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POLYNOMIALS THAT REPRESENT QUADRATIC
RESIDUES AT PRIMITIVE ROOTS

DANIEL J. MADDEN AND WILLIAM YSLAS VELEZ

In this paper the following result is obtained.

Tueorem. Let r be any positive integer; in all but
finitely many finite fields %, of odd characteristic, for every
polynomial f(x)€ k[x] of degree r that is not of the form
a(9(x))? or ax(9d(x))’, there exists a primitive root S€k such
that f(B) is a square in k.

As a result of this and some computation we shall see
that for every finite field k¥ of characteristic + 2 or 3, there
exists a primitive root a €k such that —(a®> + a + 1) = £ for
some 3ck; also every linear polynomial with nonzeroc con-
stant term in the finite field ¥ of odd characteristic represents
both nonzero squares and nonsquares at primitive roots of
k unless k = GF(3), GF(5) or GF(7).

1. Introduction. This paper arose from a question posed by
Moshe Rosenfeld. Alspach, Heinrich and Rosenfeld were attempting
to decompose the complete symmetric digraph on n-vertices into n
antidirected cycles of length n — 1 with the property that any two
cycles have exactly one undirected edge in common. (See [1] for
definitions and results.) For n = p/, » an odd prime, they were
able to find such a decomposition provided the following question
could be answered in the affirmative:

For p” = 3 (mod 4), does there exist a primitive root a € GF(p’)
such that —(a® + a + 1) = &* for some Qe GF(p”)?

Experimental evidence seemed to indicate that this was true ir-
respective of the condition p” = 3 (mod 4).

In subsequent study of this question a second problem arose
naturally. If P is the set of all the primitive roots in a finite field,
it is clear that P consists entirely of nonsquares. Is it possible to
find an element a in the field such that the translation of P by a,
P + a, consists of all squares or of all nonsquares?

These two questions are related in the context of the following
theorem which is the main result of this paper.

THEOREM. Let F(x) be any polynomial with imteger coefficients.
Let K(F(x)) be the set of all prime numbers p #= 2 such that F(x)
does mot reduce to one of the forms modulo p:
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alg@), or ax[g@)}] .

Then, for all but finitely many primes in K(F(x)), F(x) represents
a quadratic residue at o primitive element modulo p. If F(x) is
square free, F(x) represemts both momzero quadratic residues and
quadratic nonresidues at the primitive elements.

As a result of this theorem, we will see that the question posed
by Moshe Rosenfeld may be completely answered. Also, we will see
that the primitive elements of a finite field can be linearly translated
into the set of quadratic residues or the quadratic nonresidues only
if the field is GF(3), GF(5) or GF(7).

2. Let k Dbe a finite field, if f(x) € k[x] and f(x) is of one of the
forms:
alg@)] or axlg@)],

then {f(B)|B€k is a primitive root and f(B) = 0} is certainly con-
tained either in the set of all quadratic residues or in the set of all
quadratic nonresidues. Thus if we expeect to prove that a poly-
nomial F'(x) with integer coefficients represents both squares and
nonsquares at the primitive roots of a finite field, we need first
insist F(x) does not reduce to one of these two forms. For this
reason we must introduce the set K(F'(x)) defined in the statement
of the theorem in the first section. In this section, we will find
sufficient conditions on the finite field k& to assure that any polynomial
f@) e k[z] of fixed degree which does not have one of the two ex-
cluded forms represents a quadratic residue at a primitive element
of k.

First we note that it is sufficient to establish conditions on the
field & which guarantee that, given any polynomial f(x) of fixed
degree, there exists a primitive root a €k such that f(«) is a non-
zero quadratic residue, for, in this case, not only will the polynomial
f(x) represent a square at a primitive root but so will the polynomial
Bf(x) where 3 is any nonresidue in k.

Let k& be a finite field with |k| = »* where p is an odd prime.
We begin with a simple result concerning the primitive roots of .

LeMMA 1. If s and t are relatively prime integers such that a
prime q divides st if and only if q divides p™ — 1, then for any
primitive root a €k, the element a'B® is also primitive exactly

o) (@" — 1)
t

times as B runs through all the non-zero elements of k. ((t) denotes
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the Euler ¢-function.)

Proof. Since a is primitive and g is nonzero, we can write
8 = a‘, with 0 £ v < p* — 1. By the conditions on s and ¢, we see
that (£ + s/, p® — 1) =1 if and only if (4 ¢) = 1.

