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MARTINGALE PROOFS OF SOME GEOMETRICAL
RESULTS IN BANACH SPACE THEORY

K E N K U N E N AND HASKELL ROSENTHAL

Martingale techniques are used to give a new proof of
the theorem of J. Bourgain-R. R. Phelps that a closed
bounded convex subset K of a Banach space is the closed
convex hull of its set of strongly exposed points provided
K has the Radon-Nikodym property. The new notions of
"ε-strong extreme points" and the approximate Krein-Milman
property are introduced, and the intimate connections between
these notions and "d-trees" are explored. A self-contained
treatment is given of the necessary martingale preliminaries,
phrased in terms of quasi-martingales.

Our main objective is to render certain geometrical properties
of convex sets accessible via the analytic techniques of martingale
theory. For example, we give a new proof of the theorem of
J. Bourgain [2] that a closed bounded convex subset K of a Banach
space is the closed convex hull of its set of strongly exposed points
provided K has the Radon-Nikodym property (the RNP). The result
was first proved by R. R. Phelps assuming the entire Banach space
has the RNP [9]. (Actually it has been observed by Larman and
Phelps (see the remark following the proof of Theorem 4 of [8])
that a modification of Phelps' original argument can be used to
obtain the above result of Bourgain). The arguments of Bourgain
and Phelps seem to us to use ingenious but rather elaborate geo-
metrical constructions. We obtain an essentially direct martingale
proof via one geometrical result, Lemma 2.8. For the many equi-
valent formulations of the RNP, see [6]; we focus on the following
one: K has the RNP if and only if every K-valued martingale con-
verges almost everywhere. We also introduce the new notion of
"ε-strong extreme points" and the approximate Krein-Milman property,
and show the intimate connections between this notion and "δ-trees",
that is, Banach valued dyadic martingales with differences every-
where δ-bounded away from zero.

Let us now indicate in greater detail the organization of this
work. In the first section, we develop the needed properties of a
slight generalization of martingales, termed quasi-martingales in the
literature. Most of our results here are special cases of known
results of Bellow [1] and Edgar and Sucheston [7]. In Theorem 1.1
we show that every quasi-martingale may be decomposed as the
sum of a martingale and a sequence tending to zero in L1 norm
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and almost everywhere; (this is called the Riesz-decomposition in
[7]). For the sake of completeness, we show in Theorem 1.3 that
Banach valued ZZ-convergent martingales converge almost every-
where. The final result of the first section is new; its proof shows
the utility of quasi-martingales. This result, Proposition 1.6, implies
that if K is an RNP subset of a Banach space and (fn) is a uni-
formly bounded martingale "originating" in K, then if (gn) is the
martingale obtained by stopping (fn) when it first exits K, (gn)
converges almost everywhere.

The main results of the paper are contained in § 2. We first
give a proof in Proposition 2.1 of the standard result connecting
dentability and the RNP. The argument reveals the power of the
explicit use of quasi-martingales and also sets up techniques for
later results.

We next treat the case of denting points. This case seems to
illustrate the martingale techniques most intuitively, even though
it is covered by the later one of strongly exposed points. (Phelps
also treats denting points before strongly exposed points in his
original paper [7].) The key geometrical result is given in Lemma
2.4. This result easily yields that an RNP set K is the closed
convex hull of its set of denting points (Theorem 2.2) and is "effec-
tively" proved using quasi-martingales.

We treat the case of strongly exposed points in Theorem 2.5.
After reviewing the natural, elegant geometrical preliminaries given
by Bourgain in [2], we leave his treatment and present a new
geometrical result, Lemma 2.8, which again is naturally accessible
via martingales. The proof uses the new "stopping" result given
at the end of the first section.

In the final section we introduce the new concept of a kind of
approximate extreme point, called an "ε-strong extreme point"; and
study the connection between its existence and <5-trees; i.e., dyadic
martingales with differences everywhere ^-bounded away from zero.
Precisely, if K is a closed bounded convex set, ε > 0 and x e K, x
is called an ε-strong extreme point of K if there is a δ > 0 so that
if K k2eK satisfy | | ( ^ + k2)/2 - χ\\ < δ, t h e n \\k, - k2\\ < 2ε. We

show in Proposition 3.2 that if K has no ε-strong extreme points,
then K contains δ-trees for any δ < ε. We also introduce the notion
of ε-strong extreme points for sets K which are not necessarily
convex, and prove in Proposition 3.3 that a closed bounded convex
set K contains no generalized cJ-trees for any δ > 0 if and only if
every nonempty subset of K has an ε-strong extreme point for
every ε > 0. We do not know if these conditions imply that such
a set K is the closed convex hull of its ε-strong extreme points for
every ε > 0. However if this is not the case, we show in Proposi-
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tion 3.4 that K admits a dyadic iΓ-valued martingale with differ-
ences ε-bounded away from zero on a set of positive measure. There
are known examples of Banach spaces X failing the RNP yet con-
taining no bounded <5-trees [4]. Proposition 3.4 implies that for
these known X's every closed bounded convex subset K is indeed
the closed convex hull of its set of ε-strong extreme points for
every ε > 0. It has also been independently observed by J. Bourgain
and J. Elton that the X's of [4] fail the Krein-Milman property.

1* Quasi-martingales* We develop here the needed prelimi-
naries from martingale theory. We employ a useful generalization
of the concept of a martingale, something a bit more special than
the "uniform amarts" introduced by A. Bellow in [1]. Our results
here are also special cases of results of Bellow [1] and Edgar and
Sucheston [7]; we present a self-contained treatment for the sake
of completeness.

Let X be a fixed Banach space and (Ω, £/\ μ) a fixed probability
space. For a measurable function f:Ω-+X and l ^ p ^ °°, ||

denotes the usual Lp norm; \\f\\P = ([\\f(ω)\\pdP(ω))1/P if p <

| |/IU = esssupωβfl ||/(α)) ||; /eL'(X) if | | / | | p < - . For E a subset
of X and f:Ω-+Xa given function, we denote {ω e Ω: f(ω) e E} by
[feE],

Suppose S?/ is a cr-sub-algebra of S? and & = gV denotes con-
ditional expectation with respect to s^. That is, if feL\X), then
r?/ denotes the (essentially) unique J^-measurable integrable function
so that

- ί fdP
JA

for all A e j

We freely use the fact that then | | g7 | | p ^ | | / | | p for all 1 ^ p ^
(Of course it is a rather nontrivial fact that there is a function
with these properties. However we shall only employ the result
for finite algebras j ^ where this is obvious; in fact then for every

atom A of ,_χ i?/|A is simply the constant given by (1/P(A))\ fdP.

