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RIGHT CHAIN RINGS AND THE GENERALIZED
SEMIGROUP OF DIVISIBILITY

H. H. BRUNGS AND G. TURNER

Let R be a ring with unit element and without zero-
divisors and let H{R) = {#|0 Ψ x e R} where x is the mapping
from the set of all nonzero principal right ideals of R into
itself defined by x(aR) = xaR. ίϊ(R) is a partially ordered
semigroup that can be considered as a generalization of the
group of divisibility of a commutative integral domain.
We study those rings R for which H{R) is totally ordered.

1* Introduction* Associated with any commutative integral
domain A is the partially ordered group G(A) of nonzero fractional
principal ideals of A with aA <* bA if and only if aA contains bA.
It is well known (see [4], [5], [8]) that G(A), the group of divisibility,
reflects certain properties of A, like A being a unique factorization
domain, the fact that any two elements in A have a greatest common
divisor or A being a valuation ring. This concept of a group of
divisibility cannot be extended directly to a not necessarily commuta-
tive integral domain R.

In this paper we associate with any ring R with unit element
and without zero-divisors a partially ordered semigroup H(R) which
is isomorphic to the semigroup H(A) £ G{A) of nonzero principal
ideals aA in A if A is a commutative domain.

After observing some basic facts about H{R) we characterize in
§3 those rings R with H(R) totally ordered as right chain rings R
with Ja £ aR for all a in R and J — J(R) the Jacobson radical of
R. These rings are localizations of right invariant right chain rings.
The main result of § 4 is the theorem that a ring with H(R) totally
ordered and d.c.c. for prime ideals is right invariant. In a final §5
we show by examples that for every totally ordered group G there
exists a ring R with H(R) totally ordered and G (not only the positive
cone of G) can be embedded into ίϊ(R). The value group G{A) is
particularly useful in case A is a commutative valuation ring. The
nonzero principal right ideals in a right chain ring R form a semi-
group H(R) under ideal multiplication only if R is right invariant.
In the general case it is the semigroup H{R) which takes the place
of H(R). Mathiak in [6] studies right and left chain domains with
the help of a group that could be considered a generalization of G{A).
We found that in the case of one-sided conditions a generalization
of H(A), which will be a semigroup only, will be more natural.

2* Definition and preliminary results* We consider only rings
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with unit element and without zero-divisors. We call a ring R right
invariant if Ra Q aR (if and only if RaR — aR) holds for all ele-
ments a in R and R is a right chain ring (sometimes called a right
valuation ring) if for α, b in R either aR £ bR or bR £ aR holds.
Here J c L always means that the set IΦ L is contained in L; J =
J(R) is the Jacob son radical and £7 = Z7(22) the group of units of R.

Let W = {αϋί 10 ^ α in J?} be the set of nonzero principal right
ideals of R. Every element 0 Φ x in R induces a mapping x on W

with x{aR) — xaR; and xy = xy follows. With x ^ y defined as
xaR £ yaR for all a in R we can consider Jϊ(22) — {x\0 Φ x in R] as

a partially ordered semigroup. Further, x + y ^ inf (£, y)\ i.e., z ^ x,

z ^ y implies z ^ x Λ- y. The mapping *~' from J2*( = JB\O) to H{R)
is called the regular right valuation of R with the value-semigroup
H(R). This semigroup satisfies the following conditions:

(1) H(R) is a partially ordered semigroup with unit element 1.
(2) x ^ y if and only if there exists a ? in -ff(ϋί) with xt = y

and ϊ <: ?.
(3) a gί = xz implies y = z for x, y, z in J?(i2).

This means that the order in H is a right natural order and H is
left cancellative.

We draw a few immediate conclusions from these properties:
( i ) x ^ ϊ implies that x is a unit in H, i.e., there exists y

with xy = yx = ϊ .
(ii) 1 ^ if implies ^α = ax' for some x' in H.

To prove (i) we have by (2) an element t with xt = ϊ . This implies
^?^ = x and ίαί = 1 using (3). For 1 ^ x and α in H we have α ^ xa
and ίcα = αίc' for some x' using (2) again. Let U — U(R) be the
subgroup of units of H{R). The following condition is satisfied by
β

(4) Let U' be a subgroup of Ϊ7 with U'x QxU for all a; in
H(R). Then [/' = {ϊ}. In particular U = {1} for i? commutative.
The following is an easy example of a semigroup S satisfying con-
ditions (l)-(3), but not (4).

