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DERIVATIONS OF OPERATOR ALGEBRAS INTO
SPACES OF UNBOUNDED OPERATORS

ATSUSHI INOUE, SCHOICHI OTA AND JUN TOMIYAMA

This paper is to study the spatiality of unbounded deriva-
tions in operator algebras. Let .#Z be a von Neumann
algebra (C*-algebra) on a Hilbert space & and 6 be an
unbounded derivation in .#Z. In this paper, extending J to
a derivation 5 of - into a certain space of unbounded
operators, we study the spatiality of 0 by investigating the
property of .

1. Introduction. Unbounded derivations in operator algebras
(C*-algebras and von Neumann algebras) have recently been inves-
tigated by many authors, since they are appeared as infinitesimal
generators of strongly continuous one-parameter groups of *-auto-
morphisms on C*-algebras [see; 12]. In particular, the infinitesimal
generator mentioned above is implemented by a symmetric operator
by giving some representation of its C*-algebra on a Hilbert space,
and there exist many closed derivations in C*-algebras which
possess such a property [2]. In this point of view, we shall study
the spatiality of unbounded derivations in operator algebras (see [2];
Problem). Our method is, roughly speaking, to examine the spatiality
of an unbounded derivation 6 in an operator algebra .# by extending
0 to a derivation of _Z into some space of unbounded operators
containing _/.

Let _#Z be a von Neumann algebra acting on a Hilbert space
& and let 6 be a *-derivation in .#Z with o-strongly dense domain
=Z(6). Let & be a dense subspace of @. We introduce various
locally convex topologies in the space (<, ) which is the set of
all linear operators T of & into & with &2/(T*) D> &, and extend o
to a x-derivation § of _# into * =, ®) assuming corresponding
continuity of 6 in these topologies.

We shall then examine under what conditions the continuous
x-derivation § of _#Z into %<, ®) with some specified topology is
spatial, i.e., there exists an element H of %<, ®) such that
0(A)e = [H, Als = {(HA — AHJ)¢ for all Ae # and te . We call
the dense subspace & countably dominated by a sequence {T,} of
closed operators if & = Ny, 2(T,) and || T.&|| = || T.+.&] for each
feF andn=1,2 ---.

Our first result (Theorem 4.11) shows that if _#Z is a left von
Neumann algebra of a Hilbert algebra U with identity and <& is
countably dominated by {T,} of closed operators then § is spatial.
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The second purpose of this paper is to show (Theorem 4.15) that
if _# has certain property (Definition 4.2) and <& is countably
dominated by {T.,} of closed operators 7.2’ then § is a spatial x-
derivation of _#Z into F* =z, ®).

2. Spaces of unbounded operators. Let & be a Hilbert space
with inner product (|) and let & be a dense subspace of &. We
denote by £ (=, ®) (resp. <=, ®)) the space of all (resp. closable)
linear operators of <7 into @ and by #% =, ®) the space of operators
A in £(=,®) for which there exists the adjoints A* whose domains
Z(A*) contain &2, For each Te (=, ®) we define

lAg)
s || Tel '

where (A/0) = o for A > 0 and (0/0) = 0,
My ={AeL(Z 0); |Allr < o}

A, = Sup - - Ae A (Z,6),

and
M = {Ae L4, 6); || Al <

Then it is easily seen that I, is a Banach space equipped with the
norm |- ||, and IM§ is a subspace of M.

The following lemma is an immediate consequence of the defini-
tions of the spaces of M, and ME.

LEMMA 2.1. Let T be an element of X2, ®) such that T¢
FB(®), where Z(®) denotes the algebra of all bounded linear
operators on &. We set

Gy = {AT*; AeM,;} and ZF = {AT; AeMi}.
Then the map ¢: A — AT is an isometric isomorphism of the Banach
space M, onto the Banach space <#(S).

