. < f(xQ + khn) - f(x0 + (k - l)fc.)| ^ c 0 ^ - } ,

m ^ 0 .

Let us show that for m < mo(n) = [log2 9>(w)] the sets Sm are
empty.

In fact, for any k e {1, •••,?„} according to the definition of φ(n)
and the monotonicity of υ(n)/n we have

|/(^ 0 + khn) - f(xQ + (fc - l)λ.) |

So for 0 <: m ^ mo(w) - 1, Sm = 0 .
Denote by σm the number of elements of Sm. I t is obvious that

ίToo + Σ Gm—l-n,-
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Because of

Σ 1/(^0 + kh%) - f(x0 + (k~ l ) f t j | rg υ(σm, f) ^ cQυ(σm) ,
keSm

and the definition of the sets Sm, we obtain

coυ(σm) ^ σm - c0

 v

o m +,

or

, o x <>(<O 0(2^)
σm 2m+1

But according to Lemma 1 υ(n)/n is decreasing beginning with
a certain N, so it follows from (8) that for m ^ [log2 N] + 1

( 9 ) σm £ 2W + 1 .

If n is also large that 2m°in) ^ JV, then using (9) we have

£ (so)^ Σ Σ
m=w0 kesm

(10) < P2 V /T
m=m0 2 2

Let M be defined according to the condition

Σ 1 2m + 1 < i. ^ Σ 2 m + 1 .

Then for mo(w) ^ log2iV, using (10), we obtain

V 9m+1 .

2/jLX 2 m 0 + l - l

Γ 2 l — ^ τ9
o A; / fc=2wo+i A;

From the last estimation and from (7) by the definition of mQ(n)
we have

( 1 \ 1

n / ίn

Now let us show that

Ψ(n)+ln

3 Here and in what follows by c we denote absolute positive constants which are,
in general, distinct in different formulas.
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Recally, as υ(n)/n j.

A . ">)'«. - ») s c (
φ(ri) + n

γi k=φ(n) fC

which since hn <; 1/n implies

c_φψnv\k)
~ ^ *-7( ) &2

It follows from (11) and (12) that

( /φ(n)+n /,,2/iL\\ 1/2

±, f) £ A( Σ ™)
n

According to the convergence of the series (6) from the previous
estimate we obtain that the series

is also convergent and by the theorem of 0. Szasz feA. This com-
pletes the proof.

COROLLARY 1 (S. N. Bernstein, [1] p. 608). If feHω and

(13) Σ -4= ω(-)< °°

then feA.

Proof. Using the monotonicity of v(n)/n and the definition of
φ{n) we have

< (v <P{n)) , ^

*4( ) k2 ) "" V ?>8(^) (9̂ (71) + I)

^ cV~n α>( —

i.e.,
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Jc2 / V n \n

Hence by (13) and Theorem 1 feA.

COROLLARY 2. Let feHω n V[na], 0 ̂  α < 1/2

l-2α/2(l-α)

(14) S
n=ι n

then feA.

Proof. It is easy to calculate that in this case

φin) =

Then

l-2α/2(l-α)β(i)
From this estimate, (14) and Theorem 1 it follows that feA.

In particular, for a = 0 Corollary 2 implies Zygmund's theorem.

COROLLARY 2'. IffeHω n F|>α], wftere 0 ̂  α < 1/2 α^ώ α)(δ) =
(lnl/δ)~i2a-a)/1-2a)-% ε > 0 ίftίm / e A.

COROLLARY 3. 1/ feHω Π F[ln^(π + 1)], where 0 < £ < °° and

(15) Σ -ft>

then feA.

Proof. It is easy to calculate that for sufficiently large n

n

Then

1)V/2

_f—
ω(l/ri)
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This estimate, (15) and Theorem 1 imply that feA.

COROLLARY 3'. If feHω n F[ln^ (n + 1)], where 0 < β < °o and

( 1 \- 2 / 1 \-(/9+2+ε>

ln^-j ( l n l n y) > ε>°
then feA.

COROLLARY 4. Let feHωn V[nm\τrβ(n + 1)], where 3/2 < 0 < °o
and

(16) Σ - ln1 / 2

then feA.

Proof. It may be calculated that for sufficiently large n

Then

1 γ/2
(& + 1)/ =

i=ΨM k2 I \k^tn) k W (fc + 1) / ~ ln^-172 φ{ri)

1\ +
ω(ljn)

This by (16) and Theorem 1 imply feA.

