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AN INVESTIGATION OF REAL DIVISION
ALGEBRAS USING DERIVATIONS

GEORGIA M. BENKART AND J. MARSHALL OSBORN

In a recent paper, “The derivation algebra of a real division
algebra”, we showed that if Der A is the derivation algebra of a
finite dimensional division algebra A over the reals, then

(i) dimA =1 or 2 implies Der 4 = 0,

(ii) dim A = 4 implies Der A is su(2) or dimDer A =0 or 1,

(iii) dim A = 8 implies Der A is one of the following Lie
algebras:

(1) compact G,

(2) su(3)

(3) su(2) P su(2)

(4) su(2)@ N where N is an abelian ideal and dim N =0 or 1

(5) N where N is abelian and dim N = 0,1 or 2.

Moreover, any subalgebra of Der A is isomorphic to one of the Lie
algebras listed above.

For each Lie algebra L appearing in (i), (ii), and (iii) we also
exhibited a real division algebra having L as its derivation algebra
without proving that the derivation algebra was as asserted. One
of the goals of this present paper is to verify that these examples
have the derivation algebra claimed, but our main purpose is broader
than this. Using the representation theory of Lie algebras we
investigate those real division algebras A having L as its derivation
algebra for each of the nonzero Lie algebras L mentioned above.
The larger that L is, the more detailed is the information concern-
ing the structure of A. As one might expect, most of the classes
of division algebras are natural generalizations of the quaternions
and octonions. The principal exception is a family of division
algebras which includes the pseudo-octonions introduced by Okubo
in “Pseudo-quaternion and pseudo-octonion algebras.”

1. A review of some basic results on representations. Through-
out this paper we will assume that all algebras and modules are
finite dimensional. Let A be an algebra over a field F' of char-
acteristic 0, and assume L is a semisimple subalgebra of the deri-
vation algebra Der A. Since A is an L-module, it decomposes into
irreducible summands: A=V, P --- P V,. Moreover, the product
of V,x V, into A followed by the projection onto V, induces an
L-module homomorphism of V,® V, into V,. Conversely, by taking
a sum of irreducible L-modules A = V., --- P V, and prescribing
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L-module homomorphisms from V,® V, into V, for all 7, s, t, one
achieves an algebra structure on A such that L £ Der A. In case
F' is algebraically closed the dimension of Hom, (V,& V., V,) can be
determined using

PrROPOSITION 1.1. Let L be a semisimple Lie algebra over an
algebraically closed field of characteristic 0. Assume U is an L-
module and W is an irreducible L-module. If U= U --- P U,
where the U, are irreducible L-submodules, then dim Hom, (U, W)
equals the number of U, isomorphic to W.

Since this is a standard result we give only a brief outline of
the proof. Using the uniqueness of the decomposition of U and
Schur’s lemma, one can show that the homomorphisms z, (projection
of U onto U, followed by an isomorphism onto W) form a basis for
Hom, (U, W).

In case U is an L-module over an arbitrary field F of character-
istic 0, we can take the algebraic closure K of F and form the
module Uy = U@, K for Ly = L ®; K, and then apply Proposition
1.1 to Ug. We examine the effect of this field extension on certain
submodules of U.

Suppose U= U, P --- P U, is a decomposition of U into irre-
ducible L-submodules. Let U, be the sum of all the trivial 1-dimen-
sional summands and U, be the sum of the others. Then U=U,p
U, and one readily verifies that:

U,={ue Ullu=0 for all [ e L}
U.,=LU.

The submodules U, and U, behave nicely relative to field exten-
sions as the next lemma indicates.

LeMMA 1.2. (1) (Uygx = (Ug),
(i1) (Uy)x = (Ug)x-

Proof. From our alternate characterizations above, it follows
Ly Ugx = (Ug)«x. But since Uz = (U)x D (Uy)x E (Ug)y B (Ug)y = Uk,
equality must hold in each case. O

In view of the above remarks, an equivalent formulation of
Lemma 1.2 (ii) is that the extension (LU); equals the image of Ux
under Ly, which is Lz Ukg.

We now turn our attention to the case that A is a real division
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algebra. According to the result stated in the introduction, the
only possible semisimple subalgebras of Der A are compact G,, su(3),
su(2) @ su(2), and su(2). KEach of these Lie algebras contains a
copy of su(2) so that if Der A contains a semisimple algebra, A
decomposes into irreducible su(2)-modules. Irreducible su(2)-modules
are most easily deseribed by complexifying and regarding the result-
ing module as an sl(2)-module. Again the results we mention are
quite well-known ([4] or [6]), but our aim is to develop the back-
ground needed for later sections.

Let h = <(1) _g), e = (8 %), and f= <(1) 8) be the standard basis

for sl(2) over the complex numbers C. Given any integer m = 0,
there is a unique irreducible sl(2)-module V(m) having dimension
m + 1. We can choose a basis Z,, Zn o ***y Zm-sn = 4_n for V(m)
so that:

hZ, = rZ,
1.3) eZ, =M 2_ "% ., where Zp., =0
fZ, = m ;’ TZ,_2 where Z_,, ,=0.
Now su(2) = {x €sl(2)|%" = —2x}, and a basis for su(2) can be obtained

by taking 0, = th, 3, = e — f, and 9, = 1e + if. The effect of these
elements on the basis of Z’s is given by:

0.7, = irZ,

b (M5 Y- (B2

0,7, = i(m 2‘ T)Z,H + z(m ;f ")ZM .

(1.4)

Let us consider the case that m=2n, and hence that dim V(m)=
2n + 1 is odd. In this situation we define:

Uq = qu + (—l)qZ_2q for q = O’ S 1)
Vq = ?:Z2q - (—l)q’iZ_zq fOI' q = 1’ <ee, n
VO: Vn+1= n+1:0.

The action of su(2) on the U’s and V’s can be readily computed
using (1.4) to show that for ¢ =1, ---, n:

0,U, = 29V, U, =0
0.V, = —2qU,
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U, =n—QUy, — (n+U,., 0,U, = 210U,
BV, =n -V —(n+ @V,

U =n -V — 0+ @QV,., 0,U, =20V,
0V, = —(n—QUp, — (n+ U, .

(1.5)

Thus, if we regard V(m) where m = 2n, as a real su(2)-module,
the U’s and V’s generate a su(2)-submodule of dimension m + 1
over R, call it W(m). It is not difficult to verify that W(m) is
irreducible and that V(m) = W(m) P 1 W(m) as a real su(2)-module.

The situation when m is odd is completely different. Here
V(m) is an irreducible su(2)-module over R.

Let us assume W is any irreducible su(2)-module. Then W, =
W @«r C is an sl(2)-module and as such, it decomposes into irreduc-
ible submodules of the type V(m). Now W, as an su(2)-module is
isomorphic to exactly two copies of W. Thus when we regard the
V(m) summands as real su(2)-modules we must have a total of two
irreducible su(2)-summands each isomorphic to W. When W has
dimension 2n + 1 this implies W is isomorphic to W(2n) and W~
V(2n). If W has dimension 4n, then W~ V@2n — 1)P V(2n — 1)
and Wa V(2r — 1) when V(2n — 1) is regarded an su(2)-module.
There can be no irreducible su(2)-module of dimension 2(2n + 1), so
in fact, the smallest nontrivial su(2)-module is su(2) itself.

The Clebsch-Gordan formula provides the answer as to how the
tensor product of two irreducible sl(2)-modules decomposes:

(1.6) Vim)® Vin) = Vim + )@ --- D V(im — nl) .
Thus

dim Hom,,,,(V(m) ® V(n), V(s))
1 ifs=m+n,m+n—2 -+, |m—n|

" |0 otherwise.

Since for any real Lie algebra L and for any three L-modules
U,V,w,dim, Hom, (UQV,W)=dim; Hom,, (U ® V¢, W), the Clebsch-
Gordan formula determines a bound for dim, Hom,,, (UQV, W).

In addition to results on su(2) and si(2)-modules we require
some facts concerning irreducible modules for sl(2) @ si(2), sl(3), and
G,. These facts can be established using arguments in ([4], Chapter
6) or ([6], Chapters 7 and 8).

Given a semisimple Lie algebra L over an algebraically closed
field of characteristic 0 with Cartan decomposition L = HP Siuco Lias
there are certain linear functionals A, ---,\, on H, (the so called
fundamental weights) which span the dual H* of H. The irredu-
cible L-modules are in one-to-one correspondence with the elements
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in H* of the form » = m)\, + --+ + m)\;, where the m,; are non-
negative integers. Following Humphreys we denote the irreducible
module corresponding to )\ as V(\). (In this notation the si(2)-
module V(m) would be V(m\,). The dimension of the module V(\)
is given by Weyl’s formula ([4], p. 140), and the tensor product of
V(») and V(\) can be resolved into irreducibles using either Stein-
berg’s formula ([4], p. 141) or calculations involving weights and
their multiplicities.

Real division algebras exist only in dimensions 1, 2, 4 and 8, and
as the result in the introduction indicates, the only time that su(2)@P
su(2), su(3), and compact G, occur in Der A is when dim A = 8.
Therefore when we decompose A, into irreducible summands for
sl(2) B sl(2), sl(3), or G,, the V(\) are constrained by dim V(\) < 8,
and the sum of the dimensions must total 8.

Since every sl(2) @ sl(2) irreducible module is just the tensor
product of two irreducible sl(2)-modules, one can handle these
modules using the above considerations.

For the Lie algebra si(8) = A,, Weyl’s dimension formula reads:
dim V(m)\, + m0,) = 1/2(m, + D(m, + L)(m, + m, + 2). Using this
expression one easily computes that the only modules of dimension
less than 8 are given by

dimension | notation
V(0) 1 1
Vi) 3 3
(D Vou) 3 3
V(2n) 6 6
V(2\,) 6 6
Vi + \) 8 8.