LEMMA 2.2. Let ® be a Hilbert space with imner product (]).
If there exists a sequence {T,} of closed operators on & such that

(1) =N 2T, is dense in G;

(2) Tl = | Turiéll for all ¢e=Z and n=1,2,---, then
FLHZ,®) = Ui D, where T, = L.

Proof. For each ce = we set
léllr, =Tl for »=0,1,2--

We consider the locally convex topology %, on < generated by
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family of the seminorms |||, (n =0,1,2, ---). Suppose that {5} is
a Cauchy sequence in (Z, t;;,)). Then we have

limg — &l =0 and lim| T — T& =0

for n=12,---.
Since T, is a closed operator, it follows that x ¢ &2(T,)and lim,_.. T",&, =
T.x for n=12 ---. Hence we have x>, 2 (T,) = &2 and
lim, ., T,& = T,o for n = 1,2, ---. This implies that (& t,,) is a

Fréchet space.

Suppose Se ¥4, ®). We show that the graph of S:G(S) =
{<&, S&); ee 2} is closed in (Z, t;,) x ®. Suppose that a sequence
{<&., S&>} in G(S) converges to an element (¢, y) of 2 x &. It then
follows that ¢, — e =z, lim, . ||& — &|| =0 and lim,_. | S, — &) —
(y — Sg)|| =0. Since S is closable, we have y = S&. This implies
that G(S) is closed in (Z, t;,)) X ®. By the closed graph theorem it
follows that the map S:(Z, t;,) — ® is continuous. Hence there
exist a number % and a constant v > 0 such that

ISell < v||T.£ll for all ce=z.
Therefore, SeMf . This implies that 4, ®) = Ui, Mi.,.

DEFINITION 2.3. Let & be a dense subspace in a Hilbert space
®. If there exists a sequence {T,} of closed operators in & such
that &2 = N, 2(T,) and ||T.g] =< || T.+&]] for all g¢e=z and
n=12 .-, then & is said to be countably dominated by {T.}.
If there exists a sequence {S,} in F*F, @) such that &g, §) =
U %, and [|S.8]] = [|S,+&]| for all e and n=1,2, ---, then
FH =2, ®) is said to be countably dominated by {S,}.

REMARK. (1) Lemma 2.2 implies that if a pre-Hilbert space &
is countably dominated then %2, ®) is also countably dominated.

(2) It will be seen, by a simple calculation, that if &£%( =z, @) =
Uz M, for S, e £HD)= 2D, D)(n=1,2, ---), then FHZ, B)
is countably dominated.

Let & be a dense subspace of a Hilbert space &. We now

introduce some locally convex topologies on 4=, ). We put

P, (A) = [(4¢lo)],
P(A) = || Azgll

where Ae F(2,08), €2 and xe€®. The locally convex topology
on £ (Z,®) generated by the seminorms {P.,(-); & 7€ 2} (resp.
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{Pe.,(+); e 2, 2@}, {P(:); £€ Z}) is said to be the weak topology
(resp. quasi-weak topology, strong topology) and is simply denoted
by tZ(resp. tZ,, t2).

Let ®. be the Hilbert direct sum of the Hilbert spaces ©, =
Gn=1,2 ---) and let

,@;(9):{{5,,}6@00;5“6@ for n=1y2y"'
and 3 [|4g, [ < » for all Ae ¥, G)).

We set

P(enl,mn) (A) =

S, (4¢,]2,)
Pey) =S l14a]",

where A e 4, ®), {¢,} € D(Z) and {x,} € Z. We equip FHZ, ©)
with the locally convex topology tZ(resp. tZ., t2) induced by the
seminorms {Pi,),i,,(+); {&a}, {7} € Du(2)} (vesp. {Pi,),1(*); {&a} €
(D), {8} €8}, (P, (+); {6} € D(2))). The topology tZ, (resp.
tZ,, tZ) is said to be the o-weak topology (resp. quasi-o-weak
topology, o-strong topology) on F* <=, ®).

