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A NOTE ON H1 ^-MARTINGALES

J.-A. Chao and Svante Janson

Characterizations of H1 g-martingales via conjugate
transforms are studied. Applications to lacunary Fourier
series and to local field analysis are given.

l Introduction* Characterizations of H1 space over a local
field and Hι regular martingales by singular integral transforms
have been studied in a series of papers ([4], [1], [5], [7], and [2]).
That is to say,

J5Γ1 = {/:/, T,/e 2/, i = 1,2, •.-,*»}

where H1 is the space of regular functions or martingales with
integrable maximal functions and Tύf j = 1, 2, , m, are some sort
of nice singular integral transforms. In [4], [1] and [5], multiplier
transforms arised from multiplicative characters on local fields are
used. In [7], singular integral transforms with matrix operators
acting on differences of regular martingales are considered. The
dyadic case has been excluded until recently. Two methods of
handling the dyadic case are given in [2]. First by noting that the
maximal function of a dyadic martingale is equivalent in L^norm
to the maximal function of its "associated 4-martingale", the space
of H1 dyadic martingales is characterized by 4x4 matrix transforms.
Then H1 space over the dyadic number field is studied via the
multiplier transform associated to a multiplicative character of
ramification degree 2.

In this note, we shall extend the above concept of higher rami-
fication degree to g-martingales and obtain characterizations for the
space H1. We also show that the conditions are necessary. These
results provide an answer to an open problem posed by Gundy and
Varopoulos in [6]. Applications to homogeneous and nonhomogeneous
multipliers on local fields are also given.

2* Conjugate characterizations* Let q be an integer larger
than 1. Let {jβ\}n>0 be an increasing sequence of (j-fields which are
generated by atoms in a probability space such that each atom in
^"n contains exactly q atoms in ^n+1 of equal measure. One example
having such a structure is the group Zg°°. Another is the ring of
integers of a local field whose residue class field has q elements.
A martingale / = {/J relative to {^Q is called a q-adic martingale
or, simply, a q-martingale.
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Let Vq = {(xt) eCq: Σtxt = 0}. For a g-martingale /, the q values
of the martingale difference dn = fn — fn_λ on q atoms of J^n in a
fixed atom of J ^ _ ! is called a local (first) difference of /. These
local differences can be regarded as vectors in Vg. Similarly, we
call the qk values of fn — fn_k(n ^ k ^ 1) on qk atoms of J^n in a
fixed atom of J^_A, a local kth difference of /.

Associated to each g-martingale / = {fn}n^0 relative to {J }̂Λ>0>
F1 = {fnkln^o is a g^-martingale relative to {^\^} 0̂ On the other
hand, given a g^-martingale, we can construct a g-martingale in a
unique way by filling in the intermediate levels. The local kth.
differences of a g-martingale are local differences of its associated
gfe-martingale. The H1 norm of a martingale is taken to be the
Z/-norm of its maximal function. We note that the H1 norms of a
g-martingale and of its associated gfc-martingale are equivalent.
(See e.g., [2] or [6].)

One type of transforms on g-martingales was introduced in [7]
as follows. Given a g-martingale /, applying A to each local
difference of / on fixed atoms, we obtain another set of local
differences which constitute the difference sequence of a g-martingale
Af, say. The transform /—> Af is a sort of singular integral trans-
form on martingales which is bounded on Hp(0 < p < oo) and BMO.
(See [7] and [3].) Moreover it is shown in [7] that if A has no
real eigenvector in Vg, then H1 = {/ e i 1 : AfeL1}.

Note that first of all the characterization fails to hold when
q = 2 since V2 is a one-dimensional space and so the effect of such
a transform A is just multiplying by a constant. Secondly, over
local fields, such transforms include only those singular integrals
whose kernels are ramified of degree one. We shall now study two
related generalizations of these transforms to characterize Hι q-
martingales, both are introduced in [2] for the dyadic case.

The first method is to utilize the one-to-one correspondence
between g-martingales and their associated gfc-martingales. Let A
be a linear operator on Vqk. For a g-martingale /, let F be its
associated gfc-martingale. Apply A to local differences of F to obtain
local differences of a gfc-martingale AF and then construct from it
the g-martingale Af. The result in [7] together with the equi-
valence of the corresponding H1 norms give:

THEOREM 1. Let Ajy j = 1, 2, , m, be linear operators on Vqk
with k^l. Then H1 = {/: /, AJ e L\ j = 1, 2, , m) if any only
if Ajf j = 1, 2, , m, do not have a common real eigenvector in Vqk.