As < runs through the integers 0 < /< p™ — 1, the number of
times ~ is relatively prime to t is exactly ¢(f)(p™ — 1)

LemMmA 2. If f(x)€k[x] is square free with monzero constant
term, and if s and t are chosen as in Lemma 1, then f(a'z’) is also
square free.

Proof. Consider the formal derivative of g¢(x) = fla'zx?), viz.,
g'(x) = alsx**f'(a'x?). Since s divides p™ — 1, ¢'(x) is not identically
0. Also, since z does not divide f(x), we have (g(x), ¢'(x)) = ( fla'z®),
f'(a'x?)). However, if this is not one, then there exists a common
root vck, the algebraic closure of k. This in turn implies a’y* is
a common root f(x) and f’(x). This contradicts the assumption that
f(x) is square free.

As an immediate consequence of this lemma, we see that the
polynomial y* — f(a'z®) is irreducible over the rational function field
E(x). Thus we know that the algebraic function field K, where

K = k(x, y) ; Y = fla'z) ,

has k for its exact field of constants. That is, K is a hyperelliptic
function field of genus

12§——1, if rs is even

?

rs is odd ,

where r = deg f(x).

Our next task is to find bounds on the number of prime divisors
of degree one in K. The first bound is obtained by Weil’s theorem
(the Riemann hypothesis for congruence function fields). This famous
result states that N,, the number of primes of degree one in a con-
gruence function field of genus g over a field of constants with p*
elements, satisfies

|N, — (p" + )| = 2gp™* .
Thus in our case, the number of primes of degree one in K satisfies

((rs — 2)p™*, if rs is even

N-—-@®+D =
| "+ 1| = (rs — p™*, if »sis odd.
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On the other hand, a prime of degree one in K must lie over a
prime of degree one in k(x). The prime divisors of degree one in
k(x) are those divisors associated with linear polynomials z — g,
B €k, and the divisor associated with the degree map. The factori-
zation of primes in a quadratic extension of k(x) is exactly analogous
to the factorization of rational primes in quadratic extensions of the
rational numbers [2]. Thus we have:

A The prime divisor of k(x) associated with « — G:

(i) ramifies in K «= f(a’s*) = 0.

(ii) splits in K < f(a’B°) is a nonzero square in k.

(iii) remains inert in K — f(a’B*) is a nonsquare.

B The prime divisor of k(x) associated with the degree map
(the infinite prime):

(i) ramifies in K <= deg f(a’x*) is odd.

(ii) splits in K = deg f(a's*) is even and has a square as the
leading coefficient.

(iii) remains inert in K < deg f(a'x*) is even and has a non-

square as the leading coefficient.
A prime of degree one of & lies over a prime of degree one in k(x)
which does not remain inert. We may now give conditions under
which a polynomial f(x) represents a square at a primitive element
of k.

THEOREM 1. Let k be a field with p" elements. If s and t are
integers such that:

(1) (5,8 =1,

(ii) the prime q divides p" — 1 = q divides st, and

(iii) 2¢@)/t > 1 + (rs — 2)p™*/(p™ — 1) + 2/(p" — 1),
then, given any polynomial f(x)€ klx] of degree r», square free, and
with nonzero constant term, there exists a primitive root v €k such
that f(v) is either zero or a perfect square in k.

Proof. By Lemma 1 we see that a’B* is mot a primitive root
exactly

‘= @r -1 - £ =D

times as 8 runs through the nonzero elements of k. Let {8, 3,, - -, B}
be those B such that a’g® is not primitive. Now if all the prime
divisors x — 3, associated with these elements of & were to split in
K, then this would account for exactly 2 primes of degree one in
K. Further, if the primes associated with « and the infinite prime
were also split in K, they would account for four more primes of
degree one in K. If we knew that N, > 27 + 4, then K would have
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more primes of degree one than could possibly lie over the infinite
prime, the prime x and the primes x — B3; alone. That is, there
must be a ek such that v = a’3* is primitive and « — 3 splits or
ramifies in K. Thus v is a primitive root in %k and f(v) is either
zZero or a square in k.

One can easily see that condition (iii) is equivalent to

@+ 1) = s — 2™ > —1) - AT =D ]y,

However, if s is chosen to be even (as it must be to satisfy all three
conditions), the Riemann hypothesis states

N, = (" +1) — (rs — 2)p™* .