Now fix <7-sub-algebras J ^ C X C J ^ Ja<c of £f with
the trivial algebra. Let g"n denote gVw, conditional expectation
with respect to the wth algebra.

DEFINITION. Let l^p^ °°. A sequence (/J of members of
LP(X) is called a p-quasi-martingale (with respect to (J*O) if it
satisfies the following two properties:

(a) fn is ,S^n-measurable for all n, and
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(b) Σ^o | | ί f Ώ /n + i -ΛII P < oo.
Let (en)ns=0 be a summable sequence of nonnegative numbers. We
say that the p-quasί-martingale (fn) corresponds to (en) if \\ &nfn+i —
fn\\p ̂  εn for n = 0, 1, 2, . We shall refer to 1-quasi-martingales
as quasi-martingales. Of course a martingale (fn) with respect to
(J^J) is simply a quasi-martingale corresponding to (εj where εn = 0
f or n = 0, 1, 2, .

Our basic structural result is essentially contained in [1] and
[7].

THEOREM 1.1. Let 1 <; p <: oo? (εn) α summable sequence of non-
negative numbers, and (fn) α p-quasi-martingale (with respect to
(J3θ) corresponding to (en). Lβί K be a closed convex subset of X
so that fjfiί) e JL /or αW -̂ αwcϋ α>. Lei δn = Σ M * ε i / o r α ^ w Then
there exists a martingale (gn) (with respect to (J^n)) with the follow-
ing properties for all n:

(a) gn(ω) e K for all ω
and

(b) \\fΛ-gΛ,£K
Moreover fn — gn-+0 a.e.

all n.

REMARK. It follows immediately that \fndP — fQ for

Theorem 1.1 yields the Riesz-decomposition for quasi-martingales,
a special case of the decomposition given by Edgar and Sucheston
in [7]. (The final assertion of 1.1 is established in [1].)

Before passing to the proof, let us note the following useful
consequence (cf. [6]).

COROLLARY 1.2. Let K be a closed bounded convex subset of X.
Then the following are equivalent:

(a) K has the RNP.
(b) (/«) converges almost everywhere for every quasi-martingale

(/„) valued in K.
(c) (fn) converges in U-norm for every quasi-martingale (fn)

valued in K.

Proof. We use the fact that this is true if we delete the word
"quasi" in the statement. It thus suffices simply to prove that
(a)=>(b) and [(a)=>(c). Let K have the RNP and (fn) be a quasi-
martingale valued in K. Let (gn) be the martingale given by
Theorem 1.1. By (a), (gn) is valued in K. Thus since (gn) converges
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almost everywhere and in ZΛnorm and fn — gn -> 0 almost every-
where and in Z/-norm by Theorem 1.1, (fn) converges almost every-
where and in Z/-norm.

We pass now to the proof of Theorem 1.1. We shall produce
the martingale (gn) and prove that it satisfies (a) and (b). We then
give some of the standard martingale results, cast in the language
of quasi-martingales, to obtain that fn — gn —> 0 a.e.

We shall show, fixing k, that (g^/JJU is Cauchy in Lp; then
&kfn converges to a function gk in LP(X), as n tends to infinity.
In fact, fixing n > k, we have

( l ) II £?*/»-/*ll,^β f c + ••• + e n _ l β

Indeed, &Jn - /4 = &k(fn - fn_,)+ g?*(/n_1-/n_ ί)+ + if4(/*+1-/*).
But for k + 1 ^ j ^ n,

Hence || &k(fd - /,_,) ||, ^ || g?

i_1/i - /,_, ||p ^ e^,, so || Σ?=,+i ^*(Λ -
Λ-I)IIP ^ Σ?=*+i li ^*(Λ - Λ-i) \\9£ek+ ••• + εn_u proving (1). Since
LP(X) is a Banach space, it follows that ί?j.(/n) converges to an
,.^-measurable function (/fc in Lp-norm as n tends to infinity. For
each n, &k{fn) is also valued in K, hence so is gk (almost everywhere).
Now by (1), we have that || &kfn-fh\\p£δk for all n, hence \\gk-fk\\p =
limw_>oo || &kfn — fk\\p <: δk. Thus (a) and (b) are established. To see
that (gn) is a martingale, again fix k; then

= l i m ^ Λ = grfc .
n-*oo

The final assertion is an immediate consequence of the following
result.

THEOREM 1.3. Let (/J be an X-valued quasί-martingale, f a
member of L1(X)t and suppose /Λ —> / in &{X). Then fn-+f a.e.

Indeed, the difference of two quasi-martingales (with respect
to ( J ^ )) is als° a quasi-martingale. Thus (fn — gn) of Theorem 1.1
is a quasi-martingale, and /n — gn -> 0 in L1 norm by (b). Hence
fn — Qn -* 0 a.e. Of course Theorem 1.3 also follows from Theorem
1.1 and the validity of the corresponding martingale result. We
prefer, however, to give a direct proof of Theorem 1.3 (thus includ-
ing the "simpler" version of the martingale convergence theorem).

We first recall the notion of a stopping time (with respect to
A function τ: Ω -> {0, 1, 2, •} U {<*>} is called a stopping time
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if [τ — j \ e ,.s>/ά for all finite j = 0, 1, 2, . Let τ be a stopping
time, let (/J satisfy the hypotheses of Theorem 1.3 with (/J corres-
ponding to (εΛ), and let /«, = /. The function / r defined by (fT)(ω) =
fτ{ω)(o)) shall be termed the quasi-martingale (/J stopped at τ. Our
next result shows that the L^norm of a stopped quasi-martingale is
dominated by that of the martingale plus the sum of the perturb-
ing sequence.

LEMMA 1.4. H/Ijl, g \\f\\, + Σ"=oe, .

