ON POLYNOMIAL INVARIANTS OF FIBERED 2-KNOTS

Kouhei Asano and Katsuyuki Yoshikawa

Given any polynomial $\lambda(t) = \sum_{j=0}^{m} c_j t^j$ satisfying the conditions that c_j is an integer, $\lambda(1) = \pm 1$, $c_0 = 1$ and $c_m = \pm 1$, we will construct a fibered 2-knot in the 4-sphere with the invariants $\{\lambda_i^q(t)\}$ such that $\lambda_1^q(t) = \lambda(t)$ and $\lambda_i^q(t) = 1$ for i > 1 and q = 1, 2.

1. Introduction. An *n*-knot K is a smooth submanifold of the (n + 2)-sphere S^{n+2} which is homeomorphic to S^n . By the exterior of K, we mean the complement of an open tubular neighborhood of K in S^{n+2} . If the exterior of K fibers over a 1-sphere, K is called a fibered *n*-knot.

Let E be the exterior of an *n*-knot and \tilde{E} the infinite cyclic covering of E with $\langle t \rangle$ as the covering transformation group. Let Λ denote the integral group ring of $\langle t \rangle$ and $\Gamma = \Lambda \bigotimes_{Z} Q$ the rational group ring of $\langle t \rangle$. Since Γ is a principal ideal domain, $H_q(\tilde{E}, Q) \cong$ $\Gamma/\lambda_1^q(t) \bigoplus \cdots \bigoplus \Gamma/\lambda_{r_q}^q(t)$. In this decomposition, we can take $\lambda_i^q(t)$ so that

(i) $\lambda_i^q(t)$ is a primitive element and $\lambda_{i+1}^q(t) | \lambda_i^q(t)$ in Λ . Then $\{\lambda_i^q(t): 1 \leq i \leq r_q\}$ are called the polynomial invariants of K in dimension q, for $1 \leq q \leq n$ [3], [6], [7].

In [7], it is shown that polynomial invariants $\{\lambda_i^q(t): 1 \leq i \leq r_q, 1 \leq q \leq n \text{ of a fibered } n\text{-knot have the following properties:}$

(ii) If $\lambda_i^q(t) = \sum_{j=0}^m c_j t^j$, then $c_0 = \pm 1$ and $c_m = \pm 1$.

(iii) $\lambda_i^q(1) = \pm 1.$

(iv) $\lambda_i^q(t) = \varepsilon t^{\alpha} \lambda_i^{n-q+1}(t^{-1}), \varepsilon = \pm 1 \text{ and } \alpha \text{ is an integer.}$

(v) If n = 2q - 1, q is even, $\Delta(t) = \lambda_1^q(t) \cdots \lambda_{r_q}^q(t)$ is in normal form, i.e., $\Delta(t) = \Delta(t^{-1})$ and $\Delta(1) > 0$, then $\Delta(-1)$ is an odd square.

Furthermore, the family $\{\lambda_i^q(t)\}\$ satisfying (i)-(v) can be realized as the invariants of a fibered *n*-knot, if $\lambda_1^1(t) = \lambda_1^n(t) = 1$. In this paper, we will prove that

THEOREM. Given any polynomial $\lambda(t) = \sum_{j=0}^{m} c_j t^j$ satisfying $\lambda(t) \in \Lambda$, $\lambda(1) = \pm 1$, $c_0 = 1$ and $c_m = \pm 1$, there exists a fibered 2-knot in the 4-sphere with the invariants $\{\lambda_i^q(t)\}$ such that $\lambda_i^q(t) = \lambda(t)$ and $\lambda_i^q(t) = 1$, for i > 1 and q = 1, 2.

Using our theorem and the argument in [7], we can show that, for given family $\{\lambda_i^q(t)\}$ which satisfy (i)-(v), there is a fibered *n*-knot with $\{\lambda_i^q(t)\}$ as its invariants.

The authors wish to express their gratitude to Prof. A. Kawauchi for helpful suggestions.

2. Proof of Theorem. Let $V_m = B^4 \cup \bigcup \{h_i^{(1)}: 1 \leq i \leq m\}$, where B^4 is a 4-ball and $h_i^{(1)}$ is a 1-handle. Then $\pi_1(V_m)$ is a free group freely generated by the elements x_1, \dots, x_m corresponding to $h_1^{(1)}, \dots, h_m^{(1)}$, respectively. By φ , we denote an automorphism of $\pi_1(V_m)$ defined by

$$arphi(x_i) = egin{cases} x_{i+1} \ , & 1 \leq i \leq m-1 \ , \ (x_1^{\circ_0} x_2^{\circ_1} \cdots x_m^{\circ_{m-1}})^{-\circ_m} \ , & i = m \ . \end{cases}$$

Clearly, there exists an autohomeomorphism $\widehat{\varphi}$ of V_m which induces the automorphism φ of $\pi_1(V_m)$. Without loss of generalities, we may assume that φ has a fixed point p in ∂V_m . Let X be the 5-manifold obtained from $V_m \times [0, 1]$ by identifying $V_m \times \{0\}$ and $V_m \times \{1\}$ via a homeomorphism $\widehat{\varphi}$. More precisely, X is the quotient of $V_m \times [0, 1]$ by the equivalence relation $(x, 0) \sim (\widehat{\varphi}(x), 1)$.