The theorem is proved.

We now note that if the polynomial f(x) is known to have 7,
primitive roots as zeros, then these 7, primitive roots account for
at most sr, elements B such that f(a’s) =0. The primes z — g
associated with these sr, elements must all ramify in K accounting
for at most s», primes of degree one in K. Thus, if condition (iii)
in the theorem were changed to

b

2¢(t> > 1 + (’I'S - 2)p“/2 + (7‘13 + 2)
t p*—1 p*—1

then there would exist a primitive root ve€k such that f(v) is a
nonzero square. In fact since 7, < » we can state the following:

COROLLARY 1. Let k be a field with p™ elements; if s and t are
integers such that

(1) (5,9 =1.

(ii) The prime q divides p™ — 1 < q divides st, and

(iii) 24(8)/t > 1 + (rs — 2)p™*/(p" — 1) + (rs + 2)/(p" — 1),
then, given any polynomial f(x)€k[x] of degree r, square free and
with monzero constant term, there exists a primitive root v €k such
that f(v) is @ nomzero square in k.

3. In this section we will prove that for all but finitely many
fields k, one can find integers s and ¢ satisfying the three conditions
of the corollary to Theorem 1. To this end we prove a few techni-
cal lemmas,

Let {q,, 9, @5, -+, q., ---} be any increasing sequence of primes
with ¢, = 2; we then define the following functions with respect to
this sequence:
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d(n,m)=2<1—%><1— 1 >.-.<1—ql_m>,

Q/n+1
A 1/2
¢(m, m) = ZT[ 0t Gum 1 .
qm qn+1 e qm

Also, we will let k(m) denote the unique integer such that
dk(m) — 1, m) <1 < d(k(m), m) .

We now state:

LEMMA 3. If m = 2k(m) + 2 and q, > 8%, then
dk(m) + 1, m) — ¢, (k(m) + 1, m) > 1.

Proof. Consider d(k(m) + 1, m); by definition
d(k(m) + 1, m) = (1 — Gigmy)"'d(k(m), m)
(1) =1 + (@rm — D)AE(m), m)
=1+ (Gm — D

Now, we may estimate ¢,(k(m) + 1, m) by noticing that the fractions:

q. '8 A 1)

b b ’
Trmy+1 Qrimy+2 Qok(m)—1

are all less than one. Therefore, since m = 2k(m) + 2,
2 1/2
e.(l(m) + 1, m) < 21»[_—————} :
qm—2qm—1qm

However, since the sequence of primes is increasing gy — 1 = Qn_:
and gy — 1 = ¢,_1; S0 we have
g 1 1
< .
Qromy — 1 Qrim)y — 1

e.(b(m) + 1, m) < [

m

This together with inequality (1) proves the lemma.

LEMMA 4. If {q, @ ** ¢, Qm, -} 18 @ sequence of primes with
q, = 2, and if m is chosen so that Q. =T then 2k(m) + 2 < m.

Proof. First we notice that it is sufficient to prove the result
for the sequence of all primes, since one easily sees that the func-
tion k,(m) as defined for the sequence of all primes has the property
that %,(m) = k(m) for the k-function defined for any other sequence
of primes.

We will prove the result by induction on m. The smallest value
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for m for which qum_, =T is m = 18. This is true since, by the
definition of k(m), d(k(m) — 1, m) =< 1. This is equivalent to

d(k(m), m) < (1 — qily_)~ = % ,

since @y m_; = 7 implies k(m) = 5; computations show that the smallest
m for which d(5, m) < 7/6 is m = 18. In this case 2k(m) + 2 < m.

To provide the induction step we need only show that if
k(m + 1) = k(m) + 1, then k(m + 2) = k(m + 1). This would suffice
since it would show that m would need to increase at least 2 in
order to have k(m) increase 1.