Proojf. Let £7,- = [τ = j] for all i and let E = Ω ~ £?«,; thus
•# - UΓ-o^ . Let c?0 = /0 and dn = Λ - /„_, for all n ^ 1. Our
hypotheses assert that |] έΓi(di+1) || ^ εy for all j . For each finite j
we have that

( \dP(ω)
7ί,

r

- Σ
k j

£ \ \\\f(ω)\\dP(ω)

Thus

(2)

The second term equals Σ?=J Σi</C \ ίl rSyj{d^{ω) \\dP(ω).
) Ej

Now for each j»* < k,

( 3 ) ^
= l|2Γ*

(1F denotes the indicator function of the set F; XF(ω) = 1 if ω e F,
XF(o)) = 0 otherwise.) Applying (3) we obtain

Σ Σ ί II &,-(dk)(ω) !| dP(ω) ^ Σ Σ
A - l ίX/c J/ij A = l j<

^ Σ II 8s*-A Ik = Σ ε i

Since fT = f on £7 ,̂ the above estimate and (2) complete the proof.
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We next pass to the standard martingale maximal inequality of
J. Doob phrased in terms of quasi-martingales.

LEMMA 1.5. Let f* = sup,- | |/, (ω)| |. Then for all λ > 0 , λ P [ / * >

Proof. Let λ > 0 and define τ by τ(α>) = least j such that
||//(α>)|| > λ, if such exists; else τ(ω) — oo. Then r is indeed a
stopping time. If f*(ω) > λ, then r(α>) < oo and | |/ r(α))| | > λ also;

hence λ P [ / * > λ] ^ J||/r(α>)||dP(β>) £ \\f\\, + Σ?=o^ by Lemma 4.

Proof of Theorem 1.3. Follow the same notation as in Lemma
1.5. Let λ > 0. It suffices to show that D = [\\f - fm\\ > λ for
infinitely many m] has measure zero. Now fix n and suppose m>n.
Then [ U / - / J I > λ]c[sup z > m | | d w + 1 + - + dt\\ > λ]c[sup I > n | | d n + 1 + •
+ dι\\ > λ/2] (up to sets of measure zero). Thus we have

( 4 ) Da [sup ||eZn41 + + dι |] > λ/2] .

Now set gx = dn+1 + + dι for I ^ n Λ- 1 and ^ = 0 for 0 <; i ^ n.
Then (flfj) is a quasi-martingale corresponding to the sequence (§,-)
with δy — e,- ifj^n and δ,- = 0 if j < n, and of course (#0 tends
to / — fn in L\X) as Z tends to infinity. Hence by (4) and Lemma

This shows P(D) = 0 since l i m ^ ( | | / - fn\\λ + Σ Γ ^ ^ ) = 0.

REMARK. If X has the RNP and (fn) is an ZZ-bounded X-valued
quasi-martingale, then (fn) converges a.e. ((/n) is ^-bounded means
supn HΛIIi < oo.) Indeed by Theorem 1.3, there is a martingale (gn)
and a sequence (un) with 6̂7̂  -> 0 in L1 and a.e. so that fn — gn + un

for all n. Then (gn) is also ZΛ-bounded, hence (gn) converges a.e.
(This result is also a special case of a known result of Bellow
concerning uniform amarts [1].)

The final result of this section may be interpreted as follows:
Suppose K is a closed bounded convex subset of a Banach space so
that K has the RNP; suppose (/J is a uniformly bounded quasi-
martingale with /o G K. Stop the martingale the first time it exits
K. I.e. let r equal the least n so that fn £ K. Then the stopped
martingale (/Γ) converges a.e. Quasi-martingales enter in a natural
way in the proof (unless of course X itself has the RNP).

PROPOSITION 1.6. Let K be a closed bounded convex subset of
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X so that K has the RNP. Let (fn) be a uniformly bounded X-
valued quasi-martingale so that for all co and n, if fn((θ) g K then
fn+1(ω) = /n(α>). Then (fn) converges a.e.

Proof. Let us suppose (/J is a quasi-martingale with respect
to (JK) corresponding to (εj; as before, i?n denotes conditional
expectation with respect to J K and J ^ is the trivial algebra. Let
Gn = [fneK]. Then our assumptions imply that GnZDGn+1 for all
n; hence Σ£=oP(Gn ~ Gn+1) < oo, We shall show that (fn-XGJ is a
quasi-martingale. Once this is done, we obtain that (fn-XGn) con-
verges a.e. by Corollary 1.2. But our assumptions yield immediately
that ( Λ ZBJ converges a.e., where Bn = ~G n for all n. Hence (/n)
converges a.e.

Let M = supra ||Λ H*,. Fix n ^ 0. Then

II ^TA/ra+l^G^+i/ Jn Λ<?Λ 111

- Λ ili + IIΛ+i(^. + ι - ^ J Ik
- Gn + 1) .

Hence Σ?=o II ̂ ( Λ + i ^ J - Λ ^JIi^Σϊ^en+itf Σϊ=oP(C - Gn+1)<
oo? thus (fn'XGn) is ^ quasi-martingale, completing the proof.

REMARK. We are indebted to A. Bellow for pointing out that
our argument yields that Proposition 1.6 holds if we replace the
word "uniformly" by the word "ZΛbounded" in its statement.
Indeed, the assumptions then imply by standard arguments that
there is an integrable function g with ||/n(α>)|| ^ g for all n and ω.
Hence we obtain

II ίfJUAw, - Λ ZβJli ^ II g-JU - /.Hi + IIΛΛ..H - *<ϋilχ
as above

S εn + II ffβan+ι - Xβn) Hi , so again

Σ II r.(/.+ιZβ,+1) - /XJk ̂  Σ s. + II9 Ik < - -
Λ = 0

2* Denting points and strongly exposed points in RNP sets*
We begin by establishing a standard result concerning the equi-
valence of nondentability of closed bounded convex sets and the
existence of "<?-bushes", or martingales with differences bounded
everywhere away from 0 by δ. The purpose is to develop technique
and machinery for later results, and to show the "naturalness" of
quasi-martingales in the setting of nondentability.
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Let X be a fixed Banach space; for xeX and r > 0, let Bxr =
{y 6 X: || y—x || ̂ r } . Let 2£ be a bounded subset of X. K is said to be
dentable if for every ε>0, there exists a keKwithk&cδ(K~Bkfε).
It can be seen (see [6]) that K is dentable if and only if co K is
dentable. (coA denotes the closed convex hull of the set A.)