We next define the uniform topology and the quasi-uniform
topology. A subset M of & is said to be Z-bounded if

’

sup || A¢|] < « for each Ae FHF, ©®).
cewt

We then define
Py(4A) = sup [(AgIn)],
P*(A) = §gmpliAEII ,

where IM is ZF-bounded and Ae ¥*(Z, ®). The locally convex
topology generated by the seminorms {Py(-); M is Z-bounded} (resp.
{P(-); M is =Z-bounded}) is said to be the uniform topology (resp.
quasi-uniform topology) on %2, @) and is simply denoted by tZ
(resp. t2).

We next define the p-topology and \-topology on <% =, ®). For
each Te &%=, ®) we put

(A) = L(AELS)_I,AQQ”Q(&’
orl D) = e 0 A E(2O)

where (A/0) = o for » > 0 and 0/0 = 0, and
i = {Ae LH(F, ©); p(4) < =} .
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Then it is easily seen that 9% is a normed space equipped with the
norm p,(-) and FHF, ®) = Urcstio,ute. The inductive limit to-
pology on F* =, ®) with respect to the normed spaces {(%, o,(-));
T e FHZ, ®)} (resp. {(ME, |- lz); Te FH=Z,®)}) is said to be the
o-topology (resp. A-topology) on %=, ®) and is denoted by t¢?
(resp. t?).

Now one may easily see the following lemma by the definitions
of the topologies.

LEMMA 2.4. The relation among the topologies introduced here
are as follows:

W WY
1 Ste StFr s,
l/\” /\Ill
tZ, =12, = t2

th <tz

t7 2t =

Ty Ty
where the symbols v, = 7,, T, = 7, Nl and VIl mean the topology 7, is
Ty 7,
finer than the topology t,.

REMARK. The topologies t7 and ¢Z, (resp. the topologies ¢t7 and
t?) 'on £, ®) are generalizations of the uniform topology and
quasi-uniform one (resp. the p-topology and \-topology) introduced
by G. Lassner [8] (resp. D. Arnal and J. P. Jurzak [1]), for an
unbounded operator algebra respectively. We denote by ¢, (resp. t,,
tsy tow, o) the usual uniform (resp. weak, strong, o-weak, o-strong)
topology on <#(®). The relations between the topologies on Z(®)
areas follows: & =1, =t =t=t,t5 =t5 =1, =1¢,t3, =13,,=
t,o and 3, = t,,.

LEMMA 2.5. Suppose that FH 2, ®) is countably dominated by
{T.} and N is a subset of L=, ®). Then the following statements
are equivalent:

(1) N is t7-bounded;

(2) N is tZ-bounded;

(3) there exist a number n and a constant v > 0 such that

(4818 = v+ IT.Dell for all AeR and te,

where T, =U|T,| is the polar decomposition of T,.

Proof. This is proved in the same way as in ([13] Lemma 2.1).
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LEMMA 2.6. Suppose that FH =, ®) is countably dominated by
{T,} and N is a subset of L4 2, ®). Then the following statements
are equivalent:

(1) M 4s t7-bounded;

(2) N s tZ-bounded;

(8) N is tZ-bounded;

(4) there exists a number n and a constant v > 0 such that

NAe| S v+ [T, )|l for all AeN and e .

Furthermore, if Z = Nreeio P (T), then the statements (1)~(4)
are equivalent to the following statements (5) and (6):

(5) N is tZ-bounded;

(6) N is tZ,-bounded.

Proof. Since t¥ = tZ, and ¢ = tZ, one can see the implications
4)=@1),1)=2) and (1)=(3). We show the implication (3)= (4).
Suppose that the statement (4) is not true. Then there exists a
sequence {A4,} in N and a sequence {¢,} of nonzero elements of &
such that

}IAnEn”gnZH(IJFlT_nDEn” for n:]-’z’"' .

Putting

= bn_ for m=1,2 -,
TRl They M e

we have

| A7, = n and |(T,,ml[<—1ﬁ.

We now show {1,} € Z.(2). Since £, ®) = Ui, M}, it follows
that for each A e (<=, ®) there exists a number & and a constant
v > 0 such that

| A¢ll = 7| Twell for all ¢e .