First we consider the assumption that k(m + 1) = k(m) + 1; by
definition, we see that this implies d(k(m), m + 1) < 1. But consider

the following estimate of d(k(m), m):
d(le(m), m) :2(1— 1 )(1_ 1 ) <1_L>

Qrtm) Qrim)+1 qn
o gy )
Qr(m) Qremy + 1 Qe

which we obtain by including all the integers between g, and g,.
This in turn implies d(k(m), m) > 2(¢iwm — 1)/9., or equivalently

ae(m), m +1) > 2 =D (3 1),
q

m Qm-H

But we have assumed that d(k(m), m + 1) £ 1, so we have

2w — D < (1 g s

m+1 T 1
or equivalently,
2Qu(m) < Qu + - 1 + 2.
m+l T
However, all the parts of this inequality are integers except the
fraction which is positive and strictly less than one, so we may

conclude,
2qk(m) § qm + 2 §— qm+1

since ¢, and gq,,, are consecutive primes.
We have seen that the conditions of the lemma imply that
Qi1 = 2Q5my; We will use this to establish the inequality

I T (e

Qrtm) Qn+1 Qnt2

Suppose by way of contradiction that this were not true, then we
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would have

(-an)> 0= -0)> (-0

qm+1 qm+2 qm+1

One easily sees that this implies
Q1 < Qoimy TV Gotmy — Qitmy -

Of course this would imply q,.; < 2¢4w,, & contradiction.

Now we are assuming that k(m + 1) = k(m) + 1, and we want
to find k(m + 2). We know k(m + 1) = k(m) + 1 implies d(k(m),
m + 1) <1, so clearly d(k(m), m + 2) <1. So we need now show
that d(k(m) + 1, m + 2) > 1;

altm) + 1, m + 2) = (1= 1) deom), m(1 — L)1 - 1)

Qrm) m+1 Qnte

2 d(k(m), m) ,

by the inequality (2). However, by the definition of k(m), we have
d(k(m) + 1, m + 2) > 1; and this shows k(m + 2) = k(m) + 1.

We shall find that those sequences {q,, q., ‘- -, ¢,} having the
property that m < 2k(m) + 1 will play an important role; for this
reason we state:

LEMMA 5. Let {2 =gq, q, -, .} be a finite sequence of primes
satisfying m =< 2k(m) + 1; then m <9 and Q,_. =5. In fact it
must satisfy one of the following:

(1) k(m) =4, ¢m_ =5 and m = 9.

(ii) k(m) =3, Qum-r =5 and m < 1.

(i) k(m) =3, Qum- =3 and m < T or

(iv) k(m) =2, @um-1 = 2 and m < 5.

Proof. By Lemma 4 and since m < 2k(m) + 1, we must have
m =9 and @um_: = 5. This, of course, implies k(m) < 4. It is an
easy computation to verify that for the sequence of primes k,(m) = 2,
for m < 38; k,(m) =3, for 4 <m <8 and k,(9) =4. As we have
already pointed out k(m) < k,(m). Thus if k(m) = 4, then m =9 and
Qv = 5. Suppose k(m) = 3; since we have assumed m < 2k(m) + 1,
we have m < 7. Similarly k(m) = 2 implies m < 5.

Next we relate these lemmas to the problem at hand.

LEmMMA 6. If p™ is a prime power, then for any fixed integers
t and s such that s =2, s divides p* —1 and 4(p" — 1) = rs = 3,
we have
(rs — 2)p™* < 78 )
P — 1 = (p'n _ 1)1/2
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Proof. In this proof we will denote the greatest integer in z by
[lz]]. First we note that the inequality in the lemma is equivalent to
r’s?

1
——=17rs+1
1 ] +

4p™ = .
p_rs— rs — 1

Now because 4p" is an integer this is equivalent to

4p“g[r'rs+l+ 1 H+1.
rs — 1

Since 7s > 2, we have the equivalent form
4p" = rs + 2.

However, by assumption 4p™ = rs + 4 > rs + 2. Thus we see that
the inequality in the lemma is equivalent to 4(p™ — 1) = 7s, and this
proves the lemma.

We are now ready to prove the main result of the paper.

THEOREM 2. Let r be any positive integer; in all dbut finitely
many finite fields k, for every polynomial f(x)ck[x] of degree r
which ts not of the form:

alg@)f or axlg@)],

there exists a primitive root B €k such that f(B) is a quadratic
residue in k. If f(x) is square free, then B can be found so that

f(B) + 0.

Proof. As we pointed out earlier, the two forms listed must
be excluded. We may assume without loss of generality that f(%)
is square free, since leaving out a square factor does not affect the
validity of the conclusion. Also we may assume f(x) has a nonzero
constant term since if f(x) = xg(x), one may replace f(z) with the
polynomial ag(x) where « is any nonsquare. Since we are interested
only in the value of f(x) at primitive roots B, this will not change
the result since ag(B) or Bg(B) are either both residues or both not.
Finally, after these reductions are made the polynomial in question
must be a nonconstant funection, since otherwise the original would
have been of an excluded form.