However, this method does not apply to transforms which
correspond to multipliers on local fields that are ramified of degree
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k ^ 2. For simplicity, we treat here only the case k = 2 in
detail.

Given a linear operator A on F/, we define the transform T =
T^ relative to A as follows. Let / = {/„} be a g-martingale with
martingale difference sequence {dn}. On each atom in ^v_2, the <f
values of dn is a vector in VI. Let AdΛ denote the image of dn

under A on the same atom. Those values of Adn on various atoms
form the martingale difference sequence of a ^-martingale Tf—TAf
Multipliers of ramification degree 2 on a local field are such trans-
forms. One detailed example is given in [2]. A local second
difference of Tf, (Tf)n — (Tf)n_2 = Adn + Adn_u on an atom in ^^_2,
dependes on both dn and dn_λ. It has values in two levels, i.e., Adn

and Adn_lf mixed together. This is why the first method does not
apply here. Note that if we assume dn = 0 for all odd n, then we
have Tf — Af where Af is obtained by the first method. Thus one
idea for further generalizations is to apply the previous argument
to the g2-martingales, Σd2n and ΣAd2n, which only involve the
martingale difference of even levels. Do the same for Σd2n^ and
ΣAd2n_x. We could then characterize H1 g-martingale / by the
Z/-boundedness of Σd2n, ΣAd2n, Σd2n_x and ΣAd2n_x.

Moreover, consider such a linear operator on V2 given by the
matrix

0 0 1 - 1

0 0 - 1 1

- 1 1 0 0

1 - 1 0 0.

which corresponds to the multiplier transform T studied in [2; §3].
11
1

We observe that
- 1

is a real eigenvector of A in F4. The argu-

ment in [7] does not apply to A for 4-martingales. However A has
no eigenvector in iϊ4 Π Vξ. When restricted on V2f the submart-
ingale property involved is still valid as seen in [2]. This suggests
that the earlier submartingale results could be sharpened for appli-
cation to such transforms. The above ideas lead to the following
generalization.

For a g-martingale /, let Ef — Σd2n and Gf — Σd2n_x. Note that
Ef and Gf are (f-martingales with local differences in Vf.

THEOREM 2. Suppose As: Vq

q —• V£, j = 1,2, , m, do not have
a common real eigenvector in Vg and Tά = TAj. Then Ef, TάEf,
Gf and TjGf, j = 1, 2, , m, are U-bounded if and only if fe H1.
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The necessity of the condition in Theorem 2 is obvious. The
proof of the sufficiency will be given in § 3. Another version of
the theorem is the following.

COROLLARY 1. // the linear operator A on VI has no real
eigenvector in Vq

q and T = TA. Then H1 = {/:/, Tf, Ef, TEfeL1}.

These results can be generalized to fc>2. In that case we
have operators As on Vf~x c Vqk. The analogue of Theorem 2 holds
with Jc operators in the place of E and G, and hence there are
(m + l)fc transforms (including possibly the identity) involved.

Theorem 2 fails if A3>, j = 1,2, , m, have a common eigen-
vector in Rq2 Π VH. It is shown in [7] how the eigenvector is used
to construct a g2-martingale F in L1 but not in H1 such that A3 F—
XόF, XjβC, j = 1, 2, , m. Let / be the ^-martingale correspond-
ing to F. Then AJ = λ, /, j = 1, 2, , m. The local differences
of F are by construction all proportional to the eigenvector and
thus are elements in VJ. This implies that Ef = / and Gf = 0.
Also, as noted before, T3Έf = A5Ef = AJ = \df, j = 1,2, - ,m.

Therefore Ef, TsEf = λy/, (?/ = 0 and Tfif = 0, j = 1,2, -- fm, all

belong to L\ but / i f f .

3* Basic lemma* We present here the basic lemma of which
Theorem 2 is a consequence.

LEMMA. Let W be a closed cone1 consisting of elements of the
form x = (x1, - - -, xm) where x3' = {x{, , x{) 6 Vq such that if x3' =
ViO^u '"f\) for some ηά e C, j = 1, 2, , m, and λt e R, i — 1, 2, , q,
then x — (0, 0, , 0). Then there is a positive p < 1 suck that

(1) | α | p ^ — Σ I ( α ' + sOΓ=ilp

q - i

for a = (aj)j e Cm and x = (xj)d e W.

Proof. This follows from essentially the same argument used
in [7] which we outline below.