PROPOSITION 2.1. Let K be a dosed bounded convex set, δ > 0
and suppose k e cδ(K ~ Bhtδ) for all keK. Let (ε^JU be a summable
sequence of positive numbers. Then there exists an oo-quasi-mart-
ingale (fn) corresponding to (εj, valued in K, with ||(Λ+i— Λ)(<*>)ll̂
δ for all ω and n = 0,l,2,

We first note a simple consequence.

COROLLARY 2.2. Let K, δ as above and let δ' < δ. There exists
a martingale (gn) valued in K with \\ (gn+1 — gn)((θ) || ^ δ' for all ω
and n — 0, 1, 2,

Proof Let (ε,-) be such that Σ?=o εd ^ (δ - δ')/2. Let δn = Σ?=^ %
for all ^ = 0, 1, 2, . Let (gn) be the martingale associated with
(fn), as given in the statement of Theorem 1.1. It follows from
(b) of Theorem 1.1 that for all ω and n,

^ ί - δw+1 - δn ^ δ - 2δ0 ^ δ' .

REMARK. The proof of Proposition 2.1 will show that the
martingale (gn) is such that gn is finite valued for all n (and also
that each value is taken on with positive probability). Call such a
martingale a nice martingale. (Thus, (gn) corresponds precisely to
a "S-bush" as described in [6].) Corollary 2.2 thus produces the
known result that the following two mutually exclusive alternatives
hold for a closed bounded convex set K: either every nonempty
subset of K is dentable, or there exists a δ' > 0 and a nice martin-
gale (gn) valued in K satisfying the conclusion of Corollary 2.2.
Indeed, if L — {gn(ω): ωeΩ,n — 0,l,2, •}, then L is not dentable.
For given n and α), let A — {α/: gn{ω') = gn{<*>)}\ then, by definition,

gn(O)) = &ngn+1((O

The last term is in the convex hull of {gn+1((ύ'): ωf eA}\ and of course
gn(ω) = </n(α>') with || gn(α>') - gn+1(ω') \\ ^ δ' for all ω' e A. (We freely
use the deeper fact that every nonempty subset of K is dentable
if and only if K has the RNP.)
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Proof of Proposition 2.1. We shall take the half-open unit
interval [0, 1) with Lebesgue measurable sets and Lebesgue measure,
as our probability space. We shall construct (fn) corresponding to
(JK)f where for each n, >9sfn is a finite algebra generated by half-
open intervals.

Let ja*J equal the trivial algebra. Let koeK be arbitrary and
let fo(ώ) = k0 for all ω. Suppose n ^ 0 and j ^ , fn have been defined.
Choose k and 0 = cQ < cx < < ck = 1 (depending on w) so that
,iK is generated by {[c^u ed): 1 ^ j ^ k}. Fix j , set A = [c3_lf c3)
and let kA be the value of fn on A. Now by assumption we may
choose elements kl9 , km in K and positive numbers Xίf , λm

with i|k< -kΛ\\^δ for all i and UΣΓUλΛ - fcj| < εn. Set d0 - c ^
and define dlf , dm successively by d* — d^x = λ^c^ — c,-^). It
follows that Cŷx = ώ0 < ^i < < dm = cjt (Of course the quantities
k, m,kx- - km and dOf d1- - -dm all depend on j ; we simply avoid the
cumbersome indexing.) Now let *Ssfn+1 be the algebra generated by
U J U {[di-i, dt): 1 ^ i ^ m}. Again fixing jf, define /n + 1 on [cs_u c, ) by
Λ+i = ΣΓ=i hΆd^vd^ Then for α> 6 [c,- ,̂ cy),

1 Γ c i m

i /n+1da? - Σ λΛ
Cy — Cy_! J ^ _ ! t=l

and hence || ^ n / n + 1 - /JU g εn and ||/n + 1 - /n(α>)|| ^ δ for all α).
This completes the construction of (/J and (>$tfn) by induction, and
hence the proof of 2.1.

We next treat the case of denting points of RNP sets K. We
shall later consider the case of strongly exposed points; this case
yields the denting point result. However the basic technique seems
more clearly revealed in the simpler setting of denting points. We
recall that if K is a nonempty bounded subset of a Banach space
X, then x e K is called a denting point of K if x $ cδ (K ~ BXJ for
all ε > 0. A subset S of K is called a slice of K if there is an
/ e Γ with | | / | | = 1 and a <5>0 so that S={keK: /(&)^sup/(#)-<?}.
In this case, we write S = S(/, 5).

We wish to present a martingale proof of the following known
result (c.f. [2] and [9]):

THEOREM 2.2. Let K be a closed bounded convex set in the
Banach space X and suppose K has the RNP. Then K equals the
closed convex hull of its set of denting points.

The main lemma in the proof is as follows:

LEMMA 2.3. Let K be as in Theorem 2.2, let S be a slice of' K,
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and let ε > 0. There exists a slice S of K with diameter S <Ξ 2ε
and SaS.

Let us first quickly sketch the (well-known) proof that 2.3=*2.2.
Suppose the claim is false; let W equal the closed convex hull of
the set of denting points of K. (W could be empty, of course.)
Since W Φ K, it follows from the Hahn-Banach theorem that there
is a slice S of K with Wf) S — 0 . By 2.3, we may [choose slices
S± c S, S2 c Sl9 , Sn+1 c Sn of K with diam Sn < 1/n for all n (where
diam L — diameter of L). It follows that there is an xeΓ\7=iSj;x
is a denting point of K. But since x e S, xg W, a contradiction.

The next lemma easily yields 2.3, and is directly accessible
via martingale techniques.

LEMMA 2.4. Let K be as in 2.2, / e Γ with \\f\\ = 1, 0 <η <a
and ε > 0. Assume KczBOtl and ε < a — rj. There exists a koe
S(f, V) with k0 $ W = co (S(f, a) ~ BkJ.