We can show that $\pi_1(X)$ has a presentation

$$\langle t, x_1, \cdots, x_m : tx_1 t^{-1} x_2^{-1}, \cdots, tx_{m-1} t^{-1} x_m^{-1}, tx_m t^{-1} (x_1^{c_0} \cdots x_m^{c_{m-1}})^{c_m} \rangle$$

As in [5], $H_1(\tilde{X}, Q)$ is isomorphic to $\Gamma/\lambda(t)$, as a Γ -module, where \tilde{X} denotes the infinite cyclic covering of X with $\langle t \rangle$ as the covering transformation group. Adding a 2-handle $H_0^{(2)}$ to X along a simple closed curve $\alpha = p \times [0, 1]/\sim$ representing t in $\pi_1(X)$, we obtain a simply connected 5-manifold Y. We will show that Y is homeomorphic to a 5-ball.

Let $H_i^{_{(2)}} = h_i^{_{(1)}} imes [0, 1/2]/\sim$, $H_i^{_{(1)}} = h_i^{_{(1)}} imes [1/2, 1]/\sim$, for $1 \le i \le m$, $H_0^{_{(1)}} = B^4 imes [0, 1/2]/^\sim$ and $H_0^{_{(0)}} = B^4 imes [1/2, 1]/\sim$. Then

$$Y=H_{\scriptscriptstyle 0}^{\scriptscriptstyle(0)}\cupigcup\{H_{i}^{\scriptscriptstyle(1)}\colon 0\leq i\leq m\}\cupigcup\{H_{i}^{\scriptscriptstyle(2)}\colon 0\leq i\leq m\}$$
 ,

is a handle decomposition of Y such that $H_i^{(j)}$ is a *j*-handle.

Let $W_{m+1} = H_0^{(0)} \cup \bigcup \{H_i^{(1)}: 0 \leq i \leq m\}$. If we denote the elements of $\pi_1(W_{m+1})$ corresponding to $H_0^{(1)}, H_1^{(1)}, \dots, H_m^{(1)}$ by t, x_1, \dots, x_m , respectively, $\pi_1(W_{m+1})$ is a free group generated by t, x_1, \dots, x_m . For $1 \leq i \leq m$, the attaching sphere of $H_i^{(2)}$ represents $tx_i t^{-1} \varphi(x_i)^{-1}$.

The following transformations of a presentation $\langle y_1, \dots, y_s; r_1, \dots, r_t \rangle$ are called Andrews-Curtis moves [1], [2], [4]:

- (i) Replace r_i by r_i^{-1} .
- (ii) Replace r_i by wr_iw^{-1} , where w is a word in y_1, \dots, y_s .
- (iii) Replace r_i by $r_i r_j$, for $i \neq j$.

(iv) Add a generator y and a relator yw^{-1} , where w is a word in y_1, \dots, y_s .

(v) Inverse transformation of (iv).

It is not difficult to show that a presentation

 $\langle t, x_1, \cdots, x_m : t, tx_1 t^{-1} x_2^{-1}, \cdots, tx_{m-1} t^{-1} x_m^{-1}, tx_m t^{-1} (x_1^{c_0} \cdots x_m^{c_{m-1}})^{c_m} \rangle$

can be transformed to the trivial presentation by Andrews-Curtis moves. Hence one can slide 2-handles $\{H_i^{(2)}\}$ to cancel 1-handles $\{H_i^{(1)}\}$ [1]. Thus Y is homeomorphic to a 5-ball.

Let $B^{\mathfrak{s}}$ be a co-core of $H_0^{(2)}$. Then $H_0^{(2)}$ can be considered as a tubular neighborhood of $B^{\mathfrak{s}}$ in Y. Hence the exterior of a 2-knot $\partial B^{\mathfrak{s}}$ in ∂Y is $(\overline{\partial X - (\partial X \cap H_0^{(2)})})$. Since $(\overline{\partial X - (\partial X \cap H_0^{(2)})})$ fibers over a 1-sphere and

$$\pi_{\scriptscriptstyle 1}(X)\cong\pi_{\scriptscriptstyle 1}(\partial X)\cong\pi_{\scriptscriptstyle 1}(\overline{\partial X-(\partial X\cap H^{\scriptscriptstyle (2)}_{\scriptscriptstyle 0})})\;,$$

the proof is completed.

References

1. J. J. Andrews and M. L. Curtis, *Free groups and handle bodies*, Proc. Amer. Math. Soc., **16** (1965), 192-195.

2. R. Kirby, Problems in low dimensional manifold theory, Proceedings of Symposia in Pure Mathematics 32, Part 2, Amer. Math. Soc., (1978), 273-312.

3. J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math., 84 (1966), 537-554.

4. _____, Some results on higher dimensional knot groups, Lecture Notes in Math. 685, Springer-Verlag, (1978), 243-269.

5. E. S. Rapaport, On the commutator subgroup of a knot group, Ann. of Math., 71 (1960), 157-162.

6. Y. Shinohara and D. W. Sumners, Homology invariants of cyclic coverings with application to links, Trans. Amer. Math. Soc., 163 (1972), 101-121.

7. D. W. Sumners, Polynomial invariants and the integral homology of coverings of knots and links, Invent. Math., 15 (1972), 78-90.

Received November 3, 1980.

KWANSEI GAKUIN UNIVERSITY, Nishinomiya, Hyogo 662, Japan