Let S — {(n, a); n, a e Z; n ^ 0} considered as a subsemigroup of
G = Z φ Z; Z the integers. We write (n, a) > (m, 6) if either n > m
or n = m and a > 6. Conditions (1), (2), (3) hold for S, but U =
{(0, α);αeZ} is a subgroup ^ {e} of S, violating (4).

Two obvious problems arise: What is the structure of semigroups
with (1), (2), (3), (4)? Given a semigroup S satisfying (1), (2), (3),
(4) is S=H(R) for some Rl We are not able to answer these questions
in general.

DEFINITION. Let J? be a ring. Then
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R = {r 6R\r ^ 1} U {0} = {r 6R\raR £ α# for all a in R) .

It is obvious that R is a subring of 12.

LEMMA 1. (1) Ra £ aR for all a in R; in particular R is a
right invariant subring of R.

(2) The mapping aR to a for a Φ 0 in R defines an isomor-
phism between the semigroup C{R) of R-modules aR with a in R onto
H(R). In C{R) we have aRbR = dbR as operation and aR ^ bR if
and only if aR 2 bR.

(3) H(R) ~R*/U(R) where U(R) is the group^ of units of R
and rx Ξ= r2 if and only if rx — r2u with u in u(R) defines a con-
gruence relation on #*, the multiplicative semigroup of nonzero ele-
ments in R.

Proof (1) Ra £ aR by definition. If r is in R then ra = arx

and rab = abr2 = arj> for any a, b in R with rlf r2 in R. But rj> =
br2 implies rx in R and Ra £ αβ for a Φ 0 in R.

(2) Using (1) it follows that aRbR = αδβ for α, δ in R. If
a^b then αα̂ iZ £ δίci? for all x m R and a ~bs and s in Λ, hence
αβ £ bR follows. Reversing these arguments yields the converse
and H{R) ^ {aR\0 Φ a in R) as a partially ordered semigroup.

(3) is just a different version of (2). •

REMARK. If R is embeddable into some skew field then R =

If i? is a ring such that the product of any two nonzero
principal right ideals is again a nonzero principal right ideal we
write H(R) for the semigroup of the nonzero principal right ideals
of R; H(R) is a partially ordered semigroup with aR ^ bR if and
only if aR £ bR.

If JBΓ(JB) exists and is isomorphic to H(R) under the mapping
that assigns x to xR then R is right invariant. On the other hand
H(R) does exist for some rings that are not right invariant; simple
rings or not right invariant principal ideal domains are obvious
examples.

The following lemma shows that H{R) exists for a local ring R
if and only if R is right invariant.

LEMMA 2. Assume H(R) exists and let 0 Φ a be in R. Then
RaR = bR for some b and if a = be then c is not contained in J(B).

Proof It only remains to show that c is not in J(R). We have
& = Σ*V**i for some ri9 s{ in R; & = Σ ^ β i = Σ ^ β < = 6 Σ r ί c s < where
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rjb — br'i for some r\ in R. But this is impossible for c in J(R). •

COROLLARY. If R is local then H(R) exists if and only if R is
right invariant.

3* ίί(R) totally ordered* If A is a commutative integral
domain its group of divisibility G(A) is totally ordered only if A is
a valuation ring. We will discuss the corresponding question for
H(R) and characterize the rings with S(R) totally ordered. If x
and y are nonzero elements in R then x <; y or y < x and xR 2 yR
or yR 2 xR follows. Therefore, R is a right chain ring if 3(R) is
totally ordered. Examples (see §5) show that for R a right chain
ring H{R) is not necessarily totally ordered.

THEOREM 1. For an integral domain R the following conditions
are equivalent:

(1) H{R) is totally ordered.
(2) R is a right chain ring such that r in R, not in R implies

r~ι in R.
(3) R = Rp, the localization of a right invariant right chain

ring Rf at a prime ideal P of Rf.
(4) R is a right chain ring such that Ja Q aR for all a in R.
(5 ) R is a right chain ring and if Ra §£ aR then Ja £ aJ for

any a in R.
( 6 ) The submodules of the right R-module R are totally ordered.