Then we have
;.:‘1 A7, |* = 7 ,;2'1” T, |I?
k—1
< STl + I Tl + 1 T + -}

k-1
=7 {nZ:l” Tk77”|12 + “ P “2 + “ Tk+177k+1“2 + - }
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s {SITal+ L s

< oo

This means {7,} € Z.(=). Furthermore, we have

sup P, (4) = sup [2 Il A7, “2]1’2
= | A7l = n.

This contradicts that M is tZ-bounded. This comgletes the proof of
the implication (3) = (4).

The implication (2) = (4) is proved in the same way as in ([13]
Lemma 2.2).

If 2 = Nrestin.eZ(T), the equivalence of the statements (1)~
(6) follows from ([1] Proposition 1.6).

3. Extension of derivations. Let _#Z be a C*-algebra (or a
von Neumann algebra). A linear map 6: 2 (6) C # — # is said to
be a =-derivation in _Z if it satisfies the following conditions:

(1) the domain & (6) of § is a dense =x-subalgebra of _#(i.e.,
Z(9) is norm-dense if _#Z is a C*-algebra, and weak-dense if _#Z is
a von Neumann algebra);

(2) 6(AB) = 6(A)B + A6(B) for each A, Be = (6);

(8) 6(A*) = 6(A)* for each Ac 2().

We begin with the following lemma.

LeMMA 3.1. Let # be a unital C*-algebra acting on a Hilbert
space & and let 6 be a *-derivation in #Z with domain 2 (6). If
there exists a dense subspace = of & such that #Z <2 C <2 and 6
18 a continuous map of (Z (), t,) into (_#, t2), then o is extended
to a continuous linear map & of (_#Z, t,) into (£, ®), t2,) such that

(1) 8(AB) = 6(A)Bs + A¥(B)s;

(2) 3(d)'¢ = 3(A%);

(3) o(A*)*Ce = Co(A)s
Joreach A, Be _#, Ce #" and £ € =Z. Namely, the following diagram
holds:

5; (i 1) LM, (o, ©), 2

T U U

0; (Z(9), t) —— (A, 12) .
continuous

By Lemma 8.1 we define a derivation of a C*-algebra into a
space of unbounded operators as follows:
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DEFINITION 8.2. Let &7 be a dense subspace in a Hilbert space
S and let _#Z be a unital C*-algebra acting on & with 72 c 9.
A linear map 6 of .7 into (=, ®) is said to be a derivation of
~# into F (=, ®) if

0(AB): = 6(A)B: + A6(B)e for each A, Be._Z and &te <.

In particular, a derivation 0 is said to be a *-derivation if the range
of 4 is contained in %=, ®) and

0(A)*s = 6(A*)t for each Ae.# and feZ.

If a derivation 6 of _# into (&, ®) is a continuous map of
(7)) into (£ (=, ®), t,), where z, and 7, are topologies on %
and (=, ®) respectively, then it is said to be (r, — 7,)-continuous.

We also have the following result:

LemMMA 3.3. Let _# be a von Neumann algebra acting on @
Hilbert space & and let 6 be a =derivation in _#. If 6 is (t, — t3,)-
continuous (resp. (& — t2), (tyw — t7w), (E,s — tZ)-continuous), then o s
extended to a (t, — t2,)-continuous (resp. (¢, —1t5.), Co—12.), (te — 2
cONLINUOUS) *-de'ri'vatwn 6 of A into FHT, ®) satisfying 6(A*)*Cs =
Co(A)e for each Aec _#,Ce #' and & D.

DEFINITION 3.4. Let <& be a dense subspace of a Hilbert space
® and let 6 be a +-derivation of a C*-algebra .#Z on ® into F* (=, ®).
If 6(7)c M for some Te X, ®), then 6 is said to be a =-
derivation of _# into M;. If there exists an element T of %, ©)
such that §(_#,) is a bounded subspace of the normed space I3,
where _#, is the set of all unitary operators in _#; then § is said
to be quasi-bounded.