We adopt the convention of denoting a module by its dimension,
and in the event of two or more of equal dimensions distinguish
them by a bar or star or both.

Consider now the tensor products of these modules. For any
irreducible V(»), V(0)® V(n) = V(»). Of the remaining products
we list only those needed in the study of real division algebras.

3®3=6+3
3®3=8+1
3R03=6+3

1.8) 6@6=15+15* +6
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6®6 =15+ 15* + 6
8®8=27+10+10+8+8+ 1.

Here 15 = V(4\y), 156* = V(2 + \y), 156 = V(4\,), 15* = V(\, + 2\,),
27 = V(2\, + 2\,), 10 = V(8\,) and 10 = V(3\,).

The case 8 Q8 is noteworthy because the two 8-dimensional
summands imply there are two linearly independent sl(38)-homomor-
phisms of 8 ® 8 — 8. The 8-dimensional module is sl(3) itself under
the adjoint representation, and a basis of homomorphisms may be
concretely given by: 2@y — [xy] and 2 Q ¥y — xy + yx — 2/3 tr(xy)]
where tr(xy) denotes the trace of xy.

The dimension formula for G, modules is

dim V(\)
=%(ml+ 1)(m,+ 1) (m, + my+2) (m, + 2m,+ 3)(m, + 3m,+ 4)(2m, +3m,+5) .

Thus, there are only two modules of dimension less than or equal
to 8: the 1-dimensional module V(0), and the 7-dimensional module
V(\). The resolution of 7® 7 into irreducibles is given by

1.9) TRT= V@)D V) D V) S V()

where these modules have dimensions 27, 14, 7, and 1 respectively.

2. The case Der A = compact G,., We are now ready to con-
sider individually the different possibilities for Der A, and to inves-
tivate for each one the division algebras A with that derivation
algebra. We take the possible derivation algebras in the order in
which they are listed at the beginning of this paper, starting with
the case when Der A is a compact form of G,. As we noted in
§1, there are only two irreducible G,-modules of dimension 8 or
less over the complex numbers—one of dimension 1 and one of dimen-
sion 7. Thus, if A is a real division algebra with Der A = compact
G,, the scalar extension A = A @xC must be a sum of one 1-dimen-
sional module and one 7-dimensional module. (Note A, could not be
a sum of eight 1-dimensional modules because Der A must act
faithfully on A.) Since the decomposition of A, into irreducible
modules is necessarily a refinement of the decomposition of A, we
see that either A is a direct sum of a 1-dimensional module and an
irreducible 7-dimensional module, or else A is an irreducible 8-dimen-
sional module. But the last possibility can be ruled out by Lemma
1.2. Hence A= U + V where U is a 1-dimensional G,-module and
V is an irreducible 7-dimensional G,-module.

As was observed at the beginning of §1, the homomorphisms
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from U U, URV, VRU, and VRV into U and V de-
termine the possible products between the summands. Since for
G,-modules over C, 1®1=1, 1RXT=T=7®1, and TR T =27 +
14 + 7 + 1, it follows from Proposition 1.1 that there is at most
one homomorphism up to scalar multiple in each of the cases: U®
U-U, URV—-V, VIU—-V, VIV—->V, and VR V-T,
and only the zero homomorphism in the other cases. From this we
deduce first that U* < U. But since A is a division algebra, U?+0,
so it must be U?= U. Thus, there exists an idempotent ue U.
Now u®@v—v and v ® u — v define module homomorphisms from
URV and VQ U onto V. Therefore, left (right) multiplication
by u is just the identity transformation on V multiplied by the
scalar 7 (£). To determine homomorphisms for VQ V-V, VR
V — U, we examine the best known example in the class we are
describing—the octonion algebra O. In O there is a basis u, e, ---, ¢,
with multiplication given by table (2.1) below with g =7={=1.
Here u spans a 1-dimensional module and e, ---, ¢, a 7-dimensional
module for Der O = compact G,. Since the modules being discussed
are unique up to isomorphism, and since dimg Hom, (VQ V, V) <1
and dimg Hom,, (V® V, U) =1, the products in the general case
are the same as in the octonions up to multiplication by a constant.
After replacing the basis elements of V by a fixed scalar multiple
of themselves, we may assume that the multiplication from V'xV
to V is identical to that of the octonions, but that the products
from V X V to U involve the scalar 8. To be specific, there is a

basis u, e, ---, e; with multiplication given by
% e, e, e, e, ey e e
w wu ne, ne, ne, 7e, 7e, UL ne,
e | Ce, | —Bu e, e; —e, €s —e; —e
e | Ce, —e, —fBu e; e —e, e, —e
2.1 o e, —e, —e, —pBu e, e, —e, e,
e, | Ce, e, —e —e, —Bu e; e, —e;
e; | Ces —& s —€ —ér —Lu € €,
e, | Ces e —e e, —e;, —e —Bu e,
e;| Ce, e, € —e, es —e, —e, —Bu

The final thing that we wish to determine in this case is for
which values of 3,7, { the algebra with the above table is a divi-
sion algebra. In particular, we shall establish

THEOREM 2.2. A 7real algebra A tis a division algebra with the
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compact form of G, as its derivation algebra if and only if A has
a basis u, e, ---, e; with multiplication given by (2.1) for some real
numbers 3,1, C such that BNl > 0.

Proof. In view of our preceding discussion, it remains only to
show that the algebra A whose multiplication table is given by
(2.1) is a division algebra exactly when /7L > 0. The condition for
A to be a division algebra is that the relation

2.3) 0= (aou + 2= aiei><bou + g bee,)

can hold for real a’s and b’s only if either all a’s are zero or all
b’s are zero. As in the proof of ([1], Theorem 20), we multiply
out the right side of (2.3) and set the coefficients equal to zero. If
the b’s are regarded as variables in the resulting equations, the
coefficient matrix is

0 —pa, —pa, —pa; —pe, —pe; —pLa, —pLa;
Ca, na, —a, —a 4 — 0 as as
Ca, ay na, —as —a, a;  —0 s
M, = Ca, ar s na, —ag —Q, a, -
Ca, —a, a, Qs na, —a; — Qs a;
Ca, Qg —Q; a, Q7 na, —a, —Qy
Ca; —a, A —Qy a3 a, na, —a,
Ca; —a; — a; —a; a, Qs nay

The statement that A is a division algebra is equivalent to the
condition that the determinant of M, is nonzero unless all the a’s
are zero. Since 7 and { must be nonzero for A to be a division
algebra, we can replace each a, with 7~!a, and then multiply each
entry in the first column by {-'. If the resulting matrix is called
M, then det M, = 0 if and only if det M, = 0. Now let us suppose
that the matrix M is the same matrix as M, only with »*' =({"! =
B =1. Since M corresponds to the octonion algebra, det M == 0
unless all a;, are 0. Thus det M, = 0 if and only if det M,M* = 0.
But M,M* has no entries below the diagonal since the last 7 rows
of M, and M are the same and are pairwise orthogonal. Hence,
the determinant of M,M* is the product of the diagonal elements.
The first diagonal entry is 77'{~"a + > Ba? and the remaining entries
are a2 + >, a2 It is clear that if »~{~* and B are both positive
or both negative, then the determinant of M,M® is not 0 unless all
the a’s are, hence A is a division algebra. Conversely, if 4 is a
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division algebra, »~'("'ai + 3., Ba; is not zero unless all the a’s
vanish, which implies that »~'{~* and 3 have the same sign. Thus,
A is a division algebra if and only if g7 > 0. O

3. The case Der A = su(3) begun. In this section we inves-
tigate the case when A is an 8-dimensional irreducible su(3)-module.
Then A is isomorphic to su(3) when it is regarded as an su(3)-
module under the adjoint representation. As we saw in §1 there
are two independent homomorphisms from si(3) Q) sl(3) to sl(3), and
this is indeed true for su(3) as well. One of the homomorphisms
is obviously the Lie product, and to obtain the other we consider
su(3) as 3 X 3 complex skew-Hermitian matrices (' = —2x) of trace
zero. For xz and ¥ in su(3), xy + yx — (2/3)tr(xy)l is a Hermitian
matrix, so multiplying it by ¢ gives a skew-Hermitian matrix which
also has trace zero. Now for z also in su(3),

[z, z{xy + yx — %tr(wy)lﬂ = i{[zx]y + ylzx] + z[zy] + [2y]x}
= i{[zw]y + ylzx] — —g—tr([zac]y)l}
+ i{x[zy] + [zylx — —g—t'r(x[zy])l}

since tr([zxly) = —tr([xz]y) = —tr(x[zy]). This calculation demon-
strates that the map 2 ® ¥y — i{wvy + yx — (2/3)tr(xy)I} is indeed an
su(3)-homomorphism. OQur argument shows that for any real
8-dimensional algebra A on which su(3) acts irreducibly as deriva-
tions, the product in A is given by

3.1) xxy = alzy] + Bi{xy + yx — %tr(wy)[} .

In fact, su(8) is the entire derivation algebra whenever a # 0. For
if A~ denotes the algebra A under the product zxy — yxx = 2a[xy],
then every derivation of A is also a derivation of A-. But A~ is
isomorphic to su(3), which has only inner derivations (see [4] p. 23),
so Der A = su(3) in this instance. Our investigations of this case
will be complete, once we establish a criterion for such an algebra
to be a division algebra. To this purpose we prove

THEOREM 3.2. Let A be an 8-dimensional real algebra defined
on the wvector space su(3) with multiplication given by (3.1). Then
A is a division algebra if and only if aB # 0. For such a division
algebra, Der A = su(3) and A is an irreducible su(3)-module. Con-
versely any real division algebra on which su(3) acts irreducibly
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as derivations is given by this comstruction.