Proof that 2.4 => 2.3. Of course we can assume without loss of
generality that KcBQΛ. Choose / and a > 0 with S = S(f, a) and
set M = sup f(K). Choose η < a and assume ε < a — η. Choose k0

as in 2.4. Now let g be a norm-one functional separating k0 from
W; i.e., sup g(W) < g(kQ). Choose τ with sup g(W) < τ < g(k0) and
set S = {keK: g(k) ^ τ}. It's obvious that S is a slice of iΓ. It
suffices to show that SczS. Indeed, once this is done, since koeS,
keS implies \\k — kQ\\ <ε since kg W, so S has diameter at most 2ε.

So suppose keS yet k$S. Thus f(k)<M—a. Now the
straight line segment joining k to k0 lies in S; it follows that there
exists a ϊΰ on this segment with f(k) = M — a. But then ε < a —
η £/(fa) - f(k) £ \\ko - k\\. Thus ϊceWnS, but l f n S = 0 , a
contradiction.

We pass finally to our first "serious" use of martingales for the
geometry of Banach spaces. We shall take all quasi-martingales
with respect to some fixed probability space (Ω, S^, P); of course
the "standard" unit-interval space will serve.

Proof of Lemma 2.4. Assume the conclusion is false. Let k0 e
K be such that

(5 ) /(jfeo) >M~η where M = sup f(K) .

It follows that we may obtain kQ as almost equal to a convex
combination of elements ku --,kn of S(f,a), each of which is at
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least ε away from k0. Now for each i, if kt $ S(f, rj)9 we stop this
process. Otherwise, we again express kt as almost equal to a convex
combination of elements of S(f, a), all at least ε away from kt.
Continuing in this way, we obtain an oo-quasi-martingale starting
at &o, a point strictly above the hyperplane {x: f(x) = M — η}9 yet
which converges almost everywhere to a function h which is every-
where below this hyperplane. But the expected value of h must be
almost equal to k0 and hence lie above the hyperplane, a contradic-
tion.

The precise argument goes as follows: Let (ε^JU be a summable
sequence of positive numbers so that

So = Σ S; < f(h) -M+η.

Thus

(6) f(ko)-δo>M-η.

Now by the same technique as in the proof of Proposition 2.1,
we may choose an oo-quasi-martingale (hn) corresponding to (en) with
the following properties for all ω and n = 0, 1, :

( 7 ) ho = k0

( 8 ) if f(hn(ω)) ^M-η, then ||hn+1(ω) - hn{ώ)\\ ̂  ε

(9) if f(K(ω)) <M-η, then hn+ι(ω) = hn(ω) .

((9) is not crucial to our argument.)
Now since K has the RNP, hn converges almost everywhere to

a function h, by Corollary 1.2. It then follows by (8) that
M — 7) a.e. ft), and hence

(10) J/(Λ(α>))AP <M-η

(since \fcn(α))dP~> \h(ω)dP by the bounded convergence theorem\ By

the remark following the statement of Theorem 1.1, we have that

\fondP — k0 ^ dn + δ0 for all n and hence

(ID hdP » h

From (11) we obtain that [f(h)dP ^ f(k0) - δ0 > M - η by (6),

contradicting (10).

REMARK. It seems worth pointing out that the proof of Lemma
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2.4 actually gives an effective procedure for finding the desired k0.
The argument is also accessible without passing to the martingale
convergence theorem; the ZZ-norms of the differences of the sequence
(hn) will be strictly bounded away from 0, and hence (hn) will not
converge in ZΛ-norm, contradicting (c) of Corollary 1.2. Let us
see why this is so. Let τ = f(k0) — M + Tj τ > δ0 by (6). Fix n
and let Bn = [f(hn) ^ M — 7)]. By the inequality preceding (11) we
obtain that

(12) \f(hn(ω))dP ^ f(k0) -δn-δ0 = M~v) + τ-δn~δ0.

B u t

\f(hn(ω))dP = ί f(hn(ω))dP + ί f(K(ω)dP ^ MP{Bn)
{16) J JBn J-B*

Combining (12) and (13), we obtain that (τ - δn - δo)/η ̂  P(BJ; since
δn -> 0, we have that P{Bn) ^ (T — δo)/2η for all n large enough. But
then for such n,

^ eP(Bn) by (8)

> ————— , a contradiction.
- 2η

We next proceed to the most delicate consideration treated
here, that of strongly exposed points. Fix K a closed bounded
convex subset of a Banach space X A point k e K is said to be a
strongly exposed point of K if there exists an / e l * with | | / | | = 1
so that

f(Jc) = sup f(K) and for any sequence (JfcJ 6 K, if
(14)

/(fc«) —> /(A?) then kn->k in norm.

It is evident that if & is a strongly exposed point of K, then
fc is a denting point of K. Indeed, (14) is equivalent to the asser-
tion that for all ε > 0, there is an a > 0 so that k e S(f, a) and
diam S(f, a) < ε. Thus the following theorem of J. Bourgain [2]
implies Theorem 2.2.

THEOREM 2.5. Let K be a closed bounded convex set with the
RNP. Then K equals the closed convex hull of its set of strongly
exposed points.
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Following the terminology of Bourgain, we say that an / e l *
with 11/11 = 1 is a strongly exposing linear functional for if if there
is a keK satisfying (14). We denote the set of all such / e l *
with 11/11 = 1 by SELF. We proceed initially just as in [2]. (Assume

THEOREM 2.6. SELF is a norm-dense Gδ-subset of the unit
sphere of X*.

(The unit sphere of X* is by definition the set of all / e l * with

il/il = i )

Let us quickly sketch the proof that 2.6 => 2.5. Suppose 2.5
were false and let W equal the closed convex hull of its set of its
strongly exposed points. Let geX* with | |# | | = 1 so that g separates
W from some point in K. Thus sup^(TF) < M = sup g(K). Now
let ε > 0, to be decided later, and choose /eSELF with | | / ~ g\\ <
ε; also let keK satisfy (14). Then g(k) > f{k) - ε and f(k)>M-ε.
Hence g(k) > M — 2ε; so as long as M — 2ε > sup g(W), kί W and
we have a contradiction.

For each ε > 0, let

A£ = ( / e Γ : | | / | | = 1 and there is an a > 0 with

diam S(f, a)< ε} .

We now arrive at the crucial geometrical result of Bourgain.

LEMMA 2.7. Aβ is a dense subset of the unit sphere of X* for
every β > 0.