LemMmA 8.5. Let 7 be a unital C*-algebra acting on a Hilbert
space & and let 6 be a =-derivation in _#. If there exist a dense
subspace Z of & and an element T of £, ®) such that 7 Z C
Z and ||0(4)]; £ || 4] fm all Ae =2(5), then 0 is extended to a
quasi-bounded =-derivation & of _# imto M: satisfying 6(A*)*Cs =
Co(A)e for each Ae_ 7, Ce 2" and g€ .

We now give some examples of quasi-bounded =-derivations.

ExampLE 3.6. Let 6 be a spatial derivation in a C*-algebra _Z
acting on a Hilbert space @ with domain = (9), i.e., there exists a
symmetric operator H on & such that =(6)=Z (H) c =(H) and 6(A)& =
i[H, Alz for each Aec () and € 2 (H). If there exists a closed
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operator T7.#"' and a constant v > 0 such that || Hg|| < | T¢|| for
all £e Z/(T), then o is extended to a quasi-bounded =-derivation &
of _# into FH=2(T), ®).

2. Let _# be a von Neumann algebra on a Hilbert space &,
and let 6, be a bounded =-derivation on _#Z;(t1=1,2, --.). Let _#
be a direct sum of the von Neumann algebras _# and let & be the
direct sum of the Hilbert spaces ©,. We define

(0) = {A = (A)ell #; A;# 0 for only finite coordinates} ,
0(4) = (0(4)), A= (4)e=Z().

Then 6 is a =-derivation in .# with the weakly dense domain = (9),
but it is not generally bounded. However, § is (¢, — tZ,)-continuous
(and (t, —12), (t,—1t2), (t.,—12), (t,—t7), (t, — t2?)-continuous), where

={)e®; &+ 0 for only finite coordinates} .

Putting
T = (|]o.]| 1)

where ||0;]| is the norm of 6, and I, is the identity operator on &,
we have

18(A)|| < |[A] || Tz|| for each Ae = (5) and fe .

Hence, 6 is extended to a quasi-bounded =-derivation of _# into I}.

3. Let 6 be a (¢, — t2)-continuous =-derivation of _#Z into
FH (=L g, 2)). If 6(#) is a finite dimensional subspace of
FHZ), then 4 is a quasi-bounded x-derivation of _#Z into &4, ©).

4. Let 6 be a x-derivation in a C*-algebra _# acting on a
Hilbert space ®. If there exists a densely defined closed operator
T on ® such that #z=(T)c 2(T) and 6 is (¢, — tZ")-continuous
(or (t, — tZ")-continuous), then § is extended to a quasi-bounded
x-derivation of _#Z into LY =2(T),®). This follows immediately
from Lemma 2.2.

As a slight generalization of Example 3.6, 4 we have the follow-
ing result:

LEMMA 3.7. Let &7 be a countably dominated subspace in «a
Hilbert space ® by a sequence {T,} of closed operators on &. If o
s a (t, — tZ)-continuous (or (t,—1t?), (t,—1t2,), Cm—1t2.), (&, —1t2),
(t,, — t2)-continuous) *-derivation of #Z into FH(=Z,®), then o is
quasi-bounded.
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Proof. Suppose that o is (¢, — tZ)-continuous. By the continuity
of 4, 0(_#) is a bounded subset of (L4, ®), tZ), where _#; is the
unit ball of _#Z It then follows from Lemma 2.4 that 6(_#) is a
bounded subset of the normed space M}f, ,  for some n. This implies
that ¢ is quasi-bounded.

4. The spatiality of quasi-bounded x-derivations. Throughout
this section we may assume that < is a dense subspace of a Hilbert
space & and _#Z is a unital C*-algebra with _Z=Z c <. Let 6 be
a quasi-bounded =-derivation of _# into ZF* =, ®), i.e., there exists
an element 7 of %<, ®) such that T-'¢ Z(®) and §(_~,) is a
bounded subset of the normed space M.