It is easy to see the necessity of the condition g # 0 to have
a division algebra since any element squares to zero if 8 =0, and
since the product of te, — 7¢,, with e, — e, is zero if a« =0. To
establish the sufficiency of the condition we need the following
results.

Let x be a skew-Hermitian complex matrix. Then there is a
unitary matrix » such that uw—'2u = v where v is diagonal (see for
instance, Herstein [3] p. 302, Theorem 6.Z,). Since v is skew-
Hermitian also, it follows that all the characteristic roots of w,
hence of z, are purely imaginary.

LeEMMA 3.3. Let © and y belong to su(3), and assume v,o€C
are such that 6 = = v. If vy + oyx = NI for some NeC, then x
or y 18 0.

Proof. Let u be a unitary matrix which diagonalizes x as
above. Then v(u'zu)(u'yu) + o(u'xu)(w'yu) = MI. Hence we may
assume without loss of generality that x is diagonal, say =z =
diag {a,, a,, a;}. If y = (b,;), then the equation vay + dyx = A gives
for i = j:

(va; + 0a;)b;; = 0.

Since y is skew-Hermitian, b, = —b,;. Thus, for each pair i, j with
1 # j, we obtain the system of equations:

(A/az + Baj)b” = O y

3.4 o
@4 (va; + da)bi,; = 0 .

If some b,; + 0 for ¢ # j, then since v* — ¢* # 0, we have a,=a;=0.
However, & has trace 0, so it follows that ¢, = a, = a, = 0 in this
case, and x = 0. We may assume then that y is diagonal, say y =
diag {b, b,, b;}. Equating entries in vxy + dyx = NI gives

(3.5) b, = ab, = ab, = (v + 0)7'\ .

Using the fact that xz and y have trace 0, we obtain
(3.6) a,b, = ab, = (—a, — a,)(—b, — b,)
which simplifies to show:

(3.7 ab, — ab, =0, a,b, +0b)+ ab =0.
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If not both a, and a, are zero then

(3.8)

b, —b
=| =02+ bb, + B2

b, +b, b

If b, =0, then b, = 0 and ¥y = 0 as well. So we may assume b,#0.
Then it is apparent from (3.8) that b,b;* satisfies the equation 2* +
z + 1. Hence bb;' = w, a complex cube root of 1. But then (3.5)
implies a, = ¢,0 and a; = —a, — a, = —a,(1 + ®) = a,@®. If a, = as
for a € R, then a, = (a/2)i+1/(3/2)a which contradicts the fact that
all roots of 2 are purely imaginary unless @« = 0. But then 2 =0
as desired. ]

Proof of Theorem 3.2. It remains to show that if a8 # 0 then
A is a division algebra. Suppose & and y are complex skew-
Hermitian 8 X 3 matrices of trace zero with the property that

0 = xxy = afzy] + Bi{wy + yx — —g—t'r(xy)I}
= (@ + Biry + (—a + Biyz — %Bitr(xy)I.

Letting vy =a + B¢ and 6 = —a + B4, we have v + 6 = 287 = 0 and
v — 6 =2x # 0. Since the hypotheses of Lemma 3.3 are satisfied,
we are forced to conclude that x = 0 or ¥y = 0, and hence that A is
a division algebra. O

Those special cases in which 8 = +1/3a have been studied
recently by Okubo [8], and have been shown to have many interest-
ing properties. For example these algebras have a quadratic form
permitting composition. They are not composition algebras in the
usual sense sinece they do not have an identity element.

It turns out that the two algebras studied by Okubo are the
only ones in the class defined by Theorem 3.2 which have a quad-
ratic form permitting composition. However, we can show that
every algebra A described by Theorem 3.2 is flexible. For this we
take x, y skew-Hermitian matrices of trace 0, we let \,,,=(2/3)tr(xy)
and use (3.1) to calculate that

(wry)*x — w*(Y*x)
= (a[zy]+ Bifwy +yr—N,, I})xx—axx(a[yx]+ Bifey + yz—N,,, I})
= a*([[xyle] — [2[y2]]) + agi(leyle + 2[2y] — Moy, — 2[y2]
— [yzle + Mool + [2y + y2, 2] — [, 2y + y=])
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— Biwyx + ya* + Y + YT — 20, — Npyiys,od — Y — 22y
— Y&+ 2N, 0+ Mg ayryed)
= apBi2lryle + 2x[xy] + 2[zy + yx, x]) = 0.

It is also clear from (3.1) that A is Lie admissible, since A-=su(3).

4, The case Der A = su(3) concluded. Having dealt with the
situation when A is a single irreducible su(3)-module, we turn to
the case when A is a sum of at least two irreducible su(3)-modules.
The only irreducible si(3)-modules of dimension less than 8 are the
ones which in the notation of (1.7) are given by 1,3, 3,6 and 6.
Thus Ac must be a sum of modules of these types which add up
to give dim A, = 8. We consider the various possibilities.

First, if A. consists of a sum of 1’s and 3’s, then the relation
3®3 =6+ 3 in (1.8) shows that the product of any two elements in
the 3-summand(s) must be zero. However, by Lemma 1.2 the com-
plexification of the image (su(8)A)c equals sl(3)A; which is the sum
of copies of 3. Thus, the product of any two elements in su(3)A
would be zero and would contradict the faet that A is a division
algebra. This demonstrates that A, cannot consist solely of 1’s and
3’s. Similarly we can rule out each case where in addition to 1’s
there is exactly one of the types 3,6, or 6 occurring in A. by
using the relations 3®3 =6 +8,6®6 =15+ 15* + 6, and 6 Q6=
15 + 16* + 6 from (1.8).

Thus, there must be at least two of the types 8, 8, 6, 6 present
in A, and this implies Ac = 1+1+38+3. Looking again at su(3)4
and sl(8)A;, we see that A is the sum of two 1-dimensional modules
and either two nonisomorphic 3-dimensional irreducible su(3)-modules
or one irreducible 6-dimensional module. In the former case let us
suppose W, W are the two 3-dimensional modules such that W, =3
and W,=38, and U and V are the 1-dimensional modules. Then
the relations 3®1=3,3®3 =6+ 8, and 3®3 =8 + 1 show that
for each we W, wAZS Rw + U+ V + W. Hence, left multiplica-
tion by w is not onto, and this case cannot happen if A is a divi-
sion algebra. Thus A is the direect sum of two 1-dimensional
modules and an irreducible 6-dimensional module Z. Moreover we
have the following

THEOREM 4.1. If A is a 7real division algebra such that
Der A = su(3) and A is not an irreducible su(3)-module, then A has
a basis u,w, 2, :--, 2 with multiplication table given by (4.2).
Conversely an algebra A defined by (4.2) admits su(3) as derivations.
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Proof. We have already determined that such an algebra is
the sum of two 1-dimensional su(8)-modules and an irreducible 6-
dimensional module. In order to deduce the various products
between the summands let us first consider a well-known example
in which this type of decomposition occurs—namely the octonions.
Let O be an octonion algebra with basis u, e, ---, ¢; and multipli-
cation given by (2.1) with 8 = {=7=1. Let L={0 € Der O|d(e;)=0}.
Then L is isomorphic to su(3). (See for example, [2], [5], or [7].)
One can actually verify this assertion directly in the following
manner. Let us complexify O and obtain a basis for O, by taking:

1 *

Wy = E(u + 1e;) uy = —;—(u — ie;)
uy = %(el tie)  ul = %(el — ey
uy = _;;(ez toie)  wr= %(ez — ey
Uy = _;_(@ tie)  ul= %(64 — e,

Products between these elements can be calculated using (2.1). We
list the results below where we adopt the convention that ¢;, =1
if (jkl) is an even permutation of {1, 2, 3}, ¢;,, = —1 if the permuta-
tion is odd, and ¢;,;, = 0 if (jkl) is not a permutation of {1, 2, 3},
and §,, is the Kronecker delta.

WoU; = W uiu; =0 Uy = 0 WU = U;
uuf =0 usu; = uj iU, = uf ufud =0
ug = o uus = 0= udu, (u3)* = us

WUy = E Ui’ U;UE = — 05U

wiuy = ;U iU, = —0;Us .

Now 0 € L implies o(u,) = 0 = o(uy). Moreover if X denotes the
span of the u’s and Y the span of the u*’s, then X = {x € O¢|uwx =
x=uou’} and Y = {yeOcluly =y = yu,}. It is easy to see from
these characterizations that X and Y are L. invariant. From apply-
ing @ to the relation w;uf = —d;,u,, it follows that for each de L
the matrix of 6 on Y relative to the u} is minus the transpose of
the matrix of 0 on X relative to the ;. In addition the trace of
o on X and on Y must be 0. These are the only restrictions on
the elements of Lc. Thus L, = sl(3), and X is the module which
we have been denoting by 8 (it is 8 X 1 matrices on which si(3)

acts by matrix multiplication), and Y is 3 (it is 1 x 8 matrices on
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which the action of sI(3) is right multiplication by minus the
matrix). From these observations it follows that if Z denotes the
span of ¢, ---, ¢; in O, then L leaves Z invariant, while our previous
remarks show that Z must be an irreducible module for su(3).

Let us consider the L-module homomorphisms of Z® Z into Z.
Since Z, = X + Y, and since 3®8=6+3,3®3=6+3 and 3R 3=
8 +1 we see dim¢Hom,, (X +Y)®X+Y), X+Y)=2. It is
spanned by the homomorphisms ¢, @, where @,(u; ® w,) = &;uf,
P (uF Q uf) = e;uu;, and @, and @, are 0 on all products of basis
elements not of the specified type.