Now let & be a finite field with |k| = p", and let p"—1=
Qi g3 -+ qi» be the prime factorization. If f(x) is a square free
polynomial of degree less than or equal to » with nonzero constant
term, and if we can find s and ¢ such that

(1) (5,0 =1,

(ii) st=a.¢ """ Qu
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(iif) 24(8)/t = 1 + (rs — 2)p™*/(p" — 1) + (rs + 2)/(p™ — 1),
then, by the corollary to Theorem 1, we know that f(x) represents
a nonzero square at some primitive root in k. Our object is to show
that such s and ¢ exist for all but finitely many prime powers p”.
Consider the finite sequence of increasing primes {2=gq,, ¢,, - - -, ¢..}.
If ¢, > 8% and, m = 2k(m) + 2 we know by Lemmas 3, 4 and 5 that

d(k(m) + 1, m) > 1 + ¢,(k(m) + 1, m) .

But if we let s =¢.¢, - -+ Qoo and t = Qs *** ¢ We have

2¢T<t> = d(k(m) + 1, m) ;

c,(k(m) + 1, m):m{ G Qe T
On

Qemy+1 eemy+2 * °
2rs
(QL Q- Qm)1/2
> 2rs )
@ — 1"

We now wish to use Lemma 6; since s is even the condition s = 2
is satisfied; also we may assume that sr = 3 without loss of generality
since the only excluded case would be » = 1; however, we will show
that the inequality (iii) is satisfied for » = 2 and this will imply it
is also true for » = 1. Finally, we are assuming that ¢, > 8% and
this imples

Il

4(p™ — 1) = 4st = 4sq,, > 32s1* > sr .
Thus all of the conditions of Lemma 6 are satisfied and we have

78 > (rs — 2)p™*
(" —1)" = (=1

One can easily see that, if p™ = 7 (which is always the case when
4, = 8%, then

78 < (rs +2) )
(p'a . 1)1/2 = p'n —1

Summing this up we see that, if 2k(m) + 2 < m and ¢, > 8%,
then for s = ¢, ¢, -+ Qo a0Ad ¢ = Qomyss *** Ao

L’;@_ = d(f(m) + 1, m)

= 1+ c(k(m) + 1, m)

2rs
>14+ ==
(p'n 1)1/2
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(rs — 2)p™* L8 + 2

>1 .
=5+ p* —1 p*—1

We must now study those sequences of primes where these conditions
are not met.

Let 2=4, ¢, ¢, -, ¢.} be any sequence of primes such that
g, < 8% there are only finitely many such sequences. Consider all
those prime powers p”such that p» — 1 = ¢t g2 --- g2». Ifs=4q,q,--
q._. and t = g, one easily sees that for p~ large enough

(rs——2)p“’2+ rs + 2
-1 pr—1

20 514
t

Let us now consider those sequences where m < 2k(m) + 1. By
Lemma 5, we see m <9 and @ym_, = 5. We shall consider each of
the four cases separately. In each case we shall show 24(¢)/t > 1 + «,
a > 0. Then, since

(rs — 2)p™* + (rs + 2)
p*—1

goes to zero as p" goes to infinity, for almost all prime powers p*,
there exist s and ¢ which satisfy the conditions (i), (ii) and (iii).

Case 1. k(m) =4, ¢, =7 and m = 9, then

2;;@) g2<1_%)<1__111_>...<1_21_3>g1.227.

Cases 2 and 3. k(m)=38, ¢ =5, m <17, then

'z'qst(_t)gzo_%)(l”%)'--<1~1—17>21.083.

Case 4. k(m)=2, ¢=38, m <5, then if ¢, =38 or 5 we will
set s = 2q, and use the same bounds obtained in Cases 2 and 3.
Otherwise ¢, = 7 and

@ = 2(1- %)(1 . %)(1 - 1_13)<1 - %) ~1.354 .

This completes the proof of the main theorem.

4. In this section we apply these results to the cases » =1 and
r = 2. These are the cases necessary to resolve the questions posed
in the introduction.