Proof. (1) => (2) We observed that R is a right chain ring if
H{R) is totally ordered. For an element r, not in R, we have r < 1,
hence raR 2 aR for all a e R and r in U(R), r~ι in R follows.
(2) => (3) It follows from (2) that R is a right chain ring and from
Lemma 1 that R is right invariant. The set S — R f) U(R) is multi-
plicatively closed and P = R\S is a prime ideal in R. Finally, R =
RP — RS"1 is the localization of R at P.

To prove that (3) implies (1) we need a few lemmas.
Let R be a right invariant right chain ring. We write f =

{teS(R)\teT} for a subset T Q R* and we say f (Φ&) is R-con-
vex if for tR £ sR £ R, t in Γ, the element s is contained in f.
One can check the following two statements.

LEMMA 3. There is a one-to-one correspondence between the set
of R-convex subsets of H(R) and the right ideals ΦR given by

S >S' = {xeR\x(£S}U{0}

I >Γ = {xeίϊ(R)\xRzDl}
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where S is R-convex and I is a right ideal ΦR.

LEMMA 4. The R-convex subset S is a subsemigroup of H(R) if
and only if S' = P is a completely prime ideal of R.

We consider the situation as described in the last lemma. Then
S = {xeR\xeS} is a multiplicatively closed saturated (i.e., ab in S
implies a, b in S) right Ore system in R. The corresponding prime
ideal is P — R\S and RP = RS"1 is the corresponding localization.
Set JNJΓ = N(S) = {reR\ra = asa, sa in S for all a Φ 0 in R). N is
an i2-convex subsemigroup of S maximal with the property that
a~λNa £ N for all nonzero a in R. To see this, one observes that
with n in N, nR £ mR £ R, we have n — mr for some r and wα =
asa — amfrr for mτ, r' in i? with ma = am/, ra — arr. Therefore
mV = sa is in S and m' in S, and m in N. Further, n in N and
^α = asa implies sa in N.

To JV there corresponds a prime ideal Q = R\N with P QQ QJ.
We want to describe H(RP) and we will get the result by considering
two special cases:

( i ) N(S) = S, i.e., Q = P (Lemma 5) and
(ii) ΛΓ(S) = J7(JB), i.e., Q = J (Lemma 6).

LEMMA 5. Let R be a right invariant right chain ring, P a
prime ideal in R, S = R\P. Assume N(S) = N — S. Then RP is
again right invariant and H(RP) — H{R)jN == H.

Proof. That RP is again right invariant follows from the fact
that every principal right ideal in RP has the form aRP with a in
R and that sa = αsα for all α in ϋJ, sa in S if s is in S — N. Hence
rs^aRp — raRP = arrRP with ra = αr', r, α in i2. If one defines
rt = r2, r19 r2 nonzero elements in R, if and only if rx = r2n or
^ ^ = r2 for some ^ in N, then " = " is a congruence relation de-
fined on H, and we write H — H(R)\N for the factor semigroup
modulo this congruence. Further, r1 > r2 in H if and only if rx > r2

in jff(2ί) and rλ^ r2. It follows that H ~ H(RP) as totally ordered
semigroups.

LEMMA 6. Lei R be a right invariant, right chain ring, P a
prime ideal in R, S = iϋ\P. Assume N(S) = J7(ϋ5). T/ιe^ i?P is

invariant ifPaJ and H(RP) — ^ ^

Proof. 3(R) contains the subsemigroup S. We will prove that
under the above assumption H(R) can be embedded into the semi-
group H(R)S~ι = {rs-'lreR*, seS} of fractions for ff(B).
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The semigroup H{R) is totally ordered and aβ = ay for a, β, y
in H(R) implies β — 7. Since the other cancellation law does not
hold in general, H{R) itself may not be embeddable into a group.
But for every r in H(R) and s in S there exists an element a in
H(R) with rα = s or r = sa and HfflS-1 exists ([3], Prop. 5.1; page
21) if we can show that rjί = r2s implies r1 = r2 for rlf r2 in H(R),
s in S.