Let a be the maximum of Σ* (^e Σy α^O2 on the compact set

K1 = {(a,x)eCm x W:\a\ - 1 and \\x\\ - ( Σ I^Ί2)1/2 = 1} -
id

Schwartz's inequality gives a ^ 1. Equality would imply Σ i &'$( £ R
and a3x\ — Xahx{ for some (a, x) 6 Kx and xeR. Thus we would have

Xi = Xak^AJa
jx{ which contradicts the hypothesis. Hence

1 B y a cone W, w e m e a n x β W a n d ί ^ 0 i m p l y txβ W.
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From the series expansion of

\(a3' + x3)m\p = ( Σ \a* + x* \2)

+

we obtain (1) for a <̂  p ^ 1 and | | # | | < ε | α | for some ε > 0.

We now let β be t h e maximum of \a\ on t h e compact set

K2 = | ( α , x ) e C w x TΓ: — Σ l ( ^ + a>ί)Γ| - 1 and | | g | | ^ ε | α |
I q i

From Minkowski's inequality, we have β ^ 1. Equality holds only
if aj + x\ = λία '̂ with λ< ̂  0. Thus we would have ccj = (λ* — l)αJ"
which contradicts again the hypothesis.

Therefore, if || x || ^ ε| a |, then | a | ^ (/3/g) Σ< I (α i + «ί)ΓI with
β<l from which (1) follows if (β/q)p^l/q. This proves the lemma.

We note that the lemma includes the earlier versions of sub-
regularity (or submartingale property) in [1], [4], [5] and [7] as
special cases.

We now complete the proof of Theorem 2.

Proof of Theorem 2. Let W = {(xQt xu , xm): x0 e VI, xs = Adx09

j = 1, 2, , m}. Given a g-martingale /, as noted before, we have
T3Ef=AdEff j=l, 2, , m. The local differences of Ef, AtEf,
AmEf can be regarded as elements in W. Since A/s do not have
any common real eigenvector in Vf, the hypothesis of lemma is
satisfied. Thus \(Ef A,Ef, , AmEf)\p is a submartingale for some
p < 1.

By an usual martingale majorant argument, we have that
EfeH1. Similarly, GfeH1. Therefore /6 H\

Another simple application of the lemma is by letting m — 1:

COROLLARY 2. Let W be a subspace of Vq not containing any
nonzero real vector. Then for a q-martingale f having local differ-
ences in W, there exists a positive p < 1 such that \f\p is a sub-
martingale. Consequently, | | / | | H I ^ C | | / | | L i for some C > 0 inde-
pendent of f.

The fact that a (^-martingale / having local differences in such
a W can be regarded as an analytic property of /. The following
is a version of the F. and M. Riesz theorem:

COROLLARY 3. Let W be a subspace of Vq not containing any
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nonzero real vector. If all local differences of the q-martingale
corresponding to a finite measure μ are in W, then μ is absolutely
continuous, moreover, μ* e ZΛ

4* Integrability and HK Our basic lemma in § 3 enables us
to characterize H1 as the set of / for which certain transforms are
in L1 without a priori assuming / to be integrable. Special cases
were considered before in [1],

THEOREM 3. Suppose that Ah j = 1,2, , m, are linear oper-
ators from Vq to Vq such that there is no nonzero xe Vq for which
all Ajx's are multiples of a common real vector in Vq. Let Tά=TAj

be the transform relative to Aά, j = 1, 2, , m. Then for a
q-martingale f, feH1 if and only if Tόf, j = 1, 2, , m, are L1-
bounded.

Proof. Let A be the direct product of Al9 , Am, i.e., Ax =
(Axx, , Amx) for x e Vq. Set W = {Ax: xeVq}aCmq. W satisfies
the condition in the lemma of §3 by the hypothesis. It follows
from the lemma, by taking ad to be the corresponding values of
Tsf, i = 1, 2, - - -, m, that \(TJ, , Tm/)|* - (Σ?=χ I Tόf\Ύ/2 is a sub-
martingale for some p<l. Thus by an usual argument, (27

i/)*6L1,
j = 1, 2, ••-, m.

Now if Ax = 0 for some x e Vq, then Aάx = 0 for all j . From
the hypothesis, we have x = 0. Hence A: Vq —* V™ is injective. Let
B be a left inverse of A; BA — I. Namely, there exist Bf. Vq->Vq,
j = 1, 2, - - , m, such that J = BA = ΣJU ̂ Λ Let Sy = ΓBi, i =
1, 2, , m, be the transform relative to J5y. As noted before such
transforms preserve H1, therefore we have / = ΣΓ=i SsTsf e H\

Since the converse is obvious, the proof is completed.
For the case that one of the operators is the identity, the

result is obtained in [7].