It is easily seen that 2.7 => 2.6. Indeed, for each β > 0, Aβ is
an open subset of the unit sphere of X* and SELF = f|ϊ=i Aί/n.
Thus 2.6 follows immediately from 2.7 and the Baire category
theorem.

At this point we part company with Bourgain's treatment and
formulate instead a lemma which yields 2.7 and is amenable to
martingale techniques.

LEMMA 2.8. Let / e Γ with \\f\\ = 1 and M = sup/(if). Let
ε > 0 and let 0 < rj < a. There exists a koe S(f, rj) so that

ko$W=cδ((K~ BkJ U ( J V n {x6X: f(x) <M- a})) .

We first present the proof that 2.8 => 2.7; this is rather more
involved than the argument that 2.4 => 2.3.

Let / e Γ with | | / | | = 1 and let δ and β > 0. We shall show
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that there is a geAβ with \\g — f\\ < δ. We may assume K has
more than one point, or else this is trivial. We may also assume
without loss of generality, that / assumes at least two values on
K; indeed the Hahn-Banach theorem yields that the set of all such
norm-one functionals is dense in the unit sphere of X*.

Now let ε be such that 2ε < β, a be such that 2a < δ, and also
suppose Ύ], ε, a satisfy

(15) η + ε + 6α < sup f{K) - inf f{K) .

Now choose k0 as in the statement of 2.8, then choose g a norm-
one functional so that sπp g(W) < g(k0). Evidently there is a 7 > 0
so that k0 6 S(g, 7) and W D S(g, 7) = 0 . It follows that

(16) || k - k01| < ε for all k e S(g, 7) ,

hence geAβ. We shall prove that \\g — f\\<δ. Now since g
separates kQ from Bko>1 f] {x 6 S: fix) < M — a}, g separates 0 from

jB*Ofl Π {x e X: f(x) < Λf - a} - k0

- J3Mn{x6X: f(x) <M-a~ f(ko)}zDBOίln{xeX: f(x) < -a} .

Thus, suppose xeX, \\x\\ <. 1; then

0 = 0(0) > g(x) if f(x) < -a .

This implies that

fix) ^ ~a if gix) = 0 ,

which in turn yields that

(17) |/(αθl ^ a if ||a;|| ^ 1 and g(χ) - 0 .

Since / and g have norm-one, (17) and a lemma of Bishop and
Phelps (see Lemma 2, page 188 of [6]) yield that

\\f-g\\£2a, or | |/+flr | | ^ 2α .

We finally give the technical details showing that by (15), the
latter inequality is false.

Since sup giK) = sup giSig, 7)), (16) yields

(18) gik0) ^ sup giK) - ε .

Now suppose | | / + g\\ ^ 2a. This implies |[sup — giK)] — M\ ^
2α and | —g(Jc0) — /(A?o)| ^ 2α, hence

(19) I inf giK) - (̂&0) | ^ 4α + Λf - /(fc0) ^ 77

Combining (18) and (19), we obtain
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sup g(K) - e ^ g(k0) ^ inf g(K) + η + 4a ,

that is,

sup g(K) - inf g(K) ^η + e + 4a .

Then since \\f + g\\ ^ 2α, we obtain sup f(K) - inf /(i£) ̂  η +
ε + 6α, contradicting (15).

Proof of Lemma 2.8. We proceed in much the same way as in
the proof of 2.4. Assume the conclusion is false. Let fc0 e IT be such
that (5) holds. It follows that we may obtain fc0 as almost equal to
a convex combination of elements xu , xn of X so that for all ί,
either XiβK and \\Xi — fco|| ^ ε or \\xt — jfco|| <; 1 and f(xt) < M — a.
We note that

(20) if f{x) <M - a, then || x - k01| > a - η .

Indeed,α - η < fih) - fix) ^ || / 1 | || Λb - a: || = || fc0 - «II Hence for all
if II ΐ̂ — fell ̂  min{ε, α — )?}. If Xi$Sif,η), we stop this process;
otherwise we "replace" &0 with xt and repeat the process.

Precisely, let (εy) be a summable sequence of positive numbers
satisfying (6), where δ0 = ΣyU εy. By the technique of the proof of
Proposition 2.1, we may choose an oo-quasi-martingale ihn) corres-
ponding to (εn) with the following properties for all n = 0, 1, 2, :

(21) K = fe

(22)

if fiKiω)) ^M—η, then hn(ω) e K and

||λn +i(ω)-Λn(α))|| ^ ε or

JQιn+1iώ)) < M- a and ||Λn(α>) - Λn+I(α>)|| ^ 1

(23) if fiKiω)) <M-η, then hn+1(ω) - λn(ω) .

It follows from (22) and (20) that

(24) if fiKiω))^M-η, then ||fcn+1(ω)-fcn(α))||^min{e, a-η}>0 .

Now the quasi-martingale (Λn) is valued in K + B01 and is hence
uniformly bounded. Moreover (kn) "stops" when it leaves K, by
(22) and (23); hence since K has the RNP, (itn) converges almost
everywhere to a function h, by Proposition 1.6. The rest of the
argument is exactly the same as in the proof of Lemma 2.4. That
is, fihiω)) <M—η a.e., and hence (10) and (11) hold, yielding the
contradiction given at the end of the proof of 2.4.

3* ε-strong extreme points and dyadic martingales* In this
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section we show how "<5-trees" are intimately connected to a new
quantitative notion of extreme point. As always, X denotes a fixed
Banach space.

DEFINITION. Let K be a bounded subset of X and ε > 0. A
point x 6 K is called an ε-strong extreme point of K if there is a
δ > 0 so that if kίf k2 belong to K and there is a point u on the
line segment joining k± and k2 with \\u — x\\ < δ, then \\u — kj^W < ε
or \\u —- k2\\ < ε. The set of all ε-strong extreme points of K is
denoted by Eε{K).

REMARKS.

1. Let K be convex. Then xeEε(K) if and only if there is a
δ > 0 so that if ku k2 belong to K and \\{{kx + &2)/2) - x\\ < δ, then
\\k1-k2\\<2ε.

2. Say that x e K is a strong extreme point if x is an ε-strong
extreme point for every ε > 0. Evidently a strong extreme point
is an extreme point; a denting point of a convex set is a strong
extreme point of the set.