Given ¢ e Hom, (Z® Z, Z), then o lifts to an L.-homomorphism
of X+Y)X+Y) into X+ Y, and so ¢ = ap, + bp, where
a,beC. Therefore o((u; + uf) Q (u, + uf)) = e;p(aus + dbu,). But
since u; + u} and w, + u; lie in Z, so does au; + bu,, and auf +
bu;, = alu, + w) + Bi(uf — w,) where a, BeR. Thus a=a + g1,
b=a— Ri and b =a. It follows that

P((u; + uf) @ (w + ui)) = egala(u, + w') + Bi(u — uy)}
P((u; + uf) @ Wui — W) = &n{Blur + ) — ai(w — w,)}
Pli(ui — uy) @ (wy + ui)) = &a{Blun + ui) — ai(ui — w)}
Pliuf — u;) @ Wui — ) = e —a(ur + w) — Bilws — w)} .

These equations determine the effect of @ on the e, ® e, basis of
ZR Z.

Since the modules involved are unique up to isomorphism, the
general case of an irreducible 6-dimensional su(3)-module Z which
becomes 3 + 3 upon complexification is no different from the behavior
just observed. There is a basis e, ---, ¢, of Z such that any su(8)-
module homomorphism @ is given as above for some «, e R. If
Z is a summand in an algebra A which admits su(3) as derivations,
then these homomorphisms determine the possible products from
Z x Z to Z, and since the homomorphisms are all skew-symmetric,
the products will be anticommutative.

Thus we may assume that the products from Z x Z to Z are
given by (4.3) for some «, B R.

(1 €2 €3 €4 es €s
e1 - aes+fPes — —aes—Pes —pextaes Bes—aes
€2 —aes—fPes —_ — Bestaes aey+fPes Pes—ae; —
(4.3) es — Bes—aes — — Bes+aes aex+Pes —ae,—fes
s aes+Pes  —aer—Pes Pes—aes — - —Be1+aes
es Bes—aes —pPeitaes; —aes—Pes — — aei+ Pes
s — Pes+aes — aes+fes Ber—aes —aei—Pes —
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If u;, uf are as defined above using the e’s, then uu, = ¢;;; a u®
and wiuy = €;,6u, where a=a + Qi. Let us suppose v; =
a~*g*u; and v} = a ’@”*u} so that v;v, = ¢;,w¢ and vivF = ;v
Now let z, = v, + v, 2, = v, + vF, 2, = v, + vF, 2, = 1(VF — V), % =
(v — v,), % = 1(v¥ — v;). Then the multiplication table for the 2z’s
is the same as (4.3) when ¢ =1 and 8 = 0. Note z, = ve, + {es;, 2, =
e, + Ll 2, = Ve, + Les, 23 = —Le + Ve, 2 = —Le,+ 6, 25 = —Le+ Ves
where v = 1/2(a*a~"? + a~*’a~"?) and { = (1/2)i(a~*a~"* — a~*a=""?).
Since ¥ = v and € =, the z’s lie in Z, and they are the desired
basis.

To calculate further entries in the (4.2) table let us recall
that 8® 3 = 8 + 1. (This resolution can be concretely realized by
the matrix multiplication of a 3 x 1 matrix with a 1 X 3 matrix
followed by projection onto si(3) and C-I). Thus, v; Q vi — 05w is
an sl(3)-module homomorphism of 3 ® 3 onto the 1-dimensional
module spanned by w, and any other one is just a complex multiple
of this homomorphism. From this it follows that any su(8)-module
homomorphism +,: Z X Z— Rw when lifted to (8 +3)® 3 + 3) —
Cw is given by ,(v; ® v¥) = c¢ow, (v @ v;) = dozw for ¢, deC
and the condition (Z&® Z) & Rw forces d =¢. Thus if c=a,+3,¢

Pri((v; + v7) @ (v, + v3F)) = 20,a,w
Pri((v; + ) Q 1(VE — vi) = 208w
P (10F — 1) @ (vF + ) = —20;8,w
P, (P(vF — ;) @ (v — v,) = 20w .

Similarly if Rx is the other 1-dimensional summand any homomor-
phism +, is prescribed by scalars a,, 3,. Thus any product of Zx Z
into the two 1-dimensional summands is determined by four scalars
o, By, 0, B, € R. This number can be reduced by making the change
of basis u = —2aq,w — 20,2, v = 28w + 2B,x. For then 2} = —u
for all j and 2.2, = 2,2 = 2,8, = V = —2%, = —22, = —%®, as in the
table. The elements u, v will seem less mysterious if one keeps
the octonion example in mind, for there v corresponds to e, and u
to the identity element.

The relations 1® 38 = 3,1 ® 3 = 3 similarly imply the existence
of scalars ¢, 0,€ R such that

w(w; + v¥) = 0,(v; + v¥) + o.4(vF — v;)
wt(wf — v;) = —o,(v; + v§) + o4(vF —v;) .
In this fashion one obtains the entries in the table involving the

o’s and 7’s. Since Ru + Rv is a subalgebra, the products u? wv,
vu, v* are of the form indicated by (4.2), and the determination of
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the table is complete. This table has been constructed by using
su(3)-modules and su(3)-module homomorphisms at each stage, so
that any algebra having (4.2) as its table for ¢’s, z’s, 9’s, 6’s in R
will admit su(3) as derivations. ]

If A is a division algebra with multiplication given by (4.2)
and if Der A is larger than su(3), then Der A is a compact G,, since
this is the only Lie algebra in our classification of derivation algebras
of real division algebras which can properly contain su(3). The
criterion for when Der A is a compact G, is given in

THEOREM 4.4. If A is a real division algebra with multiplica-
tion given by (4.2), then Der A is a compact form of G, if and only
if the following relations hold:

| 772:02773,01:0:04,9220'1,03:7.'1,

(4.5)
N=—-1=17, 0,=0=r1, 0, =0=1; 0,=1.

Otherwise Der A = su(3).

Proof. If the relations (4.5) hold, then it is immediate that A
is isomorphic to the algebra defined by (2.1) with {=%'c, 7 =7"0,,
and B = 7, under the correspondence u — %i'u, e, — v, and e; — z;
for j=1,---,6. Hence Der A is a compact G, in this case.

Conversely suppose Der A is a compact form of G,. Then A
decomposes relative to Der A into a 1-dimensional module U and a
7-dimensional irreducible module V as in §2. Since Z is the image
of A under su(8) £ Der A, Z must be contained in V, the image of
A under Der A. Every element of V is known to square to an
element in U (see Table 2.1), but every element of Z squares to an
multiple of w. Thus U is the span of u, and V is the span of the
2’s and v + \u for some ne R. It follows that right or left multi-
plication by u on V, and also on U, must be a scalar multiple of
the identity transformation, and this implies that ¢,=0,=17, 6, =
0, 6, =0, and 6, =7,. Since A is a division algebra, left or right
multiplication by a nonzero linear combination of # and v on z, must
be nonzero, and this forces o, # 0 and 7, == 0.

We deduce further relations by recalling that produects from
V X V—7V are the same as in the octonions. Thus, they share
the property that if x,y and yx are in V, then (yx)xe€ Ry and
yY(yx) € Rx, since these properties follow from the alternativity of
the octonions. (See for example, Schafer [9].) Such elements are
v + A, 2, and (v + W)z, = (05 + NG, + 0.7, so that

(4.6) (v + 2Mu)z)z, = — (05 + Mo)u — o0 € R(v + M) .
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(v + Mu)((v + M)z,) = (05 + Ao )(05 + Noy) — 0Dz,

.7
+ 20,05 + Mo)2. € Rz, .

Since o, # 0, equation (4.7) implies that o, + Ao, = 0, and this
together with (4.6) says —ove€ R(v + au). Hencen =0, 0, = 0, and
an analogous argument with z,(z,v) determines that z, = 0. Further
consequences of the result that »eV are ,=0=17, and 4,=0,
because x*e U for each xec V.

An additional property of V inherited from the octonions is
that if yeV and if for some e V,2yecV and (wy)y = —p=, for
P€R, then for any we V with wyeV, (wy)y = —pw. Therefore,

(7202, = —2, and (vz)2, = —ow imply o, =1, while by symmetry
2,(2.2,) = —2, and 2z,(zv) = 7,0 give 7, = —1.

All that is left to be shown is that 7, = —1. However if =z, v,
and xy are in V, and (xy)y = —« and 2(xy) = —y then x* = 92, since
the corresponding result holds for the octonions. But then. (vz)z,=
—v and v(vz,) = —z, imply —u = 2} = v* = Hu. From this we deduce
that 7,=—1, so that all the conditions in (4.5) do indeed hold when
Der A = compact G.,. O

The question of when a real algebra with multiplication given
by (4.2) is a division algebra is formidable because of the large
number of scalars in the multiplication table. However, we can
exhibit division algebras of this type which have su(8) as their full
derivation algebra. The easiest example is obtained by taking the
values of the constants prescribed in (4.5) with the sole exception
that 7, is some negative number besides —1. This algebra was
shown to be a division algebra in ([1], Theorem 20), and it has su(3)
as its derivation algebra according to Theorem 4.4.

5. The case Der A = su(2) P su(2). An irreducible sl(2) D sl(2)-
module over C is just the tensor product of two irreducible si(2)-
modules (one for each summand of sl(2)Psl(2)). If V, is an irreducible
module for the first copy of sl(2), and V, for the second copy, and if
dimV, =m and dim V, = n, then V,®YV, is an irreducible module for
sl(2) @ sl(2) of dimension mn, and we denote this module by m@n

Suppose now su(2) P su(2) & Der A where A is a real division
algebra, and for convenience write S, and S, for the two copies of
su(2). As we explained in §1, we have the S,-module decomposition
A=A, A, where A, is the space of elements annihilated by S,
and A, is the image of A under S,. Since S, and S, commute, it is
easy to see that A, and A, are invariant under S,. The S,-action
on A, and A, affords the decompositions, 4, = 4,,P 4, and A4, =
Ay,D A,,. Thus, relative to S,P S,
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A= AOO®A0*@A*O@A** .