We can assume rx = r2c for some e in R and we are done if we
can show that c is in N. But, rjί = r2s implies r2cs — r2se for some
ε in £7(72). Therefore cs = sε and c is an element of S. Let a be
in iϋ. If a is in S then ca = αc' with c' in S. If α is not in S then
a = sa1ίoτ some αx in ϋ? and ca = csa1 = sεa1 = sa1ε' = ae' with ε' in U(R)
Hence, c is in N = U(R) and if = Hffig-1 = {rs'1 \reR*,seS} exists.

This semigroup is totally ordered if we define r^ϊ1 ^ r ^ 1 if and
only if for all s, s', with §Ίs = s2s' we get rjί ^ r2s'.

This last condition is equivalent to rx ^ r2s if Sx = s2s and r ^ ^ r2

if s^ = s2 where s is some element in S. For the necessary com-
putations it is the easiest to write any finite number of elements
in K in the form r^s"1, i — 1, , n.

It is a bit tedious to check that K is a totally ordered semigroup
with unit element such that

( i ) a ^ β in K implies that there exists 7 in K with a = βy
(ii) 7<* = 7/3 implies a = β where a, β, 7 are in K.

Further, it follows from these conditions that all elements 7 ^ ϊ in
K have an inverse in K.

It remains to show that K ~ H{RP) as ordered semigroups where

the isomorphism is given by rs-1 ^ rs"1. (Here r, s are elements

in H(R), rs"1 is an element in H(RP).) We shall show here that the
given correspondence is one-to-one and omit the rest.

Let ns" 1 = r2s~ι i.e., r^aRp = r^aRp for all a in RP; in
particular r^sbRp = r2s~

1s6i2P for all 6 in iϋ and rfiRp = r2bRP>

rfi = r2bs' or r^s' = r2δ for some s' in S follows. Comparing r± and
r2 yields rx = r2c or r2 = rxc for some c in N and rx = r2 in ^(2?).
If conversely r^" 1 = r^" 1 in if we get rλ — r2 in H(R) and therefore
r^aRp = r^aRp for all α in R: If α is in S this is obvious,
otherwise a = sb and rJ)R = r2δi2 implies r^aRp = r^aRp in that
case. Finally let s be in S\U(R). Then there exists α in i? with
sα = α̂ r and g not in S since s is not in JV. This shows that
s^aRpZDaRp and RP is not right invariant.

If we combine Lemma 5 and Lemma 6 we get the following
result:

THEOREM 2. Let R be a right invariant right chain ring, P a
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prime ideal in R, S = R\P; N = {xeR\xa = αsα, sα in S for all
aeR}. Then:

(1) H(Rp) ~ HS""1 is α totally ordered semigroup with H —
H(RQ) ~ H(R)/N and S ~ SIN; Q — R\N is a prime ideal and RQ is
right invariant.

(2) RP is right invariant if and only if N — S.

With Theorem 2 the equivalence of (1), (2), (3) in Theorem 1 is
proven.

We prove the equivalence of (1) and (4). If H(R) is totally-
ordered and j in J(R), then j <̂  ϊ is impossible, since this implies
jR = R, j a unit. Hence jaR Q aR for all a in R. Conversely if
R is a right chain ring with Ja S aR for all a in R we must show
that for any nonzero elements x, y in R either x ^ y or y ^ x. If
we assume on the contrary that there exist a, b in R with xaRcz
yaR and /̂δiϊ c #6ϋJ we obtain #α = ^α^, #& = ccZ^ and say a = bs
for v19 v2, s in J (the case b — as is similar). Then ya = /̂&s =
α?δv2s = xbsv'z = ccαvg = yavxv[ and ya = 0 where v2s = si;£ for some ^
in R, using (4).

The implication (5) => (4) is obvious. To prove (4) =* (5) assume
there is an a in R with J?α g£ αi2 and Ja g α/, but Jα S αi2. Then
there exist elements u in Ϊ7(i2), ^ in J with uaRz)aR and wαw = α;
and elements nf in J, ^ ' in U(R) with ^'α in αi2, but not in αJ, hence
n'au' — a. This leads to un'au'n — a and with Ja Q aR to a = 0,
a contradiction. The equivalence of (1) and (6) follows from Lemma
1(2) and with this Theorem 1 is proved completely.

DEFINITION. A right chain ring R that satisfies the equivalent
conditions of Theorem 1 is called semi-invariant.