3. It is evident that Eε(K) is a relatively open subset of K.
It follows that Eε(K) Φ 0 if Eε(K) Φ 0 .

It is useful to explicitly identify the complement of the set of
ε-strong extreme points.

DEFINITION. Let ε > 0, K a bounded subset of X, and let Gε(K)
denote the set of all points ueX so that there exist klf k2eK with
u on the line segment joining kx and k2 with \\u — kt\\ ^ ε for i = 1
and 2.

PROPOSITION 3.1. Let ε > 0. Then Eε(K) = K ~ Gε(K). More-
over if K is convex, then

Gε(K) = fc + k*: \\kx - fc,|| ^ 2ε and k.eK for i = 1, 2} .

The proof is an immediate consequence of the definitions.
We pass now to some generalizations of dyadic martingales. Let

(Ω, ̂ P ) be a fixed probability space and (J^j)f=Q an increasing
sequence of finite algebras of Sf with J ^ the trivial algebra.
Suppose that for all j and Aej^ , if P(A) = 0, then A = 0 . We
shall say that (j^J) is a generalized dyadic decomposition of 42 if
for all w JK has 271 atoms and no atom of έ?n is an atom of ^ n + 1 .
Let 0 < T <ί 1/2. A generalized dyadic decomposition ( J ^ ) of Ω is
called a τ-dyadic decomposition if for all n, all atoms A of JK and
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atoms B of ,J^ς+1, if ΰ g A then τ ^ P(B)/P(A) (so also P(B)/P(A) ^
1 — τ). Of course a dyadic decomposition is simply a 1/2-dyadic
decomposition. A quasi-martingale (/J shall be called dyadic (resp.
r-dyadic, resp. generalized-dyadic) if it is a quasi-martingale with
respect to a dyadic (resp. τ-dyadic, resp. generalized-dyadic) de-
composition.

REMARK. Suppose (/J is an X-valued generalized dyadic mar-
tingale with ||/n(α))|| £M and |J/n+1(α>) -/n(α>)| | ^δ for all n and
ω. Then (/n) corresponds precisely to a "generalized δ-tree", in
Banach space terminology. Indeed, e.g., say f0 = ko; then f is at
most two valued; say with values kλ and k2 where k0 = (1 — λ)^ +
Xk2 for some 0 < λ < 1. Note that then ||ft0 — feJI = λ||&2 — fciH ̂ S,
hence λ ^ <5/||(&2 - ftJII ^ <5/2M. Thus (/J is automatically a δ/2M-
dyadic martingale.

We are now prepared for our first result connecting ε-strong
extreme points and dyadic martingales.

PROPOSITION 3.2. Let δ > 0, K a closed bounded convex set, and
suppose that K has no δ-strong extreme points. Then for every
δ' < δ, there exists a dyadic martingale (gn) valued in K so that
\\gn+1(ω) — gn(co)\\ ^ δ' for all n and ω. That is, K contains a δr-
tree.

Proof. By Proposition 3.1, we have that

Gδ(K) - K, where Gδ(K)

( 2 5 ) - \hΛA: kLf k2eK a n d || h -k2\\^ 2δ\ .

Let (JK) be the standard dyadic decomposition of the half-open
unit interval [0, 1); for each n, ,5%fn is the algebra generated by
{[y _ i)/2% jβn): 1 £ j ^ 271}. Let δ' < δ" < δ. Let (εΛ) be positive
numbers so that

(26) δ0 - Σ en ^ δ" ~ δ' and δ0 <. δ - δ" .

We first construct an co -quasi-martingale (fn) corresponding to
(εj (with respect to (»iK)) valued in K so that

(27) ||/»+i(ω) - fn(ω)\\ ^ δ" for all n and ά) .

Let koeK be arbitrary and set /0 = &0. Let n ^ 0, suppose / n

is defined, fix H j ^ 2W and let k be the value of fn on [(j - l)/2%
j/2β). By (25) we may choose ^ , &2eiΓ with ||fc - {{k, + k2)/2)\\ ̂  εn
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and ||fc, - ft,|| ^2d.
It follows that ||& - kt\\ ^ 8 - εn ^ δ" for i = 1, 2. Define / n + 1

on [(i - l)/2 , j/2") by

/„, = * on [ i ^ i , SLzl); /,„ . *, on [ίt=O. X) .

Now that (/n) has been constructed, let (gn) be the martingale
(with respect to (J*O) given by Theorem 1.1. Since (JK) is a
dyadic decomposition, (gn) is a dyadic martingale. By the same
argument as in the proof of Proposition 2.1, we obtain that for all
n and ω,

\\gn+i(ω) - gn(ω)\\ ^ δ" - 2δ0 ^ δ' by (26) ,

completing the proof.
Some of our motivation for introducing ε-strong extreme points

for sets that are not necessarily convex came from the desire to
obtain a kind of converse to the preceding result. In fact, we
don't know the answer to the following question: suppose K contains
a δ'-tree for some <?' > 0, i.e., there is a dyadic martingale (gn)
valued in K and satisfying the conclusion of Proposition 3.2. Is
there a closed bounded convex nonempty subset L of K with
E6(L) = 0 for some ε > 0?

PROPOSITION 3.3. Let K be a closed bounded convex subset of X.
Then the following are equivalent:

(a) there is a nonempty subset A of K and a 3 > 0 so that A
has no δstrong extreme points',

(b) there exists a δ' > 0 and a generalized dyadic martingale
(gn) valued in K so that \\gn+1((o) — gn(o))\\ ̂  δ' for all n and ω.
That is, K contains a generalized δ'-tree.

Proof. (b)=>(a): Let (gn) as in (b) and set A = {gn(co): ω eΩ,
n = 0, 1, 2, •}. Then A has no δ'-approximate extreme points since
in fact A = Gδ(A).

(a)=>(b): Let A as in (a); by Proposition 3.1, AaG9(A). Let
δ' < δ" < δ and let (en) satisfy (26). By the same technique as in
the proof of Proposition 2.1, we may construct a generalized dyadic
decomposition (J^) and an oo-quasi-martingale (fn) corresponding
to (βy) (with respect to (J$O) with fn valued in A for all n and
satisfying (27). It follows as in the preceding argument that the
martingale (gn) of Theorem 1.1 is valued in cόAdK and satisfies
(b) of 3.3, completing the proof.