5* Application to lacunary Fourier series* We shall apply
the preceeding results to the martingales considered by Gundy and
Varopoulos in [6].

Let feL\T) with Fourier series expansion ^kf{k)ex^{ikθ).
Suppose /(0) = 0. Define fn(θ) = g - Σ J ^ / ί * + 2πjq-η = Σ*/(*«*)
exp (ikqnθ). Let ^l be the cr-field of all 2τrg~w-periodic Borel sets
of T. Then {/J forms a backwards g-martingale relative to {JQ.
The H1 space of such martingales is denoted by iϊj. The difference
sequence of the martingale / is given by

djβ) = fn{θ) - /.+1(0) - Σ /(fcg%) exp (ikq*θ) .
fetfc
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For a fixed Θ in an atom S of ^l+l9 a collection of coset representa-
tives of S contained in an atom of ^ is {θ^zl where θd — θ +
2πjq~(n+1). Hence if we let xk be the vector in Vq with components
xkj = exp (2πijkq-1)f j = 0, 1, , q — 1, then the local difference dn

of / at θ in an atom of * ^ + 1 is

Σ [ Σ / ( ( * ί + l)qn)exv(i(sq + i)g-0)]a?, .

Assume that 2? c {1, 2, , g — 1} is such that meB implies
q — mίB and let W be the span of the vectors {xΛ}meS. There is
no nonzero real vector in W since if y = ΣmeίVm is real in IF,
t h e n 2/ = V = Σ m e B V m = Σmei5 ^m ĝ-m Which impliβS /̂ = 0. Lβt

[&] denote the integer between 0 and q — 1 such that [&] = k(modq).
We observe that xk — x[fc]. Moreover, if f(kqn) — 0 when [Λ] $ B,
then local differences of / are in W. Therefore Corollary 2 gives
the following

THEOREM 4. Let B be any subset of {1, 2, , g — 1} ŝ cΛ ίfcαί m
and q — m are not both in B. Suppose

f(kqn) = 0 for [k] g JB cmd ^ ^ 0 .

i wiίfc some C > 0 .

We show now how the result of Gundy and Varopoulos ([6];
Theorem 2 and Theorem 4) follows from this. For a subset A of
integers, we write fA(θ) = Σ*e.i/(w) exp (in θ). Assume that q is odd.
We choose, e.g.,

^ = { 1 , 2 , . . . , - £ ^ 1 } and * = { - 2 ± A . f . . f ί - l }

and set

At = {fcg%: [fc] e 5,, w ^ 0}, i = 1, 2 .

Note that the nonzero integers J? * is a disjoint union of Ax and ^42.
Thus it follows from Theorem 4 that

COROLLARY 4. Suppose q is odd and Au A2 are given as above.
Then feHi if and only if fAl and fA,eL\

(This is Theorem 2 of [6].)

When q is even, the problem is more delicate as has been seen
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in [6]. We use the idea in § 2 and consider the g2-martingales Ef
and Gf associated with the (backwards) g-martingale {/J given
above.

Recall that Ef is the <f-martingale such that Ef = Σd2n where
{dn} is the martingale difference sequence of {/J. Also d2n(θ) =
Σfc;gifc/W)exp(ΐA;g2^). Hence the local difference of Ef at θ is
given by

Σ
n) exp (i(sq2 + l)q2nθ)x

where xx = <exp (2πijlq'2))fsQ

1.
Now let, for instance

B1 - \l: 1 ̂  Z < «1, g | i[ and £ 2 - JZ: 2l < Z

Set At - {(sg2 + l)q2n: seZ,le Bt}f i = 1, 2. Note that # / = /, l U i l 2 and
= fAi, ί = 1, 2. Therefore it follows from Theorem 4 that

The equivalence of the norms \\-\\H1 and || \\H\ gives

Similarly, let Ai+2 = {(sq2 + i)ff2n+1: s e Z, I e Bτ)y i = 1, 2, (by con-
sidering (?/), we have

Since At, i = 1, 2, 3, 4, form a partition of the nonzero integers,
we have

COROLLARY 5. Let q be a positive even integer and Aif i = l, 2, 3, 4
5e defined as above. Then fe H^ if and only if fA. e L1, i = l, 2, 3, 4.

For g = 2fc, this is Theorem 4(a) of Gundy-Varopoulos [6]. If q
is even but not a power of 2, this improves their results by reduc-
ing the number of sets in the partition from six to four. Thus it
provides an answer to the open problem posed by Gundy and
Varopoulos [6], namely, at most three Fourier multipliers are needed
to characterize H\.