Since the smallest nontrivial su(2)-module has dimension 3, we
see A,, =0 or dim A,, = 3, and the same is true of A,,. Because
(Ay)c is just the sum of all irreducible sl(2) @ sl(2)-modules not
annihilated by either summand, it follows that either A,, =0 or
else dim A,, = 4. We consider the various possibilities.

Of course, not all A,, A, A.. can be zero, since S, P S, acts
nontrivially on A. If A, # 0 # A,, then a simple dimension count
shows A,, =0. Since M@ DRAXn) =mn for sl(2) D sl(2)-
modules, A,,A4p & (Aso)c(Ao)ec & (Ay)e = 0. This contradiction en-
ables us to conclude either A,,=0 or A,, = 0. Without loss of
generality we suppose that A,, = 0, and hence A=A,P 4,,P A...
In this decomposition A,, #+ 0, since otherwise S, would act trivially
on A. Now (A,,)c is comprised of a sum of modules of the follow-
ing types: 2®2,2%3,3®22®4,4®2. In any event, (A,,)c is
the direct sum of copies of modules of dimension 2 when it is
decomposed relative to one of the copies of sl(2). Since 2®2=3-+1
for sl(2)-modules it must be that (4,,)% & (Ay)c + (A,o)e, and hence
A% S Ay, + A, Forany x+0 in A,,, vA,, S A, + A,, and be-
cause left multiplication by x is nonsingular, dim A4, ,<dim(4,+ 4,.).
Thus, there is only one possibility for (A4,,)c, namely (4,,)c =2 2.

If dim A, =0, then dimA,,=dimA,, =4 and (A¢),, =2+ 2
relative to (S)c = sl(2). But then A, is just the sum of 2-dimen-
sional modules for (S))., and as above 2® 2 =3 + 1 shows that all
products are zero. Thus, it is impossible for A4, to be zero.

Consider now the possibility A,,=0. In this instance dim A, =
dim A,, = 4, and every derivation of A in S, P S, has rank < 4. If
this is the case, then any space of commuting derivations has dimen-
sion not more than one according to ([1], Corollary 16). However,
S, S, has a 2-dimensional space of commuting derivations, so we
arrive at a contradiction. Therefore A,, # 0, and since A4, # 0 and
dim A,, = 4, it must be that dim A,, = 8. This is the first part of
the principal result of this section which we are now ready to state
and prove.

THEOREM 5.1. Let A be a real division algebra such that
su(2) Psu(2)=Der A. Then as an su(2) P su(2)-module, A is a direct
sum of a l-dimensional module U annihilated by both copies of su(2),
a 3-dimensional module X irreducible under one copy of éu(2) and
annthilated by the other, and a 4-dimensional module Y irreducible
under both copies of su(2). There exists a basis u, ,, %y, L5, Y1, Ys, Ys, Ys
such that the multiplication in A is given by (5.2) for some B, 7,9, ¢, 7,
(,0,p0,0eR. Furthermore, Der A is either su(2) @ su(2) or a compact
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G,; the latter occurring exactly when the following relations hold:
e=1=9n By=6,{{=p, 0 =0, v>0, and Boo < 0.

u €, Ly X3 Y Y, Ys Y,

U U L, (e, e, oY, 0Y, 0Ys 0Y,
2 &”1 B (1 L3 — X, &Y, &Y, —&Y, —E&Y,
%, | O, — Bu x €Yy —EY &Y, —&Y;
X Gx X — u | —e € € —€

( 5 . 2) 3 3 2 1 B y3 y4 yl yz
Y| Yy | —NY, —NY. NYs ou YE,  —YX Y,
yz 0?/2 - 771/3 7]2/1 - 77?/4 - 7x2 5% R '7-'”3
Ys| OYs NY. —NYs 7Y, YE,  —YE ou Y,
Y, gy, ny, Y, Ny, | =7, —7%; —YX, ou

Proof. Recall from §1 that 0, =4k, 0,=e¢— f 0; = i(e + f)
give a basis of su(2) such that [d;, 9;+,] = 20;;, where the indices
are interpreted modulo 3. Let 4, d,, 0; denote such a basis for the
copy of su(2) which acts irreducibly on X, and let o, 9;, 0; be the
corresponding basis for the other copy. Since the module X is
just the adjoint representation of su(2), there is a basis =z, 2, x, of
X such that the action of su(2) @ su(2) on X is given by

0;(%;+,) = 2x;+, where the subscripts are read modulo 3
d5(x,) = 0 for all j and & .
Now Y,=2®2, or in the notation of §1, Y. = V)X V).
Recall V(1) ® V(1) has as basis {v; ® v,} where j, k= *+1. Let
Y=, QR + 0, Qv+ v, Qv +w_Pwv_,
Y=V, X, +1v_,Qv, —v,Qiv_, — v, Qv_,
Y, =1w_, Qiv, — v, v, + w, R w_, — v, Qv_,
Y =0, Qv — 10, RQiv, —v_ Qv_, + w_,RQiv_, .
Then ¥, ¥, ¥s, ¥, span an su(2) P su(2)-module as the table below
indicates.

(5.3)

Y, Ye Ys Y

ol =% ~Y Y Y
az —Y. Yy —Y. Ys
(5.4) O U U Y Y
1| Y Ys —Y. Y,
2 Y —Y —Y Ys
3 Ys Ys —Y —Y.
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Thus, Y must be isomorphic to the span of the y’s.

In order to deduce the products X? UX, and XU, we recall that
for sl(2)-modules 3®3 =5+3+1, and 3®1 =3 (see (1.6)). Thus,
XS X+ U, and XU + UX £ X, and up to scalar multiple there
is just one possible product in each case. The product from X x X
to X is just the Lie product on su(2), from X X X to U the pro-
duct is simply the inner product (as seen from the quaternions on
which su(2) acts as derivations), and from X x U to X or U x X to
X the product is just multiplication by a scalar. After replacing each
z, by an appropriate scalar multiple of itself, we obtain the portion
of the multiplication table (5.2) pertaining to products on X + U.

Now for products involving Y, we have BX1) ® 2R 2) =
BRAIXVIRD=U+2)®2=4R2+282. Thus, XY+YXZY,
dim¢; Hom,; g0 Xc ® Y, Ye) = 1, and consequently

dimR Homsu(2)€Bm(2)(X® Y’ Y) é 1.

Moreover, (2 ® 2)Q (2 ® 2)=@+1) ® (8 +1) demonstrates that
Y’ X+ U, dimp Hom,,pmewe(Y ®Y, X)<1, and dim, Hom,,»gu=(Y®
Y, U)<1l. Finally (1 (;Z) D2 ® 2) =2 @ 2 shows that constants
g, p€ R exist so that uy; = py; and y;u = oy; for all j.

In order to find the products XY, YX, and Y* we again turn
to the octonions for guidance. It is known that the transformations

Dv,w = —ad[v,w] + 3[Lv: Rw]

are derivations of the octonions for any two elements », w in the
octonion algebra, where L,(t) = vt, R,(t) = tw, and ady, . (t) = [[vw]E].
(See [7, page 2].) Using the fact that [, D, ] = Djw.), + D, s, OnE
can verify readily that

1 1

0= =2Dipup 0= =—Dupoy &= ==Duys,
01 = _2];‘(De3,s7 - Da_r,,eo), a; = —;—(Deﬂ,e', - Dea,eﬁ)’ ag = '%‘(Dea,eg - De5,e7)

span a su(2) P su(2) subalgebra of the derivation algebra of the
octonions with multiplication as above. Moreover, if one makes the
following identifications u — 1, z, «— e, , — e, T, — e, Y, — &, Y, — &5,
Yy < €5, and y, — e, the action of su(2) P su(2) on the z’s and y’s is
exactly that given by (5.8) and (5.4). Therefore, since there is at
most one su(2) P su(2)-homomorphism up to scalar multiple in each
of the cases: XQRY-Y, YRX-Y,YRY—-X,and YRY U,
the homomorphism can be computed easily from the corresponding
products in the octonions. This ecalculation gives the remaining
entries in (5.2).
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If Der A properly contains su(2) P su(2) for a division algebra
A with multiplication given by (56.2), then Der A must be a compact
G,, since this is the only Lie algebra in our classification of deriva-
tion algebras of real division algebras which can properly contain
su(2) @ su(2). The proof of Theorem 5.1 will be complete if we can
show that Der A is a compact G, if and only if

65 e=1=7967=0{=p, 06=0,7v>0, and Booc <0.

If A satisfies the relations (5.5), then (5.2) reduces to the multipli-
cation given in (2.1) under the correspondence given by xz, —e,
T, €, Ty e, Yy V Ve, Yo V Ve, Yy V76, Y1V 76, and so
Der A = compact G, when the relations (5.5) hold.

Conversely, suppose that Der A is a compact G, for a certain
choice of the constants in (5.2). Then A is isomorphic to one of the
algebras of the form (2.1), and this isomorphism ¢ must take X+Y
onto V=1<e, e, -+, ¢y. Now V inherits from the alternativity of
the octonions the property that if v, v,€V and if vw,€V then
v,(v,v,) € {v,y. The same property must also hold for p~%(V)=X+Y7,
so that using (5.2) we obtain

(xz + y1)((x2 + yx)wi) = (xz + y1)(—x3 - 7)2/4) = _(1 + "/7))371
+ (&7 — Mys € @y .
Thus, e — 7 =0, and ¢ =1 because 7 # 0 in a division algebra.