First we consider the case » = 2.
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LEMMA 7. If p* —1=qlq2--- qi» with q, = 8-2%, then there
exist s and t satisfying conditions (i), (il) and (iii) of the corollary
to Theorem 1 with r = 2.

Proof. In the previous section, we saw that if m = 2k(m) + 2
then such s and ¢t do indeed exist. Therefore, we will assume that
m < 2k(m) + 1; this leads to the four cases of Lemma 5. In each
case we will use the same procedure; we will prescribe a choice for
s and use the conditions of each case to find a bound a so that
Qo)™ — 1) = a. We will then be able to use the assumption
¢, = 32 to show that

_ %/2
o> (2s — 2)p™* + 28 + 2

(3) T

Thus we see that the chosen s and an appropriate ¢ satisfy the neces-
sary conditions.

First we will deal with Case 1; namely, k(m) =4, m =9 and
q, = 37. One easily sees that such a sequence of primes must begin
with ¢, =2, ¢, =3 and ¢, =5. We will choose s =2.3.5 and ¢t =
Q.4+ q. Now we see that

40 12 a(1- 30 - - B~ - ) -

= 0.24801 .

Thus p" satisfies inequality (3) with a = .24801 and s = 30, if and
only if p* > 55190. Suppose there is a prime power p* < 55190 that
satisfies the conditions of this case, we know that 2-3-4-¢, divides
»,—1 with ¢,=37. However, this would require ¢,9,q:,q.9; <
55190/2-3-5-37 < 50; This is clearly not possible.

In the remaining three cases k(m) < 8. Since p is an odd prime
we know ¢, = 2 and we now consider the various possibilities for g,.
First ¢, = 3; this is a possibility in either of the last two cases of
Lemma 5, and therefore we see that m < 7. We will set s = 2-3
and t = q,q, -+ - q,; thus

290 1 aft - 1= 3 - - - ) -1

= 0.11974 .

Now p* satisfies inequality (3) with a = 0.31734 and s = 6, if
and only if p*>7207. If we suppose p" < 7207, we see that
Qi Quy < T7207/2-3-37 < 33. If more than two primes appear in
the product, this is not possible; so we have m < 4. This allows
us to improve the value we have for «, since now ¢ = ¢, or t = q,q,;
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2.4‘_9—122(1—%)@-517_>—1=0.5567.

In this case p* satisfies (8), if and only if »™ > 373. Again 6q, divides
p* — 1 with ¢, = 37, and we see ¢, < 2. This is not possible.

We use the same technique to study the case g, = 5. We choose
s=2.5andt=¢,q,--- ¢,. Here we have 24(¢)/t — 1 = 0.31734, and
p* satisfies inequality (3) if and only if p™ < 8356. This implies either
m =4 and ¢, =7, or m =3, both of these possibilities are taken
care of in the same way.

Finally we consider the case ¢, = 7. This immediately places us
in Case 4 of Lemma 5; namely; k(m) =2, m < 5. Here we choose
s = 2 and use the same technique as above to complete the proof.

So we have seen that given any finite sequence of primes with

Q. > 32, we can choose an 7 such that when s =¢q,¢.--- ¢, and ¢ =
Qut19n+2 °°* Qm

1/2
(1) 2¢(t)>1+(23+2)(8t+1) L 28+2
t st st

It is clear that, if % is a finite field with |k] = »* and some prime
larger than 82 divides p* — 1, there exist s and ¢ satisfying the three
conditions of the corollary to Theorem 1 with » = 2.

We are now interested in finding those sequence {2=gq,, ¢, ¢; - - - ¢}
with ¢, < 32 for which one cannot choose s =¢,q,---¢q, and ¢ =
Qi1 Qnse * * * G and satisfy (4). A simple computer search of these
finitely many sequences yields the following exceptional sequences

2y, 2,38y, 2,5}, {27, {23,585, {2,387, {2311},
{2,3,13}, {2,3,5,7, {28,511} and {2 3,5, 13}.

Thus the three conditions of the corollary may be satisfied for all
finite fields %k such that the set of primes dividing [k| — 1 is not
one of the above 11 exceptional cases.