COROLLARY 4'. // fe Lip α n 7 [ τ / ¥ In-' (n + 1)], f̂eβre a > 0
6(3/2, oo), ίfce^ / e i .

REMARK. Theorem 1 implies that for any specific ω for which
the series (3) converges Zygmund's theorem may be improved. E.g.,
if feHω, where ω(β) = (In 1/δ)-3 then the function / may have the
modulus of variation of order nm~% ε > 0 but the Fourier series of / is
still absolutely convergent; or if / 6 Hω where ω(δ) ~ ln~2 l/<5(ln In l/δ)~z

in a neighborhood of δ = 0, then the function / may have the
modulus of variation of order ln1"'^, ε > 0 to provide feA.

3* Now we shall show that the condition (6) is necessary for
4 We write υι(n) ~ uz{n) if there exist positive constants A and B such that

Aυi(n) ^ υ2(n) ^

for all n.
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absolute convergence of Fourier series of class Hω Π V[v] in a
sufficiently wide class of moduluses of variation and for arbitrary
moduluses of continuity. But first we formulate same subsidiary
statements which will be needed below.

LEMMA 2 (Gauss identity [11], p. 81). // k is a natural number
and n is an integer, then

2k

LEMMA 3 (Cauchy [7], p. 290). 1/ the sequence {an} is almost
decreasing5, then the series Σ an ^s convergent or divergent, together
with the series Σ pnap* where p > 1 is a natural number.

LEMMA 4 (N. K. Bari, S. B. Stechkin [2]). The following
statements are equivalent for a positive sequence {an}:

(a) 3ε > 0 such that nεan is almost decreasing <=>

Σ ~r^k = O(an) for n > oo
k=n+l fC

(b) 3ε > 0 such that Tf-'a* is almost increasing6 <=>

n

Σ a*; = 0(nan) for n > oo .
fc=l

LEMMA 5 (/. Wik [13]). Let a positive sequence {an} be bounded
and Σ &n = °° Then for any a e (0, 1) and β > 1 there exists a
sequence of natural numbers {qv} such that

and

α«v+l-«* ^ - ^ ^ ^ v + l-ίv , V = 1, 2, .

LEMMA 6 ([10], p. 111). For any modulus of continuity co(δ)

for 0 < δ2 < δx.
5 i.e., there exists a constant c > 1 such that for all n and m > n an^ (l/c)αm.
6 a sequence {an} is almost increasing, if there exists a constant c > 1 such that for

any n and m > n an ̂  cam.
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LEMMA 7 ([5]). Let {αj be almost decreasing and Σ(l/»)α» = » .
If

Σ — &* = °°
n

LEMMA 8. Let liπv^o fm(x) = /„(&) /or any xe[0, 2ττ]. Tftew /or
a n y n ^ l

v(n, /0) ̂  sup v(n, / J .

Proof. By the definition of v(n, f) for any ε > 0 there exist 2n
points 0 ^ #<Sε) < a^ε) ^ ^ ε ) <•'••< xiί^ ^ 2ττ such that

<n, /o) < Σ l/o(̂ Vi) - /o(^) I +
fc=o

As

for any x e [0, 2JΓ] there exists m0 such that for m > m0

l/»04ε)) - /»(4ε))l < ^ - for fc = 0, 1, , 2n - 1 .
2n

Then

Σ l/o(χS+i) - /o(«a?) 1 ^ Σ l/o(^Vi) - /.(a &'+O I
fc=0 fc=0

^ -^-^ + 7p- ^ + v(n, fm) = ε + v(n, / J
2n 2n

and so

v(^, fo) ̂  2ε + v(n, / J

for m > m0. This completes the proof.
Now we shall prove

THEOREM 2. If there exists ε e (0, 1/2) such that n£~1/2v(n) is
almost decreasing, n~εv(ri) is almost increasing and oo(d) satisfies
the condition
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Σ—( Σ -h1) = °°

49

(17)

then there exists a function in the class Hω Π V[v] for which the
series (2) is divergent.

Before we prove this theorem let us explain how the function
/o is constructed. The complex function of the real variable f0 is
the infinite sum of the functions with real part of type

1

(the imaginary part is analogous). The three parameters kn, the
altitude (αj and the slope (mj are selected in such a may that (1)
/oeifω, (2) foeV[v] and (3) fo~eA.