Since V is anticommutative, we also have 7 =¢, and so 7 =1.
Then,

(@, + Y@ + YY) = @ + Y) (=¥ + 72) = =1 + MY,
+ (BY — duelyy ,
giving B8y = 6. Since left multiplication by w is just a multiple of

the identity on V, it follows the { = p, and similarly 6 =¢. If
v < 0, then V—7 is a real number and

V' =7u + Y)YV =78 — yy) = —7px, — V —7py,
+ V' =70ys + 70%; =
using (5.2). Hence, v > 0 when A is a division algebra. Finally,
for any cc R,
(ou + cx)(ouw — cx,) = pou — pocx, + pocr, — Bc*u
= (.00' - 502)?/0 ’
using {=p and 6 =o. If Boo >0, we can set ¢ = V300 in the

last calculation and obtain zero divisors. Thus, oo < 0 in a division
algebra, and we have verified all the relations of (5.5). O
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Although we shall not attempt to derive necessary and sufficient
conditions on the constants for the algebra A given by (5.2) to be
a division algebra, we note that there do exist division algebras of
this form with Der A = su(2) @ su(2). For example, if we choose
e=1=79=7v B8<0,8#0<0,{=p=1=6 =0, then A is iso-
morphic to the division algebra of ([1], Theorem 20) using the map
U = Uy Ty > €y By > €y Ty > €4y Yy < €3, Yy €5, Y3 < €4, Yy < €.

6. The case Der A = su(2) and LCer A = su(2) + N. Suppose
now A is a real division algebra and that su(2) £ Der A. Using
the convention explained in §1 of denoting an irreducible su(2)-
module by its dimension, we can state

ProposiTION 6.1. If A is a real division algebra such that
su(2) < Der A, then the decomposition of A into irreducible su(2)-
modules has one of the following forms: 1 +3,14+17,3+5, 141+
3+381+3+41+1+1+1+4.

Proof. We suppose first that 4 is a direct sum of odd-dimen-
sional irreducible modules. At least one irreducible module of
dimension = 3 must be present, since su(2) cannot act trivially on
all of A. Then the only possibility when dim A4 =4 is 1 + 3. For
dim A = 8, we note that the elements of A annihilated by all of
su(2) form a subalgebra which has dimension 0,1, 2, or 4. With
this restriction on the number of 1’s in the decomposition, it is
immediate that the only possible decompositions are 1 + 7,3 + 5,
and 1 +1+ 3 + 3.

Suppose then that A has an even-dimensional irreducible module.
Since by (1.6) the product of even-dimensional irreducible modules
in A; must lie in the sum of the odd-dimensional irreducible modules,
the same is true in A. Thus A must also have odd-dimensional
irreducible modules. In fact, the dimension of the sum of the odd-
dimensional irreducible modules must be the same as the dimension
of the sum of the even-dimensional modules, since right multiplica-
tion by any nonzero element of an even-dimensional irreducible
module will map each of these two spaces into the other. As the
smallest even-dimensional irreducible su(2)-module has dimension 4,
it follows that dim A =8 and that A is the sum of a single 4-
dimensional irreducible module and some odd-dimensional irreducible
modules. The only possibilities are 1 +8 +4 and 1+1+1+
1+ 4. O

We discuss in turn each of the cases that arise in Proposition
6.1 beginning with the case 1 + 3. This case is very similar to the
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case when Der A = compact G,, since we see that there is exactly
one product from 3 x 8 to 3 and one from 8 x 3 to 1. Then A4 is
just like the quaternions except that there are several constants
in the table. Specifically the multiplication table for A is given by

u e A e,

u U 7731 7782 7764

(6.2) e, | Ce — LU (A — €
€, Cez — €y - ﬁ w (21
e, | Ce, (2 —e —pBuU

where we have normalized ¢, ¢, ¢, to make the scalar involved in
the product from 8 x 8 to 3 become 1, and we have normalized u
so that w? = u. Since this algebra is a subalgebra of the algebra
given by (2.1), it is a division algebra if g7 > 0 by Theorem 2.2.
Conversely, if the algebra given by (6.2) is a division algebra,
then the equation

0 = (a,u + a6, + a.e, + a.e)(bu + be, + bye, + bee,)

can hold only if either all the a’s or all the b’s are zero. An
argument identical to the proof of Theorem 2.2 shows that this
condition implies g7¢ > 0. We have proved

THEOREM 6.3. A 4-dimensional real algebra is a division
algebra with suw(2) as its derivation algebra if and only if A has a
basis wu, e, e, e, with multiplication given by (6.2) for some real
numbers B, 1, { such that gnL > 0.

The best known algebra belonging to the class defined by (6.2)
is of course the algebra of quaternions, which arises by taking
B=n=C=1. If we take 8 =1 and = —1={, we obtain the
pseudo-quaternions of Okubo [8].

We consider next the case when A has the decomposition 1+7.
Here we can establish

THEOREM 6.4. If A is a real division algebra with su(2)SDer A,
and if A breaks up as an su(2)-module into a sum of a l-dimen-
stonal module and an itrreducible T-dimensional module, then Der A
18 a compact G,. Hence the structure of A is described by Theorem
2.2.

Proof. Let A be an algebra satisfying the hypotheses of
Theorem 6.4, let U be the 1-dimensional module, and let E be the
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irreducible 7-dimensional module. Then U® U= U, and so U is a
subalgebra spanned by an idempotent u. Also, UQ E = E, and
right multiplication by % acts on K as a scalar multiple of the
identity transformation. Similarly, left multiplication by u acts on
E as a scalar multiple of the identity. By the Clebsch-Gordan
formula, there is up to a scalar multiple exactly one homomorphism
from EQ E to E, and exactly one from E® E to U. If we can
show that these are the same two homomorphisms which come out
of the algebras defined by (2.1), we will have shown that the present
algebra A belongs to the class of algebras defined by (2.1). In
order to demonstrate that these homomorphisms are the same, it is
sufficient to exhibit an algebra which satisfies the hypotheses of
Theorem 6.4 and which also has the form (2.1), since the modules
involved are unique up to isomorphism. Thus, it suffices to establish
that the octonions O satisfy the hypotheses of Theorem 6.4.

Letting O be spanned by u,e, ---, ¢, where multiplication is
given by (2.1) with g =%={ =1, we show that there exists a
subalgebra of Der O isomorphic to su(2) which acts irreducibly on
E =<{e, ---,ey. As we noted in §5, the maps

Dij - '—_a’d[ei,ej] + 3[Leu Rej]
are known to be derivations of O. Then the linear transforma-

tions

al = —l‘Dz,e - iD«m
3 3

az = _%VKD?,J + %—VFKDIZ - D6:3)

2= L/50,, 4 LyTD, - Dy

are also derivations of O, and one can verify that the action of the
0;’s on E is given by

€1 (2] €3 €y [H] e er
01 —2es —4eg 2e; Ges —6es 4e, 0
62 '\/F)Gz «/i_(—)'el - \/@4 —\/i-o_ée+2 '\/-6—67 ’\/_6—62 —\/—é.ee \/625"" '\/]—.()63 —‘2\/—663
95 |V 10642 v 6e; V10 ¢5 — v 6es —+/10e, V6e ~V6e, —V6e,— V106, —2v ey,

It is straightforward to check using this table that [9;, ;1] = 20+,
where the subscripts are interpreted modulo 3. Thus, 9, 9, 9, span
a subalgebra of Der O which is isomorphic to su(2).

It remains to show that F is irreducible under this copy S of
su(2). We show first that each basis element e¢; generates all of £
under the action of S. Let M(e;) denote the S-submodule of F
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generated by ¢;. From the action of 9,, we see that M(e,) = M(e,),
M(e,)=M(es), and M(e))=M(e,). Since d,(e,)=1"6¢, and d,(e,)=1"10¢,—
V'6e,, we have e, ---,e,€ M(e,). Also, d,(e,) = V10e, — 1/ 6e, and
dy(e)) = —1/ 6e, — V'10¢, imply that e, - - -, ¢, € M(e,)=M(e,). Similarly,
we obtain e, ---, ¢;€ M(e,) = M(e;). Since any submodule containing
e, -+, 6, contains e, using d,(e,)=1"10¢,+216¢,, we see that M(e,)=
M(e,) = --- = M(e;) = E. Then M(e,) = E also, because ¢, € M(e,)
follows from d,(e;) = 21 6e,.

If E is not an irreducible S-module, there exists an element
which generates a nonzero proper submodule, and among all such
elements we pick one, w = N\, + -+ + N6, of shortest length (i.e.,
with as many A’s zero as possible). It is easy to see that the
element

w, = a&*w + otw = (@ — H)e, + (@ — 16)\.e, + (@ — 4)\se,
+ (@* — 36)ne, + (@ — 36)hge; + (@ — 16)N\.e, + e,

will have shorter length than w for some ac{0, 2, 4, 6} and that
M(w,) € M(w) = E. Since w has the shortest length among all non-
zero elements, we obtain w, = 0 for some «, which implies that w
has one of the forms

N8 T Nglsy Moy + Ny Ny + Nslsy M€y .