LEMMA 4.1. Suppose that M is a subspace of L (2, S). Then
the following statements are equivalent:

(1) f is a tZ,-continuous linear functional on IN;

(2) f is a tZ-continuous linear functional on IM;

(3) f=3tiw,., for € D and v, €6, where v, ,(A) = (A¢|x)
for Ace L (=2,08),te 2 and xc@.

Proof. This is proved in the same way as in ([1] Theorem 1.3).

Let Te 42, ®) and T-'¢ &#(®). Then, by Lemma 2.1 &7 =
(AT; Ae M3} is a subspace of <Z(®). We denote by B the t,-
closure of <Z# and denote by T4 the ¢Z,-closure of Mi in F (2, ©).
Then <7} is a weakly closed subspace of <Z(®) and M. is tZ,-closed
subspace of (=, ®). Furthermore, the following lemma is seen
by a simple calculation.

LEMMA 4.2. Let ¢ be the isomorphism of M onto &7 in Lemma
2.1. Then ¢! is a continuous map of (Zf, t,) onto (ME t2), so
that it is extended to a continuous linear map ¢=* of (Z#, t,) onto
(W, t7.)-

LEMMA 4.3. Let & be a subset of Mi and let Q be the t2,-closed
convex hull of & in L (2,0®). If & and & = (A* = A*|/=; Ac &)
are bounded in IMi, where A*| <7 is the restriction of A* to 2, then
Q is a tZ,-compact subset of M;.

Proof. Let & be the convex hull of & Then & and (&)* are
bounded in IM%. Hence we may assume that & is convex. We first
show that Q is a bounded subset of the normed space Ii. By the
boundedness of R and &* there exists a constant v > 0 such that
[A]ll; <~ and [|A*]|; <~ for all Aef For each SeQ there is a
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net {A,} in & which converges to S with respect to the topology ¢Z,.
It then follows that for each e = and 2 ®

|(Se|@)] = Tim | (4.£]2)]
< Tim | A8 ||
= vl Tell =],
so that ||S||; £ v. Furthermore, for each & 7.2 we have
((Sz1m)| = lim |(A.&|7)]
< lim || 427 [|¢|
= vlITyll el

Hence, 7€ 27(S*). Thus we have Se M} and || S|, < 7.

We show that Q is a t7-compact subset of M¢. In fact, (Zf), =
{(Xe 2 | X| < v} is weakly _compact, and so Lemma 4.2 implies that
3-'((ZP),) is tZ,-compact in Mi. Since Q is a tZ-closed subset of
¢H(B),), it follows that Q is a t2-compact subset of I:.

Notation. Let &; be a set {U*0(U);Ue_#,} and let O, be the
tZ,-closed convex hull of &, in £ (F, ®).

LEMMA 4.4. Q,; is a tZ,-compact subset of Mk.

Proof. It is easily seen that &, and & are bounded subsets of
IMi. Hence, the lemma follows from Lemma 4.3.

Furthermore, one may easily see the following lemma.

LeMMA 4.5. For each Uec_#, we define

Ay(S) =U*SU +U*3(U) for SeFHF, ).

Then;
(1) Ayisatz-continuous affine mapof £ =2, S) into F*H( =z, ®);
(2) Ay (V*(V)) = (VU*6(VU) for each U, Ve_x#,;
(8) AyQ,cQ,; for each Ue _#,;
(4) AyA, = Ay, for each U, Ve _u,.
Hence, G, ,={A,;Uc _#,} is a semigroup of tZ,-continuous affine maps
of Q; into L.

DEFINITION 4.6. If for each pair of elements S, # S, in ®; the
tZ-closure of {4,(S,) — A,(S,);Ue _+,} does not contain 0, then G, ,
is said to be noncontracting.