The next step is to consider all those prime powers p™ where
the primes dividing p™ — 1 are one of the exceptional cases. We
consider each sequence separately. First we fix s =4¢,¢,--- ¢, and
t = @ui1Qns2 * * - Qn; then the inequality

(5) 2¢t(t) >1+ 2(s — 1)a'? n 2s + 2

z—1 r—1

has but one variable # and is quadratic in #*2. We see that there is
a constant K such that 2 > K implies the inequality (5). In this way
we are able to limit the prime powers p” for which proper s and ¢
do not exist. The inequality (5) corresponds to the inequality in the
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corollary to Theorem 1 with » = 2; we also check the inequalities

’

(6) 2¢(t) S 14 2(s — 1)x'* 4 2
r—1 z—1

which corresponds to the inequality of Theorem 1 with » = 2, and

295(?5) S 14 (8= 2" L s+2
x—1 r—1

(7)

which corresponds to the inequality of the corollary with » = 1.

As an example we will look at the sequence {2,3,5}. When
s =6 and ¢ =5, inequality (5) is satisfied when « — 1 > 30-(10.82);
inequality (6) is satisfied when x — 1 > 30-(9.55); inequality (7) is
satisfied when ¢ — 1 > 30-(1.75). Choosing s = 2 and ¢ = 8-5, these
inequalities are satisfied when, respectively, 2 — 1 > 30-(35.80);
x—1>80-(32.033) and  — 1 > 30-(1.033). As we see the best results
occur when s = 6 and ¢ = 5. Since we are assuming that 80 divides
p* — 1 we see that only a few extra powers of the primes can be
added with the result not satisfying the inequalities. Thus we see
that the only possible exceptional factorizations of p* — 1 are: 2-3.5
which does not satisfy any inequality; 2*-3.5, 2°-3-5, 2¢.3.5, 2-82.5,
2:.3*.5, 2.3*.5 and 2-3-5° which do not satisfy (6) or (7), but do
satisfy (5); and 2°-3-5° which does not satisfy (7) but does satisfy
(5) and (6).

Analysing all 11 exceptional sequences in this way we obtain
the following chart of possible factorizations of »* — 1 that do not
satisfy the inequality for any s and ¢:

TABLE 1
Factorizations that
do not satisfy (5), 2:3:5, 2-8, 2%, 2
(6) or (7)
Factorizations that 2-3-5-11, (2-3-4-18), 2-3-5-7, 2!-3-5-7, 2-3*-5-7, 2-3-13,
do (rg;;t satisfy (6) 2-3-11, 2-3-7, (22-8-7), 2°-3-7, 2-8%.7, 22.3.5, 2°-3.5, 2¢.3.5,
or (2-3%-5), 22-8%.5, 2-8%.5, 2-3-5%, 2.5, 2%.8, 28.8, 2¢.3, 22.32,
2.2, 23
o ot (| (@31D), (235, (25), (2:8), @),

Those factorizations in parenthesis are not prime powers minus 1.
We may now state the following theorems and corollaries:

THEOREM 3. If k is a finite field of odd characteristic with
k| ¢ A, then every square free quadratic polynomial in klx] represents
a monzero square in k at some primitive root in k, where
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A=1{85,709, 11,13, 19, 25, 31, 37, 43, 49, 61, 67, 79, 121,
127, 151, 169, 181, 211, 241, 271, 331, 421, 631} .

REMARK. The set A consists of those prime powers for which
the techniques of this paper do not work. There may be elements
in A for which the result is valid.

COROLLARY. If k is a finite field of odd characteristic with
k| ¢ A, then every square free quadratic polynomial in k[x] represents
both momzero squares and monsquares at the primitive roots in k.

COROLLARY. If k is any finite field of characteristic + 2 or 3
then there exists a primitive root « €k such that —(a* + a + 1) = &
for some Bek.

Proof. If chark =3, then —(#* + 2 + 1) = —(x — 1)* which is
an excluded form. For chark = 2,3 one simply checks the fields
GF(p™) with p"e A.

THEOREM 4. If k is a finite field of odd characteristic with
k| = 8, 5 or T then every linear polymomial with nonzero constant
term in k[x] represents a square at a primitive root of k.

COROLLARY. If k is a finite field and P is the set of primitive
roots in k, then only in the fields k = GF(3), GF(5) and GF(T) can
one find monzero a €k such that P + a consists entirely of squares
or entirely momsquares in k.

The authors would like to thank Robert Dillon and Lee Appelbaum
for their invaluable aid in doing the calculations necessary for this
paper. In particular, Robert Dillon made an observation which was
eritical in the approximation of d(n, m) — c.(n, m).
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