The case when w = \e, has already been eliminated. If w = ne +
M5, then 20w + N0,w = (2A\F + 2)\))e,, showing that e, is in the
submodule generated by w. But we have shown that e, generates
all of E, so w could not be of the form X\e, + N\, An identical
argument rules out the cases when w = Mg, + Mg and w =n.e, +\yes.
Thus E is an irreducible S-module. |

We turn now to the case when A is a direct sum of an irreduc-
ible 8-dimensional su(2)-module and an irreducible 5-dimensional
su(2)-module. Since each of 3x 3, 3 x5, 5x3, 5x5 has one
multiplication into each of 3 and 5, there will be eight constants
in the multiplication table of A. One can construct A by thinking
of A as the 3 x 8 skew-Hermitian complex matrices of trace zero,
where both su(2) and the 3-dimensional submodule of A are identified
with the subspace of matrices which are skew (as well as skew-
Hermitian), and where the 5-dimensional module is those matrices
which are symmetric (and skew-Hermitian). The action of su(2) on
the two modules is the Lie product, and the different multiplications
between the two modules in A are obtained by resolving into the
3 and 5-components the two products on this set of matrices given
in (3.1).
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As is obvious from the construction of A, the algebras occurr-
ing here include the class of algebras studied in §3. On the other
hand, when A has no 1l-dimensional submodule for su(2), it cannot
have a 1-dimensional submodule for all of Der A, which rules out
the cases that Der A is either a compact G, or su(2) @ su(2), and
the case when Der A = su(3) and A is not an irreducible su(3)-
module. We have established most of

THEOREM 6.5. If A is a real division algebra with su(2)SDer A,
and if A is the sum of an irreducible 3-dimensional su(2)-module
and an trreducible 5-dimensional su(2)-module, then either
Der A = su(2), or else Der A = su(3) and A is an irreducible su(3)-
module.

Proof. In view of our classification of the derivation algebras
of division algebras and of the remarks in the paragraph before the
statement of the theorem, it is only necessary to rule out the case
that Der A = su(2) @ N where N is a 1-dimensional Lie algebra.
Employing the representation of A explained above, we let 4, 9, 0;
be the basis of su(2) and x, x, x; the basis for the 3-dimensional
module X defined by

(6.6) 0, = €5 — Oy = Xy, 0, = €y — €y = Wy, 03 = €3 — €, = X,
where the ¢;;’s are 3 X 3 matrix units. We let

Yy = ey + €1, Yy = ey + €y), Ys = (e + €3) ,

6.7 . .
6D Yo = U — ), Ys = 1€y — )

be the basis of the 5-dimensional module Y.

If Der A = su(2) @ N, then there exists a nonzero derivation o
commuting with 0, d,, d;.. By ([1], Lemma 15), the rank of any
derivation on an 8-dimensional real division algebra is 0, 4, or 6.
But 0(4) is an su(2)-submodule and so must have dimension 0, 3, 5,
or 8. Hence, d(4) =0, and @ = 0. This rules out the case Der A=
su(2) + N here. ]

REMARK. The question of whether real division algebras satisfy-
ing the hypotheses of Theorem 6.5 and having Der A=su(2) actually
exist has not been settled, to the best of our knowledge.

Consider next the case when the decomposition of A as su(2)-
modules is 1 +1+ 3 + 3. By determining all possible homomor-
phisms from the tensor product of two summands into a third
summand, one can obtain a general multiplication table with 40
different scalars, but the number of constants can be decreased by
making a judicious choice of basis. This class of algebras clearly
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contains those division algebras with Der A = su(3) where A is not
an irreducible su(3)-module, and hence also the division algebras
where Der A = compact G,. It also contains the algebras with
Der A = su(2) @ su(2), since in the notation of (5.3) and (5.4), the
elements 9, + 9}, 9, + 05, 6; + 0; form a subalgebra of Der A isomor-
phic to su(2) under which A has the decomposition 1 + 1 + 3 + 3.
We don’t know whether the case when Der A = su(3) and A is an
irreducible su(3)-module is included in the present case, or whether
there exist real division algebras with the decomposition 1 +1+3+3
where Der A is either just su(2) or su(2) + N.

We turn briefly to the case where A has the su(2)-module
decomposition 1 + 8 + 4. The general multiplication table here can
be written out using 21 constants. It is clear that those division
algebras where Der A = su(2) @ su(2) or Der A = compact G, are
included in this class. The division algebras with Der A = su(3) and
A not an irreducible su(3)-module are clearly not included in the
1+ 38 + 4 case, but it is less clear whether the case when Der A =
su(8) and A is an irreducible su(3)-module is included. We have not
attempted to settle whether there are division algebras of this type
with Der A = su(2) or Der A = su(2) @ N for the case 1 + 3 + 4.

Our final case is when the su(2)-module decomposition is 1+1+
1+ 1+ 4. Again those division algebras where Der A=su(2)Psu(2)
or Der A = compact G, are included in this class. We don’t know
whether either type of division algebra with Der A = su(3) occurs
here. For this case we will prove that there are division algebras
with Der A = su(2) and also with Der A = su(2) @ N.

Let A be an algebra with basis u, ¢, ¢, ---, ¢; and multiplication
as in the octonions except that the squares of the ¢,’s are not all
equal. Specifically, products in A are given by

U= u, ue, = ¢, = e, € = —Bu, for 1 =1, ..+, 7
(6.8) €€ir1 = Ciyy = €416y €,416513 = €; = €163,
€440, = €,4, = —€,8,.,, Where the subscripts are taken modulo 7,
and where G, 83, *--, B: are positive real numbers. We have shown

[1, Theorem 20] that this algebra is a real division algebra, and we
want to calculate its derivations for appropriate conditions on the
B’s. In particular, we shall establish

THEOREM 6.9. Let A be the real division algebra defined by
(6.8) and let Bs = Bs= Bs= Br If B, Bs B Bs are distinct, then
Der A = su(2). If B, B B; are distinct and B, = B,, then Der A=
su(2) @ N where N is a 1-dimensional Lie algebra.
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Proof. Suppose that B, = B, = B8, = B, and define the linear
transformations 9], 9, 9;, on A by

U e e, e (A () € €7

{0 0 0 0| —e, e, —é e,

(6.10) 0500 0 0 O e —e, —e e,
;{0 0 0 0 € e, —e, —eé

Comparing with (5.4), we see that (6.10) defines an irreducible
module action of su(2) spanned by 0}, 0}, 0; on the subspace E, =
{es, €, €, e;y. By definition su(2) acts trivially on the subalgebra
E, = (u, e, e, ¢y, and we need to verify that 0], 9}, d; act like
derivations on products of the form K,F, E.E, and E.E,.

Since we showed in §5 that o, 9}, 0; are derivations of the
octonions and since the present algebra is the same as the oc-
tonions except for the squares of the ejs, the maps 9], 9;, 0; will
act as derivations on any product of basis vectors where the verifi-
cation does not depend on calculating the square of an ¢, In par-
ticular, the 9js act as derivations on all products of the form EE,
or E.,E,. For the remaining products—those of the type E.F,, one
can verify directly using (6.10) and the fact that 8, = 8, = B =G
that each 0, behaves as a derivation. Thus, d;, 9, 0; are derivations
and span a copy of su(2) in Der A.

In order to find out which other derivations of A exist, we
need

LemMMA 6.11. If 0 is a derivation of the algebra A defined by
equations (6.8), then o(u) = 0 and there exist real numbers a;; for
154,57 such that a;; = —ay; and 0(e,) = 2o ae; for 1< 1< 7.
Futhermore, if 8; # B;, then a;; = 0.

Proof. Since u is the identity element of A, o(u)=0. If
a(e;) = a,u + > ae; for ay, a;;€ R, we see from

0 = a(ed) = d(e)e; + e0(e;) = 208, — 28,0:U

that a,, = 0=a, for 1 £ ¢ < 7. For fixed 7 = j, there exists k such
that either e, =¢;e, or e, =¢,¢;. In the former case, the e¢;-component
of

0(e;) = d(eje,) = d(ej)e, + e;0(e;) = Zla a;ee, + Zla 8,8,

is
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(6.12) @y = —aj,

since ee; is never a multiple of e¢; and since ee, is a multiple of
e; exactly when [ = 4, in which case ee, = —e;. If e, = ¢.e;, then
(6.12) also holds by the identical argument with left and right
interchanged. If B, # B;, then

(6.13) 0 = d(ee; + eje;) = 0(eye; + ed(e;) + d(eye; + e;ole,) ,
and the u-component of this is
0 = 2a,6; + 2a;6; = 2a,;(¢; — €) = 2a,;(8; — B ,

which implies that a;; = 0. L]

Returning to the proof of Theorem 6.9, we suppose first that
By Ba Bsy B are distinct. Then, for any oeDer A, we see from
Lemma 6.11 that a,;=0 unless 7+ and j are both in the set {3, 5, 6, 7},
giving o(#,) = 0 and 0(E,)) S E,. Hence d(e;) = bye, + bee, + be, for
some by, be, b, € R, and &' = 0 — b;0; — be0; + b,0; has the property that
0'(e;) = 0. It follows that

a’(es) = a'(ezea) = a’(62)63 + eza’(ea) =0,
0'(eg) = 9'(ese) = '(es)e, + e;0'(es) = 0,
0'(e;) = 0'(ese;) = 0'(e)e; + e,0'(e5) = 0,

giving 9’ = 0. Thus, 0 = b;0; + bd; — b,0; € su(2), and Der 4 = su(2).
Finally, suppose that B, B3, B; are distinct and that g, = B,. If
oeDer A, then Lemma 6.11 implies that

ole) = 0, d(e,) = axe, 0(e) = —aye, o(H,) S K, .