400 ATSUSHI INOUE, SCHOICHI OTA AND JUN TOMIYAMA

DEFINITION 4.7. Let < be a dense subspace of a Hilbert space
® and let _#Z be a C*-algebra acting on ® with 7z co. A *-
derivation (resp. a derivation) ¢ of _# into &%, ®)(resp. £ (=, ®))
is said to be spatial if there exists an element H of &%=, ®)(resp.
(=, ®)) such that

0(A): =[H, Ale for all Ae_~ and ez .
PROPOSITION 4.8. If G, , is moncontracting, then there exists an
element S of Q; such that

0(A)z =[S, Al for all Ae 7 and e < ;

vip

that is, 0 s spatial.

Proof. We consider the locally convex space 2~ = (L Z, ©), t7).
By Lemma 4.1 we have o(.2, 227*) = t7,, and hence it follows from
Lemmas 4.4, 4.5 that Q, is a weakly compact subset of .27 and G, ,
is a noncontracting semigroup of weakly continuous affine maps of
Q; into Q;. By Ryll-Nardzewski’s fixed point theorem [9] there
exists an element S, of Q; such that

A (S) =S, forall Ue. 7 .
Hence, putting S = —S,, we have

0(A): =[S, Al¢ for all Ae_ 7 and ez .

COROLLARY 4.9. Let & be a countably dominated subspace of a
Hilbert space & and let .#Z be a commutative C*-algebra acting on
& with 7= c<=2. Then there does mot exist any nonzero (t, — tZ,)-
continuous (or (t, — t7), (L, — i), (Lo — ), (T, — t5), (t. — t9)-
continuous) =-derivation in _z.

Proof. Suppose that ¢ is a =-derivation which is continuous in
one of the above topologies. It then follows from Lemma 3.3 that
¢ is extended to a quasi-bounded #-derivation é of _# into MM where
Te ¥4z, ®) and T'e Z(®). Since .# is commutative, we can
easily see that the semigroup G;, is noncontracting. Hence it follows
from Proposition 4.8 that there exists an element H of Q; such that
0(A)e = [H, Az for all Ae.#Z and é€ <. By Lemma 3.3 the ele-
ments A and H commute, and so 6 = 0.

LEMMA 4.10. Let & be the completion of o maximal Hilbert
algebra A with identity ¢ and let _#Z be the left von Neumann
algebra of . Let 2 be a dense subspace of & such that ec = and
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D CD (for example, A or the maximal unbounded Hilbert algebra
L) [5]). If 0 is a quast-bounded =-derivation of _Z into L* =, ®)
such that 6(AY)_# for each Ae _#, then it is spatial.

Proof. Since ¢ is quasi-bounded, there is an element T of
FH =2, ®) such that T-'e Z(®) and 6(_ ) is a bounded subset of
the normed space ;. It is easily showed that A € .= and SB'¢ =
B’Sg for all SeQ;, B'e _#~' and £€A. This implies that G, , is non-
contracting. In fact, for each pair of elements S, # S, in Q; and
Ue_#, we have

[U*(S, = SyUel| = [[(S, — Sya’(wel|
= |7’ (u)(S, — Syell
= [I(S, — Syell
#0,

where w(resp. @) is the left (resp. right) regular representation of
A and U = n(u) for ucA. Hence it follows from Proposition 4.8
that ¢ is spatial.

THEOREM 4.11. Let _# be the left von Neumann algebra of a
maximal Hilbert algebra A with identity e, & the completion of A
and let = be a countably dominated subspace of & by a sequence
{T,} of closed operators such that ec & and 7 C 2. If 6 is a
(t, — tZ,)-continuous (or (t, —t2), (t,w — tZ.), (t,s — t2)-continuous) x-
derivation in _#, then it can be extended to a spatial *-derivation
0 of # into FHT,B).

Proof. This follows from Lemma 3.7 and Lemma 4.10.

We next examine the spatiality of derivations of _# into I}
when Ty _#" (ox Ty #).

Suppose that o is a derivation of _# into M}, where T e &~(=, ®)
and T-'¢ Z(®). We set

5,(A) = S(AT— for Ae_x.