Since H(R) is not known even if R is right invariant unless R
is also right noetherian or satisfies some other extra condition (see
[1]) we cannot describe the structure of H{R) for a semi-invariant
ring R. It follows from Theorem 2 that this semigroup is a group
of fractions of a semigroup H = H{B!) where Rf is a right invariant
right chain ring with respect to a subsemigroup T of H which
satisfies

(1) If t is in T, h in H and e the unit element in H with
e ^ h ^ t, then h is in T.

(2) For every e Φ t'm T there exist h and & in H with £/& = /*,&
and k not in Γ.

(3) hjt = fc2ί for £ in Γ, /̂ ^ /&2 in i ί implies fex = h2.
One sees that JΪ(JB), R semi-invariant, not a division ring, is not

a group, but we will show that for every totally ordered group G
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there exists a semi-invariant ring R such that G can be embedded
into H(R).

4* Semi-invariant right chain rings with d.c.c. for prime
ideals* Investigating the condition H{R) totally ordered, we were
led to semi-invariant right chain rings. The valuation semigroup
can then be described using Theorem 2. In many cases we actually
have H(R) = 3(R). The reason for this is the result we will prove
in this section: Semi-invariant right chain rings with d.c.c. for
prime ideals are right invariant. We recall that an ideal P in R is
called completely prime if ab in P implies a or b in P and P is
called prime if aRb in P implies a or b in P where α, 6 are elements
in R. It follows from a result of Thierrin ([10]) that a prime ideal
P is completely prime if a2 in P implies a in P.

LEMMA 7. Every prime ideal P in the semi-invariant ring R
is completely prime.

Proof. Assume α2 in P and a not in P. Then there exists tx in
R with atγa not in P and t2 in R with at2(atλa) not in P. We can
assume R Φ P and a in J. Hence a(t2at^)a — a2r for some r in R
using (4) of Theorem 1. This contradiction proves the lemma. •

The next result shows how to produce certain prime ideals.

LEMMA 8. Let z be an element in R, a semi-invariant ring.
Then D = Γ\znR is a prime ideal.

Proof. We can assume that z is in J. Then D is a right ideal
and we will first show that a2 in D implies a in D for a in R.
Assume a is not in D, then a is in J and aj = zn for some natural
number n and j in /. But then ajaj = a2fj — z2n is not in D con-
tradicting a2 in D. It remains to prove that D is a left ideal. Let
x be in D and x = z*qn, qn in J follows. For r in R we get rxrx =
rxrznqn = 3nwfΛ for some v in i2. This shows that (r#)2 is in JD and
hence rx in D. Π

The next theorem will be proved in three steps, Lemmas 9-11.

THEOREM 3. A semi-invariant right chain ring with d.c.c. for
ideals is right invariant.

Let a be an element in the semi-invariant right chain ring R.
By (5) Theorem 1 we have either Ra Q aR or Ja £ aJ. In the first
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case we are done and in the second we define a mapping φ from the
set of prime ideals P ΦR into itself by defining Pφ as the smallest
prime ideal with Pa £ aPφ. We will show that either Jφ = J which
implies Ra £ aR or Jφ aJ and {Jφ*} is a strictly decreasing chain
of prime ideals of R.

LEMMA 9. Let J = Jφ and J — mR, then Ra £ aR.

Proof. We have ma — amkv for some unit v in R, some integer
k> some generator m of /, since as a right ideal Jφ — J using
Lemma 8.

If Ra §£ aR there exists a unit u in R and an element q in J
with ^α = aq. Since g is in J and %fc+1α = aqk+1 we obtain qk+1RamkR
and we can assume gϋ! c mkR and g = mfc^ί with t in /. With
us = m, ma — amkv, mat = amkvt — aq = ua we obtain sat = a, s, t
in J and a = 0 follows.

LEMMA 10. Lβ£ i? δ# semi-invariant, J not finitely generated
as a right ideal and 0 Φ a an element in R with Ja £ aJφ

y Jφ — J.
Then Ra £ aR.