Let us say that a closed bounded convex subset K of a Banach
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space has the approximate Krein-Milman property (AKMP) if every
nonempty subset of K has an ε-strong extreme point for every
ε > 0; we say that a Banach space has the AKMP if its unit ball
has this property. Suppose K has the AKMP and ε > 0. Is K =
co Eε(K)Ί We do not know the answer, except in special cases. The
following result gives some information concerning this problem.

PROPOSITION 3.4. Let K be a closed bounded convex set and
ε > 0 so that K Φ co Eε(K). Then given 0 < 8 < ε and K > 0, there
exists a dyadic martingale (gn) valued in K and a measurable set
B in our probability space with measure larger than 1 — K SO that
\\gn+1(ω) — #„(<*>) || ^ δ for all n and ωeB.

Proof. Let / e Γ with | | / | | = 1 so that / separates cόEε(K)
from some point in K. (We can assume of course that Eε(K) Φ 0 ,
or else 3.4 is trivial in virtue of Proposition 3.2.) Thus we may
choose an η > 0 so that S(f,η) is disjoint from cδEε(K). Hence
S{f,η)<z~Gε{K) by Proposition 3.1. Thus if keS{f,η) and 7 > 0,
there exist kl9 k2eK with ||(kt + k2)/2 — k\\ < 7 and ||k — kt|| ^ ε — 7
for i = 1, 2.

Now let k0 e S(f, η) be such that

(28) f(k0) > M - η and V ~ W - /(fc0)) > χ _ κ ^

(where M =
Let δ < δ' < ε, set τ = η — (M — f(k0)), and let (εj be a sequence

of positive numbers so that

(29) δQ = Σ î satisfies δQ ^ g ' ~ δ and τ "~ g° > 1 - Λ: .
i=o 2 57

By the technique of Proposition 3.2 and Lemma 2.4, we may
choose a k-valued dyadic oo-quasi-martingale (hn) corresponding to
(en) so that for all n and ω,

(30)

(31)

and

(32)

if

if

f(K(o>))

f(K(ω)) <M-

K
V,

V,

ll^n+l(<W)

then hn+

-h

i(ω)

. ( ω ) 1 1 ^

Let (gn) be the dyadic martingale given by Theorem 1.1. Thus,
gn is valued in K and ||βrn — hn\\co ^ δn for all n (where δn=Σ?=«Si)

Now for each n, let Bn = [hneS(f, η)\. It follows by (32) that
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Bn ID Bn+1 for all n; set B = f|«=i Bn. It now follows exactly by the
argument given in the Remark following the proof of Lemma 2.4
that P(Bn) ^ (r - δn - δo)/η for all n. Hence

P(J3) = Urn P{Bn) ^ 2L=A > l _ κ by (28) .

Now let α)6JS. Then

(33) HΛn+1(α>) -Λn(α>)|| ^ δ' by (31).

But

Il0«+i(ω) - flrn(ω)|| ^ ||Λ«+i(α>) - Λn(ω)|| - ||flrn+1 - ΛΛ+1 |U - II ^ - &»|L

^ ί' - δκ + 1 - δn ^ 5' - 2d0 ^ δ by (29) ,

thus proving Proposition 3.4.

REMARKS. 1. Of course it follows immediately from 3.4 that
\\ΰn+i - ΰn\\i ^ 8P(B) > 0 for all n. There are Banach spaces X
which fail the RNP, yet have the property that for all generalized
dyadic uniformly bounded martingales (gn), lim.Λ_oo || flrΛ+1 — flτ» ||i = 0.
(See [4].). By Proposition 3.4, such spaces X satisfy: K — cδEε(K)
for every e > 0 and closed bounded convex set K, and also the
AKMP (by Proposition 3.3). It has been proved independently by
J. Bourgain and somewhat later, by J. Elton, that the particular
space X constructed in [4] contains a closed bounded convex non-
empty set K with no extreme points. Thus the AKMP does not
imply the KMP.

2. Let X satisfy the AKMP and K a convex body in X. That
is, K is closed convex with nonempty interior. Does K have an
extreme point?

3. Regard X as being a subspace of X** and let K be a closed
bounded convex subset of X\ denote the weak*-closure of K in X**
by K. Let us say that k e K is a weak* extreme point of K if k
is an extreme point of .K. Now if k 6 K is a strong extreme point
of K, then k is a weak* extreme point. Indeed, suppose this were
false. Choose F,GeϊC with FΦG and k = (F + G)/2. Choose
φ e l * with (F — G)(φ) = 1. Choose a net (ya, za)aeD of points in K
with ya—>F and za->G weak*. Since then ya — za->F — G weak*,
φ(ya — z«) —> 1> hence we may assume without loss of generality
that

(34) φ{ya -za)^\ for all a e D .

Set ε = 1/(41| ?> |(); since x is an ε-strong extreme point, we may
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choose δ > 0 so that for all y, zeK,

" δ==> 111/ -2II < 2e .(35) y + z

Now (ya + za)/2 —> x weakly. Hence we may choose alf , ak in
D and nonnegative scalars Xly , λfc with Σ ί U λ4 = 1 so that
IIΣf=i λ4((i/βi + sα<)/2) -x\\<δ. Set 7/ - Σ t i ^ e t and z = Σϊ=ι M β ί

Since ||(τ/ + z)/2 — cc|| < δ, we have

^ = i - by (35)

and the definition of ε. But

φ(y - * ) = < ? ( £ Uyai - zα()) > \ by (34) ,

a contradiction.
Now the proof of a result of J. Bourgain (Corollary 4 of [3])

yields that K has the RNP provided L has a weak* extreme point
for every closed bounded convex subset L of K. Thus i£* has the
RNP provided every such L has a strong extreme point.

4. Of course k e K is a strong extreme point of if if and only
if for every pair of sequences of points (un) and (vn) of K with
(un + vn)/2 —> k in norm, H ^^ — ̂ ^ || —> 0. Evidently a locally uniformly
convex Banach space has the property that every point of its unit
sphere is a strong extreme point of its unit ball. Is a Banach space
X with this property locally uniformly convex?
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