We remark here that the partition into Aif i = 1,2, 3, 4, is
merely one of many choices in order that Corollary 5 is valid.

6* Application to local field analysis* We apply the main
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results to multiplier transforms on local fields. Preliminaries on
Fourier analysis on local fields are found in [8].

Let K be a local field with residue class field isomorphic to
GF(q). H\K) is the space of regular functions on K x Z with
integrable maximal functions. Let m be a nonconstant bounded
function on K* = K\{0} such that for some integer k^tl, m(x + y) —
m{x) whenever \y\ <; q~k\x\. If k is the smallest among such inte-
gers, we shall say that m is ramified of degree k. If m is homo-
geneous of degree 0, then the mapping f->(mfY is a singular
integral transform and a transform on g-martingales (i.e., regular
functions on K x Z) of the type studied in connection with Theorem
2. (We note that previous results also hold for ^-finite measure
spaces.) If m is not homogeneous, then this mapping is of more
general type which can be realized as applying a different operator
A{n) on the atoms in each "level" n (i.e., σ-field ^ Q .

We begin with multipliers with ramification degree one:

THEOREM 5. Let mjf j = 1, 2, , n, be bounded functions on
K, ramified of degree 1 and such that Σ?=i I%(*) — w, (—α?)| ̂ c > 0,
for xφO. Then

H\K) = {feL1: mJeί>(K), i = 1, 2, , n} .

Proof. We regard a vector in C9 as a function on the finite
group (field) GF(q). Let W be the set of all vectors (x09 •• ,a?Je
Vq+1 satisfying xό{g) = aά{g)xύ(g), j = 1, 2, , w, for some function
α, on GίXtf) with |α y( f f)| ^ ||my||oo and Σ?-i l«i(ff) - «y(-ff)l ^ c > 0
for s '^O. T7 satisfies the condition of the lemma in § 3. For
every sphere in K, the local differences of/and {m^fY, j=l,2, ,
w, constitute an element in W. Thus, by the lemma,

is a submartingale (i.e., subregular) for some p < 1. Therefore
Theorem 5 follows as usual.

In the homogeneous case, this is proved in [7] and the condition
is shown there to be necessary also.

A similar result without a priori assuming feL1 is obtained by
the method of Theorem 3. We state here one version for the
homogeneous case:

THEOREM 6. Suppose mjf j •==• 1, 2, , n, are homogeneous of
degree 0 and ramified of degree 1. Then

H\K) = {/: mJeί/iK), j = 1, 2, , n)
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if and only if (mό(x))%ι is not a constant multiple of (m^
for any x Φ 0.

We now consider multipliers which are ramified of degree ft ^2 :
Let, for neZ,

If Ef and Gf are the ^-martingales associated to a g-martingale

(i.e., a regular function)/, then Ef — ef and Gf = gf. Therefore
we have

COROLLARY 6. Suppose m is homogeneous of degree 0 and
ramified of degree 2. Then

H\K) = {/: β/, me/, gf, mgfeί)(K)}

( = {feLXK): mf, ef, mefeί){K)}) ,

if and only if m{x) Φ m{—x) for every nonzero xeK.

Proof. We note that the linear operator A on V* correspond-
ing to the transform / —> {mfY is a convolution on a finite group
whose Fourier transform is the restriction of the multiplier m. If
m(x) Φ m{—x) for all nonzero xeK, then A does not have real
eigenvectors (c.f. [7; § 4]). Therefore the result follows from
Theorem 2 and the discussion after it.

More generally, we let e){x) = 1 if | x \ = kn + j and e){x) = 0
otherwise, for h ^ 1, ί ieZ, i — 1, 2, , ft. We have

COROLLARY 7. Suppose m is homogeneous of degree 0 α-mi
ramified of degree ft. T%ew

iP(iQ = {/: e)f, me)feL\K), j = 1, 2, . , ft}

i/ α^d ô Zi/ i/ m(x) Φ m{—x) for all x Φ 0.

We remark that various versions of the results similar to
Corollary 6 and Corollary 7 that involve several multipliers m/s
being ramified of degree ft and/or nonhomogeneous also follow from
Theorem 2 and Theorem 3. We omit the details here.

In characterizing H\K), if q is odd, it suffices to take an m
with ramification degree 1 (c.f. [1], [7]). If q is even and thus a
power of 2, then K is an extension of a dyadic field or a dyadic
series field. For the former case, a multiplier m with ramification
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degree 2 will do. However, in an extension K of a dyadic series
field, x — —x for all xeK. Thus no finite set of multipliers of this
type characterizes H\K).
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