If a,, = 0, the argument of the last paragraph shows that 0 € su(2),
implying that dim Der A < dimsu(2) +1=4. Thus, in order to
prove that Der A = su(2) + N, it is sufficient to show that Der 4
contains a nonzero derivation 0, which commutes with o}, 9;, 05. We
claim that if o, is defined by

0,(u) = 0, d,(e,) = 0, 0,(e;) = 2e,, 0,(€;) = —2e;,
0.(e;) = —ey, 0,(6;) = — e, 0:(6;) = &, 0.(e)) = e,

then o, is a derivation of A commuting with 0], 3;, 0;. We saw in
§5 that 9, is a derivation of the octonions commuting with i, 65, 05
(see (5.4)). Thus o, must also commute here with 0;, 0, 9}, and 0,
must act as a derivation on any product of basis vectors, since in
those cases where the calculation involves squaring on ¢, the two



AN INVESTIGATION OF REAL DIVISION ALGEBRAS USING DERIVATIONS 295

B’s involved will be equal. Therefore, 0, is a derivation here
also. =

7. The case when Der A is abelian. We consider next the
case when Der A is abelian of dimension 2. By [1, Corollary 16],
dim A=8 and there is a basis d;, 9; of Der A such that 4] and o; are
diagonal relative to a suitable choice of basis of A, and are of
the form

0, — diag {0, 0, i, —ai, Bi, — B, (@ + B)i, —(a + B)i}
0, — diag {0, 0, 0, 0, vi, —~%, vi, —7i}

for nonzero real numbers «, B, v. Then 0, = (1/a)o; — (B/ay)o; and
9, = (1/v)0; are also a basis for Der A and

0, — diag {O, O.- Ii: _7:7 O’ O’ i’ _—IL}

7.1
@ 3, — diag {0, 0, 0, 0, i, —i, i, —1} .

Hence there must exist a basis u,, u, %, %, Ys, ¥, 2, 2. of A such
that 0, and 0, are given by

0 (u) = 0 = 0.(u,), 0,(x;) = @, 0,(%;) = —, 0(y) = 0 = 0.(,) ,
(7-2) al(zl) = 2y, al(z2) = —2 az(u1) =0= 82(7"/2), az(xx) =0= az(“’z) )
az(yl) = Yy, az(yz) = —Yy az(z1) = Zy az(zz) = —2 .

Defining the subspaces U, X, Y, Z of A by
U= Quy up, X =@, 2, Y =y, ¥, Z = <2, 2 ,

we will show first that the product of any two of these spaces is
contained in one of the subspaces. Specifically, we will prove

Lemma 7.3. The products of the spaces U, X, Y, Z are given
by the table

U X Y Z
U|U X Y Z
(7.4) X| X U Z Y
Y|Y Z U X
Z | Z Y X U

Proof. Since U is the kernel of Der A, we have U< U. If
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we U and z€ X, then u, xckero, so uxekerd,= U+ X. On the
other hand, z is the image of some element 2’ € X under 4,, and so
ux = ud(x') = 0,(ux’) is also in the image of 09, which is X + Z.
Thus ux e (U + X)N(X + Z) = X. Similarly, for ue U and yeY,
we have

uyekerd) N(Imd,) = U+ Y)NY +Z)=Y.
For we U and ze¢ Z, we define 0, = 9, — 9, and note that
uze€kero,)NImo) =(U+2)NX+ Z)= 4.

The same calculations show that XU X, YUC Y, and ZU < Z.
Algo, if e X,yeY,zcZ, we obtain

wy,yre(Imao) N(Imad,) = (X + Z)N(Y + 2) = Z,
2z, 22€Imo) N(Imady,) = (Y +Z2)N{X+Y)=Y,
yz,zye(Imo)NImoy) =X+ 2)NX+Y)=X.

Finally, if z, ' € X, then we calculate that
o,(xx") = o0.(x)x" + x0,(x"), oXax') = —xx" + 20,(x)0,(x") — xx’,
oi(xx") = —20,(x)x" — 220,(x") — 2x0,(x") — 20,(x)x" .

But ¢! acting on Imo, has the effect of multiplying by —1, and
S0

0 = o, (xx’) + 0i(xax’) = 0,(x)x” + x0,(x") — 40,(x)x" — 4x0,(x)
= —33,(ex’) ,

showing that xx’ € ker ,. Since 2, z’ e ker d,, so is xa’, and
xx’ € (kero) Nkero,) = (U+Y)N(U+X)=U.

By an identical argument, we obtain Y* < U and Z>< U. [

The existence of the two commuting derivations 4, 9, not only
gives the block multiplication of Lemma 7.3 but also imposes some
conditions on how the elements of these different blocks multiply.
In particular, we have

THEOREM 7.5. If A is a real division algebra which has two
linearly independent commuting derivations, then A has a basis
Wy, Ugy Ty, Loy Yup Yo, 2, B fOr which the multiplication table (7.6)
holds.
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Proof. From (7.4) we know that x,y, € Z, say xy, = 7.2, + 7:%,.
Applying 9, and 0, respectively to this relation and using (7.2), we
obtain

LY, = 0,(X)Y, = 0,(0.Y) = 0,(V:2, + VaR) = ViR — Yo
XY, = xla2(y1) = 32((1}1?/1) = YRy — VR .

And applying 0, to the last relation gives w,y, = 0,(%Y,) = —7%, —
Y:%,. Similarly, there exist v, v, 7, v,€ R such that x2, = vy, +
v, and ¥z, = v, + V%, and the application of 4, 0, 0; = 6, — 3, to
these equations gives the remaining products of the form XZ and
YZ. The products of the form YX, ZX, and ZY follow by left-
right symmetry.

Next, choosing «,, a,, @, a,€ R such that w,x, = a,x, + a,x, and
Uy = 0%, + A%, We get

Uy = U,0,(2;) = 0,(Uy) = X, — AT, Uy = 05(UsXy) = ATy — QLT

By identical arguments, we obtain all the entries in (7.4) of the
forms UX, UY, UZ, XU, YU, and ZU. Choosing g, 8., 0, 0.€ R
with 2! = B, + Bu, and x,%, = 6,u, + 0,u,, we have the relations

0= a1(97%) = al(xl)xl =+ xlal(x2) = 2,2, + T, &, ,
0 = o,(x.w,) = 0,(x)x, + 2,0,(2;) = af — a}

which give us 22 and «,%,. The entries in (7.4) of the form Y? and
Z* are found in the same way. Finally, the derivations 0, and 9,
impose no restrictions at all on the subspace U, so the constants
have to be all different here. O

As our final result, we establish

THEOREM T7.7. Let A be the modified octonion algebra defined
by (6.8). Then

(i) 2f By ++-, B are all distinct, Der A = 0.

(ii) af B, Bz Bs By Bs are distinct, B = B, and Bs = B., then
dim Der A = 1.

(iii) 4f By Bay Bs B are distinct, B, = By, Bs = B and Bs = B,
then dim Der A = 2 and Der A is abelian.

Proof. 1f B, ---, B, are all distinct, it is immediate from Lemma
6.11 that A cannot have any nonzero derivations, giving part (i).
If the hypotheses of part (ii) of Theorem 7.7 hold and if deDer A4,
then Lemma 6.11 implies that
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0(es) = sse5, 0(€;) = — A3, 0(€s) = Agrr, 0(€;) = —Ar@s

(7.8) o) = 0 = 3(e), (e) = 0 = 3(ey) ,

for some ay, ay € R. From
U585 = 0(e) = a(ez'el) = 0(e))e, = —Qglel, = — Qi

we get a,;; = —ay,. Thus, Der A is at most 1-dimensional. To show
that dimDer A = 1, it is sufficient to verify that the special case
of (7.8) with a; =1 and ay = —1 is a derivation of A. But this
linear transformation was shown to be a derivation of the octonions
in §5 (under the correspondence e; < ¥, €; — Y,, € < Ys, €, <> Y,, 0 COT-
responds to 9; in (5.4)), and so 0 will act as a derivation on any
product of basis vectors where the verification does not depend on
calculating the square of an e,. Since 3; = 8 and B, = B, in the
case we are considering, it is clear from (7.8) that o will act as a
derivation even in those cases where the verification depends on
calculating the square of an e,.

Finally, suppose that the hypotheses of part (iii) of Theorem
7.7 hold. Then Lemma 6.11 shows that any o€ Der A has the form

o(u) =0 = 3(62), o(e) = aye, 0(e) = —aye, ,

7.9)
( 0(€5) = A€, 0(€5) = — Assls, 0(es) = A8y, 0(€;) = — el
for some a,, a;, a € R. Since

Qorr = 0(65) = 0(es0,) = 0(er)e, + e,0(e,) = agese, — Q850
= (a35 + 014)67 ’

we see that dim Der A < 2. It suffices to show that the special
cases of (7.9) defined by the table

U e e e e e e e

0,1 0 —2¢, 0 2¢, —¢ e, —e; &
05| 0 0 00 s —e, —e, €

are both derivations of A. Again 9, and 9, were shown in §5 to be
derivations of the octonions (see (5.4)), and as we argued in the
last case, 0, and 9; must be derivations here because B,=p8,, B:= B,

and 38, = & 1

ReEMARK. If A is a finite-dimensional real algebra with L =
Der A as its derivation algebra, then the connected Lie group G
corresponding to the Lie algebra L acts as a group of automor-
phisms on A. Furthermore, G necessarily has finite index in Aut 4,



300 G. M. BENKART AND J. M. OSBORN

the group of all automorphisms of A. One might ask in the case
of a real division algebra whether G can be properly contained in
Aut A, and we shall give an example to show that this can happen.
In the algebra A defined by (6.8) with all g’s distinct, we have
shown that Der A = 0 and hence G = 1. On the other hand, this
algebra has 8 automorphisms, as one sees by noting that for any
choice of ¢, ¢, ;€ {1, —1} the map

AU + >, 0,8, — Qb + 0,6,6; + 06,0, + Bs€s8; + Q61650
+ AsEy8305 T QeE1E:8:85 + 8,856,

is an automorphism of A.
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