It then follows from Lemma 2.1 that ¢, is a linear map of _# into
Z(®), and so we have the following diagram:

72 m

(0] ()

A ¥4
DN
57-\

(AT e Z#O) .
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Furthermore, we have the following result, by a simple calculation

LEMMA 4.12. If Te “(=Z, ®) and T ', then the linear map
0r 18 a derivation of _# into B (®).

DEFINITION 4.13. A von Neumann algebra _# on & is said to
have the property (C) if every derivation é of _# into Z(O) is
inner; that is, § is implemented by an element of <Z(®).

We note [3] that if _# is of type I or properly infinite then
_# has the property (C).

PROPOSITION 4.14. Let &7 be a dense subspace in a Hilbert space
S and let _# be a von Neumann algebra on & with the property
©) and 7= c. If 6 is a *derivation of _# into M, where
Te Z(D,®) and T'e_#', then there exists an element B, of <& ()
such that

o(A)¢ = [B,T, Alg
for all Ae _# and £€ &, i.e., 0 is spatial.

Proof. By Lemma 4.12, 0, is a derivation of _# into <Z(O®).
Hence it follows by the assumption that there exists an element B,
of &#(®) such that

07(A) = [B,, A] for all Ae_~.
This implies that
0(A)¢ = [B,T, Ale for all Ae_# and fe=x.

THEOREM 4.15. Let _# be a von Neumann algebra on a Hilbert
space & with the property (C) and let 6 be a =-derivation in _#Z.
Suppose that there exists a countably dominated subspace & of &
by a sequence {T,} of closed operators T,n_#" such that o is (t,—tZ,)-
continuous (or (t,— t2), (t, —t2.,), (t,, — t2)-continuous). Then there
exists an element B, of <Z(®) and a closed operator T7._#' such that

(A =[BT, At for all Ae () and tec .

Proof. Since T, n.#' for n =1,2, ---, we have 72 c 2. It
follows from Lemma 8.3 that 6 is extended to a (¢, — tZ)-continuous
«-derivation § of _# into %=, ®). Furthermore, by Lemma 2.6
6 is quasi-bounded, i.e., §(.#)C Mi, ., for some nm. Hence the
theorem follows from Proposition 4.14.
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COROLLARY 4.16. Let & be the completion of a Hilbert algebra
A, _# the left von Neumann algebra of A and let J be the unitary
involution on UA. Suppose that _# has the property (C) and there
exists a countably dominated subspace =Z of & by a sequence {T,} of
closed operators T, p.# such that JZ =2. If 6 is a (t,— tZ,)-
continuous (or (&, —t2), (t,n — t2.), (t,, — t2)-continuous) *-deritvation
in _#, them it is extended to spatial derivation § of _# into
FHD, ®).

Proof. We put
T,=JT,J, n=12 ---.

It is then proved that & is countably dominated by the sequence
{T.} of closed operators T,n.#"'. Hence the corollary follows from
Theorem 4.15.

PrROPOSITION 4.17. Let .# be a won Neumann algebra on a
Hilbert space & and let 6 be a *-derivation in _#. If there ewists
a countably dominated subspace Z of ® by a sequence {T,} of closed
operators T,n.# (N .#Z" such that o is (t, — tZ,)-continuous, then o
is extended to a spatial -derivation § of _#Z into FHT, ®).

Proof. By Lemma 3.3 and Lemma 2.6, ¢ is extended to a quasi-
bounded «-derivation 6 of _# into M}, where Te %7, ®) and
Te_# N ._#" satisfying §(A*)*Ct = C6(A)& for each Ae 7, Ce 7’
and te 7. Since #/22 C < and 7' C <2, we have 5_(:4_)77// for
each Ae_# Since Te_# N_#" 6, is a derivation of _# into _#
Hence, there exists an element B, of _# such that

6,(A) = [B,, A] for each Aec_z7,
so that

6(A)e = [B,T, Al for all Ae_# and ez .
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