REMARK. Note that according to Lemma 4 the first condition
imposed on v(n) is equivalent to the following one

and the second condition is equivalent to

±«£ = <MN)).
»=i n

Proving this theorem we use the concept of Wik to apply the
Gauss identity.

For proving Theorem 2 we need some constructions.
Let m and k be natural numbers and m > 2(2k + 1). Define the

function Fm>k as follows

m /?ΐ(2τr/2fc+l)r2

ci(2π/2k+l)z2

for
2A+1 m

2& + 1 m

0 in other points of [0, 1],
outside of [0, 1] continue periodically with the period of 1.
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Let

/«,*(«) = \aFmtk(t)dt .
Jo

As /m,&(l) = fm,k(Q) — 0, /m>fc is continuous and periodic with the
period of 1.

We shall estimate the modulus of variation and the modulus of
continuity of this function.

LEMMA 9. The modulus of continuity of the function fm>k is
subjected to the estimate

2 m λ for n>m
2ft + 1 n

ω(—,/»,*) =
for 1 ̂  n ^ m .

2ft + 1

Proof. Since maxo^*^ |FmΛ(x)\ = m/2k + 1 the estimate for n>m
follows from the finite increment formula.

If x e [τ/2ft + 1, τ + l/2ft + 1], τ = 0, 1, - -, 2fc

(18)
I/•,*(«)!= \\X

oFm,k(t)dt\ = |j
r/2fc+l+l/m

F.,»(t) \
O Jr/2fe+l

I f« Γ τ/2k+l 1

I Jr/2fe+l Jr/2fc+l 2k + 1+

Prom this estimate for n ^ m it follows that

—,/*,*) ^ 2max|/m>fc | ^, /.,Λ ^ 2 max \fm,k \ £
n / 2& + 1

This completes the proof.

LEMMA 10. Γfee modulus of variation of the function fm>k is
subjected to the estimate

( 2 -n /or H ^ 2 H 1
v(n, fm,k) ^\2k

[ 2 for n > 2ft + 1 .

Proof. For n = 1, , 2ft + 1 using (18) we obtain

2
, /„,*) = sup Σ l/m,fefe+i) - /«lfc(»2i) I ̂  2^ max | ^ 2k

Now let w > 2ft + 1, then



ON THE ABSOLUTE CONVERGENCE OF FOURIER SERIES 51

S I 2fc f (r/2fc+l)+l/W

I Fmιk(t) I dt = Σ 2 (r/i4+1) I FmΛ(t) I dt
0 r=0 J

- ™ — • - ί (2k + l ) = 2 .
2& + 1 m V /

= 2

Now we shall estimate the Fourier coefficients of the function
fm,k

LEMMA 11. The Fourier coefficients of the function fm>k are
subjected to the relations

(19)
πn]/2k

2

sin πn

sin:

for n^ —
Δ

for

for

Proof. Since /„,»«)) = fm,k(l) = 0,

c.(/.,4) I = I (V-iW^' 'dί = -s^- IΓ FmΛ{t)eiπint

I J o z π 1 ^ I Jo

1
2πn

1

m
2& + 1

2A;

r = 0

m

2A; 2 ΓΓr,

r=0 LJΓ,

4πW 2ft + 1
g2πia/[2k+l) 1

Using the Gauss identity we obtain

|cn(/«,fc) =

- ^ i e2πin(l/(2k+l)-l/m)

(20)

T/2fc + 1 sin-m
sin J__!Λ|

+ 1 m ' l

For n ^ m/2 this implies the estimation (19) trivially. The
upper bounds for n < m/2 may be obtained from (20) if use the
relation

sin πn
m

πn
m

and the lower bound for n < m/2 follows from the relation

πn
sin-m

;>2_.^L for

π m
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This completes the proof.
Besides, for proving Theorem 2 we need to construct a special

sequence of natural numbers.
Since nε~1/2v(n) is almost decreasing for a certain ε > 0 w2ε~V(w)

is also almost decreasing. Then according to Lemma 4

f, v\k) _ f, 1 <;2(fc) _ o f φ ) \

Hence

<pψ*vχk) v\φ(n))

This with the divergence of the series (17) implies

(21) £ 1 4 ^
n

4 ^
Vφ{n)