Proof. Assume j Φ 0 in J. We want to find r, s in / with
rα = as and sR 2 ii2. Let P — Π i*JB. By Lemma 8, P is a prime
ideal and PczJ. Since Jφ = J there exist elements r1? sx in J with
sx not in P such that r ^ = asλ. Either sxR 2 ji? and we are done
or there exists an n with JRZD ZΪJ^R'DSJI 2 i%i2. Hence s^ = iw

for some g in R. We choose an element z in J with rx = zmv with
i; in J and some m > n. This is possible, since J is not finitely
generated: Let rjt axR Φ R. We obtain r1 = xy for a?, y in J.
Choose 2i in J with ZJRZDXR and zJRzDyR and rx = jsfttj. follows with
Wj. in /. Repeating this process yields an element z with rx = zmv,
z, v in J, m > w. Consider 2:α = α ;̂', ^ , «' in J. We claim z'i? 2 jR.
Otherwise jw = zf for some w in J". But rxa — zmva = azfmvf = αSi
for some element v' in J" with va — avr.

Hence sx = z'mv' = (jw)mv' = iwδΐ/ for some element & in i2. This
implies i% = 8tq — jmbvfq, a contradiction, since m > n. We conclude
that we have found an element r = z, s = z' with sR 2 jR and
ra = as for the given element j in J.

If Ra §£ αi2 there exist a unit u in R and an element ί in J
with ua = at. By the above argument we have s, r in J with
ra — as and sR 3 ίiϋ. Hence, sv — t for some v in J" and rat; = ast; =
aί = ua. We obtain α = u~Wav = αfc, fe in J and α = 0, a contra-
diction.



302 H. H. BRUNGS AND G. TURNER

REMARK. Under the hypothesis of Lemma 10 we have proved
that Jφ = J is even the smallest two-sided ideal I satisfying Ja £ al.

LEMMA 11. Let R be semi-invariant, a in R with Ja £ ajφ and
Jφ c J. Then Jφn+1 c Jφ for all n.

Proof. We will write Jw instead of J*n. Then J{n+1) £ Jw and
we assume n minimal with J{n) = Jin+1). Let r be in J{n~1]\J{n),
ra = as with s in J{n\ Then there exists a q in J{n) with qa = ag'
and q'Rz)skR for some &, since otherwise J{n+1) = J( ί ι ) S Π s ^ c J ^ 1 .
After replacing r by rfc if k > 1 we can assume that there is an r
in j^-ι)\J^n) with rα = as and an element q in J(%) with qa = aqr and
#'j? ZD sR. Hence q't = s for some ί in J and rv = q for some v in
J{n). This yields ra — as = αg'ί — ̂ αί = rvαί = rαv'ί with v' in J
and the contradiction ra = 0 proves the lemma. •

5* Examples, problems and comments* We begin with an
example of a semi-invariant right chain ring R such that H(R) con-
tains G where G is a given totally ordered group.

EXAMPLE 1. For very totally ordered group G there exists a
semi-invariant right chain ring R such that H(R) contains G.

Let K = ©iez^i where Gt^G for all ΐ e Z . i ί is an ordered
group with the lexicographic ordering. Next, let L — {tnk\n eZ, keK}
with tnkt £m&2 = tn+m(k[m)k2) be the ordered group where k = (ft) and
&w = (0J) with g'i = # ί + m. Further r/bx > £m&2 if and only if n > m
or n = m and fci > &2 in iΓ.

Let i ϊ = {ί Jfc e LI tnk ̂  e, & = (ft) with n ^ 0 and ft = lσ< for
i > 0}. Then i ϊ is a totally ordered semigroup with unit element
and both cancellation laws. Further, H is naturally ordered in the
sense that hλ ̂ > h2 for ft* in H holds if and only if there exists an
element h ̂  e in H with /̂  = fe2fe. Therefore it is possible to con-
struct the generalized power series ring.

Rf = {a = Σ # Λ \heH,aheR and Γ(α) = {Λ | αA φ 0}

well ordered in H) .

JB' is a right invariant right chain ring with H(Rr) cz H ([7]).
To the subsemigroup M = {ί°(ft) | ft = lff< for i Φ 0} there cor-

responds an i2'-convex subsemigroup in H(Rf) and a prime ideal P
in jβ'. We put R'P = J?. Since for Λ, in ilf we have ht = ί/ι' with
&' not in If unless h = 1, we conclude that JΪ(i2) - ίfilf-1 = fl" u If-1.
It follows that G can be embedded into H(R) where J? is a semi-
invariant right chain ring. We observe that the right ideal xtR is
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not a left ideal and Rxt is not a right ideal. On the other hand
we know ([2]) that for every a in a semi-invariant right and left
chain ring either aR or Ra is a two-sided ideal.