As n~1/2+εv(n) is almost decreasing all the more v(n)lV n is almost
decreasing and since <p(n) is increasing when n —• oo the sequence
v(φ(n))/\/φ(n) is almost decreasing. Now using Lemma 7 and the
divergence of the series (21) we have

(22) Σ-7 =oo,

where

7n = mm

As far as n~εv(n) is almost increasing and nε~1/2v(n) is almost
decreasing there exist a constant cλ ^ 1 such that for any k and
n > k

(23) ϋ W

and

(24) ^ W ^ J L ^( f c)

Now set

Twice appling Lemma 3 to the series (22) at first with p — 2
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and then with p — c0 we get

(25) Σ cf 7ac = - .

Since

^ = C° In (2^ + 1) < C '

the terms of the series (25) are uniformly bounded so we may apply
Lemma 5. Set a = 4/5 and β = 6/5. For these numbers there exists
a sequence of natural numbers {qn} such that

(26) Σ Φ 7 ! e j . = -
% = 1

and

. /_4_γ.
V 5 /

(27) implies

+i-

and as

the sequence {72<Ή is decreasing.
Define the sequence

By the definition of yn we have

= max \; β

which with the definition of ψ(n) imply

Using 72βj* 10 and v{n)\V n 10 (this is true because n~1/2+εv(n) is
almost decreasing) we get τ/r(w) t °° for n —> «».

According to the definition of ^>(^) and using the relation v(n)/n |
we have
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(29) a > ( ^

Furthermore

(30) JL
2

The last relation with (28) implies

or

l))

+

i.e.,

(32)

(23) and (32) imply

> Γ100 ( A f T - - > ioo(Af .

+ 1)) ^ Ci(ίί*L±_l)^ Ci(ίί*L±_l)Y ^ c A ) " ) 8 ^ C l . ioo< 1 > 2

(34)

From (28) and (30) it follows that

1))

or

(35)

From (35) using (23) we get

ilr{n + 1) γ / ε ί " 1 + 1 - ' κ )

and thus

(36)
2 Y/e/ 6

Similarly (32) and (24) give
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/ 2 + ev(jr(n + 1)). v(jr(n)) = Γ v{ψ(n + 1)) . v(jr(n)) Ί
f (n + 1) ' ψ(n) lψ(n + l) 1 / 2- ε ' ψ(n)ι/2-s J V ( » + 1)

(87)

γ
in + 1)/ ~ cx lθV 2

We may as well assume that

γ/2 < 1 JΎi>Λ1/2ε < λ ( λ ) m e

/ ~ cx lθV 2 / - lθV 2 /

Really, let N, = {n; 24n ^ 6φ(n)}. Then

V cQn —

1

all the more (see (30))

This with (26) imply that the set JVX may be neglected.
Hence we have constructed the sequences {qn} and {ψ(n)} which

satisfy the following conditions:
(1) The series (26) is divergent
(2) The sequence {f(ri)} satisfies the relations (32), (33), (34),

(35).
( 3) The inequality

2°ln > 6ψ(n) , n = 1, 2, -.

holds.
Set mn — 2co\ kn = ψ{n) and an — v(kn). Since mn > 6kn >

2(2kn + 1) the function

(38) /0(a0 - Σ anfmntkn(x) = Σ aΛfn(x)

may be considered. We shall show that this function is just that
one which satisfies the conditions of Theorem 2.

At first we shall prove that f0 is continuous. Recally, according
to the choice of an and to the inequality (18) we have

Prom this estimation by (32) it follows that the series (38) is
convergent uniformly on [0, 1], thus f0 e C(0, 1) and as fn is periodic
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/0 is also periodic.
According to Lemma 8 and Lemma 10 for 2k%_λ + 1 < v ̂  2kn + 1

we have

Φ, /o) = Σ αyφ, Λ) + Σ aM», fs)
3=1 j=»

Now if we use the estimations (33) in the first sum and the
estimations (37) in the second one we shall get

v(ι>, /o) ̂  c\v(kΛ^) + v^^l £ cvip)

ί.e,/,eF[4
Now we shall show that f0 e Hω.
Let mn-i < v ^ mn- Then using Lemma 9 we get