EXAMPLE 2. In our next example we construct a right chain
ring R such that H(R) is not totally ordered, but that the subgroup
U(R) = {u I u in U(R)} of H(R) is totally ordered with respect to the
order as defined in H(R). This condition

(U) U(R) is totally ordered

is therefore weaker than the condition H(R) totally ordered and
implies among other things that for a right chain ring R with (U),
a in R, there exists a unit ε in U(R) with αε in R (see Lemma 12
(ii) below). The basic idea of this construction has been used in
[9], [2] and [6]: Let Rλ be a right and left chain ring, D = Q(R±)
the division ring of quotients of Rlf Ha, totally ordered semigroup
with unit element that satisfies both cancellation laws. Further,
let hλ ^ h2 hold for elements h19 h2 in H if and only if hx = h2h for
some h in H. Finally, let τ be a mapping from H into the semigroup
M{D) of monomorphism from D to D with τ(hjι2) = τQι^)τ{h2). One
then can form the generalized power series ring D{{H}} = {^xhdh=α\h
in H, dh in D, T(ά) = {h \ dh Φ 0} well ordered in H) where multi-
plication is defined by xhίxh2 = xhlhz and d#Λ = xhd

τ{h). The subring i2
of D{{H}} consisting of those elements α with de in i^ is a right
chain ring where e is the unit element in H. It does not seem to
be easy to determine H(R) in general.

To consider a special case let F = Q(x, y), the field of rational
functions in the two indeterminates x and y over the field Q of
rational numbers. Then F contains Rx = Q[x, y]ix), a chain ring one
obtains by localizing the polynomial ring Q[x, y] at the prime ideal
(x). We form the skew power series ring F[[t, τ]], where τ is the
automorphism of F exchanging x and y. Finally, R consists of all
those power series Σ **/ifo V) with fo(x9 y) in jBlβ The principal
right ideals of R are of the form tnxmR with n = 0, 1, 2, and m

in Z, but m ^ O if ^ = 0. The semigroup H(R) = {tQ^^n =
0, 1, 2, m, & in Z and m ^ 0 if % = 0}. It is tnQ^ykί > vQ^y^
if Mi > w2 or %! = ^2 and mλ > m2 with kt ^ fc2 or ^ = n2, and mi = m2

and fci > fc2. Finally, we have U(R) = {#*, &eZ} = Z as ordered
groups. Therefore, &{R) satisfies condition (17), but is not totally
ordered: xy~ι and 1 for example cannot be compared.

We conclude this paper with some observation for right chain
rings that satisfy condition (Ϊ7).

LEMMA 12. Let R be α ring satisfying condition U.
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( i ) Let a, b in R with aR = bR. Then either a <Ξ b or b < a.
(ii) For any a in R, R local, exists x in R with aR = xR.
(iii) Let R be a local ring and aRzDbR. Then there exists for

every x with xR = aR a y in R with x < y and yR — bR. Similarly
for every y in R with yR = bR exists x with xR = aR and x < y.

Proof, (i) is obvious, using condition (Ϊ7). Statement (ii) is
correct if a is a unit. We can therefore assume a in J, a not in
R. Hence 1 + a is in U{R)\R and (1 + α)(l + x) = (1 4- α?)(l + a) = 1
for some a? in 22. But 1 + x and a? are in R and α(l + x) — (1 + a?)α =
—# is in β. Since aR = #i?, (ii) follows.

To prove (iii) assume b — xp. Using (ii) there exists a unit u
in i? with pu in β and δi6 = xpu implies x <bu. If y = ap the second
part of (iii) is correct for p in R. Otherwise we obtain with (ii):
(1 + p)"^ is in R, y — α(l + p)(l + P^p and x = α(l + p). Π

PROBLEMS.

(1) Describe all rings R for which H(R) satisfies (U). (This
class of rings contains all right invariant, in particular all com-
mutative rings.)

(2) Which conditions characterize the semigroups S with S =
H{R), R a ring or additionally: R a right chain ring.

(3) Find the class of rings R with H(R) lattice ordered.
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