±,f0) £ Σ a,ω{±-, fλ + Σ a.Jλ Δ
y / 3=i \ v / i=» \ V /

— t/Ί ^ j T Z_i -
ι ^ &._i o=i kά a , . ^ . ! i^

With a view to estimate the first sum we shall use the relation
(36), to estimate the second one the relation (37) and then to estimate
the both sums the relation (29), we obtain

τ ^ + ir

(39)

+ J

But as ω(δ) is nondecreasing and for ω(δ)/δ Lemma 6 is valid
(39) implies

i.e.,foeH".
It remains to prove that / e i .
Let mM_!/2 < v sΞ mn/2, then using Lemma 11 we get
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e2!ti>xf(x)dx ^ \[e^""anfn(x)dx - Σ α J Γ
I Jo j=ι I Jo

(40) - sin πv

By the choice of ajt m,-, &f and by the inequality (34)

(AV\

πV /έi i/2&} + 1 "" y2

c g»-i"»- - 1))Ί 2ψ
- 1) J 2"?"-1

Using (31) we obtain

λ.λ v %
π y i

1 1
2 7Γ y

ttjji v

π y

but as

(42)

we have

(43)

4c0

— (—) ) < ( — )

1
π

1 ^
z

V 3 =

1

aά <

kj + 1 ~ 1

β 1 β α Λ

1
/2 π

1 an

v λ/kn

From (40), (41) and (43) it follows that

a*.

(44)

sin τrv
π2 v V2kn + 1

1 αΛ_imβ_, 1 1 α

( _ i _ _ _^

! 19i/ 2 7Γ v

It is easy to show that according to (31) and (42)

(45)

Now we shall estimate the sum
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(46)
π* V2kn 4

~ Ϊ9Ϊ7T
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sinπv
% + 1

Let

(47)

and for I = l0, l0 + 1,

re + 1 mj 6 J '

(48)

Then for &<,!>£ μ", I = l0, - , ii

therefore from (46) using the inequalities

(49) A ^ in ( l + — ί - ) ^ — 1 ^ - f 16(1,
x \ x — 1/ »— 1

we get

π*V2kn

?1 ^ 1
V V _

1 /γ m % / 2 / 1 \

J - % Σ ln(l + —±— J
191/ 2 7Γ Kfcκ »=c»«-i/2>+i V v — 1/

(50)

1 QJ ( m % / 2 / 1

~ 191/2"π ' VTn

 1Π^.=(-H«)+i V1 + 7=1

=π l/2A;. μ'e 2 π Vk
%=\n

We have
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K±l>

this with (49) implies

ln >ln 1 + ln
3 l+l

\ 2 4/ 2

Using this estimation we obtain

i
(

2 \2Jii!, + 1

2fc. + 1 m

i + λ. if i _JΛ-1

l n 3 mw\2fca + 1 mj
1 + ϋ

33 mH_Λ2A;1, + 1 +

Applying the last relation by (50) we get

(51)
1 3

= In—~ =
38τr

a .

But as

(44), (51), (45) and (26) give

38π
> 0

Σ Iβ,(/.)| = Σ ^ c Σ

i.e.,
This completes the proof of Theorem 2.
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Theorems 1 and 2 imply

THEOREM 3. For all Fourier series of class Hω f] V[n% 0 <
a < 1/2, to be absolutely convergent it is necessary and sufficient
that

1 ( / \ \) l-2α/2(l-α)

(52) Σ W ) [

Proof. The sufficieny is contained in Corollary 2. We shall
prove the necessity of the condition (52). Assume the contrary.
We shall verify that for a e (0, 1/2) the modulus of variation v(ri) = na

satisfies the conditions of Theorem 2.
In fact, if

0 < ε < min \a, — — a\
\ A )

then n~εv(n) is increasing and nε~1/2v(n) is decreasing.
Furthermore

and so

4 k 4 & = C φ(n)1/2~a

(53)

Since we have assumed that

°° 1 ( / 1 \ ) 1—2α/2(l—α)

„ 1 ΛΛ I \ / W / )

from (53) it follow that the series (17) is also divergent and there-
fore all the conditions of Theorem 2 are satisfied. Then according
to this theorem there exists a function in the class Hω Π V[na] such
that its Fourier series is not absolutely convergent. Hence we
have got the contradiction.

This completes the proof.

Remark. In the case a ^ 1/2, i.e., if we have the class Hω Π
V[na], a ^ 1/2, it is easy to verify that Theorem 1 is the same as
the theorem of S. N. Bernstein.
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