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FUNCTIONS OF TRANSLATION TYPE AND SOLID
BANACH SPACES OF FUNCTIONS

REINHARD BURGER

Functions of translation type were introduced by H. Reiter
and studied by the author in some detail. In this paper we
introduce a class of Banach spaces of functions on a locally
compact group, including the spaces - #?(G) of Liu-van
Rooij-Wang. Necessary and sufficient conditions are given
under which these spaces can be characterized by functions
of translation type. As application it is shown that a sub-
class of these spaces, including Wiener’s algebra, satisfies
a certain minimality property. Furthermore, we obtain a
generalization of a theorem on Fourier transforms, due to
Edwards-Hewitt-Ritter, in a very simple manner, whereas
the original proof took several pages.

Our notation follows that of [13]. G always denotes an arbitrary
locally compact group with left Haar measure dx. For a measurable
set Mc G let |M|; be the left Haar measure of M. 4, denotes the
Haar modulus of G.

We write €°(G) for the linear space of all continuous, complex-
valued functions on G, & °(G) for the Banach space of all continuous
functions vanishing at infinity with the norm || f|l. = sup,ce|f(@)]
and 27 (G) for the subspace of all functions with compact support
(supp). Li..(G) denotes the space of all locally integrable functions
on G. As usual measurable functions coinciding locally almost every-
where (l.a.e.) shall be identified. The spaces L?(G) have the usual
meaning. The left [right] translation operators L,[R,] are defined
by L,f(x): =f(y )[R, f(x): = f(zy)]. We call two functions w, and
w, equivalent (l.a.e.), w, ~wy(l.a.e.) if there exist constants C,, C,>0
such that Cw,(x) £ w,(x) £ Caw,(x)(l.a.e.). @, shall denote the char-
acteristic function of the set A. Given a measurable, locally essential-
ly bounded function w on G, (LL(G), || |l..) denotes the space of all
measurable functions f on G such that fw is in L'(G) with the norm
Il fll,w: = | fw],. This space is a Banach convolution algebra if and
only if w ~ w, l.a.e. for some w, € L},.(G) satisfying 0 < w, < o and
w,(xy) < Cw,(x)w,(y) for all z, y € G (cf. [9]). Moreover, L. (G) possesses
bounded approximate left units since .277(G) is dense in L.(G).

Throughout this paper we shall always consider Banach spaces
(B(@), || |ls) of measurable functions, continuously embedded into

1.(@ and satisfying the following conditions:

(B1) B(G) is left invariant, i.e., L, defines a continuous linear

operator on B(G) for every yeG.
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(B2) B(G) is a solid Banach space of [continuous] functions, i.e.,
feB(@Q) and |g(x)] £ |f(x)| l.a.e. for any measurable [continuous]
function g implies ge B(G) and || gz < || f Iz

(B3) B(G) is a Banach convolution module over some Beurling
algebra L.(G), i.e., he L'(G) and fe B(G) implies hxf e B(G) and
Whsflls < 1Rl f 5

REMARK 0.1. (i) Each Banach function space satisfying (Bl) —
(B3) contains .2727(G) as a subspace (cf. [6]).

(ii) If 2°(G) is dense in B(G) then the map y — L,f is con-
tinuous for each ye€ G and fe B(G) (cf. [6]).

(iii) The continuity of the map y — L,f is equivalent to the
fact that B(G) satisfies (B3) with w(y): = max(l, | L,||s) and that
L,(G)+B(G) is dense in B(G) (cf. [7]). Thus, if especially | L,|; =1
for all ye@G, B(G) is an essential Banach convolution module over

LYG).
(iv) If there is a constant C such that ||L,||; < C holds for all
y € G one can choose an equivalent norm || |3 on B(G) such that

L, ||z =1 for all ye@G, in particular we have |L,f||s = || fllz for
all feB(G).

I. Functions of translation type. Basic results. Funections of
translation type were introduced by H. Reiter in [14] to show certain
functorial properties of the space &(G) of Schwartz-Bruhat functions.
Their properties are discussed in some detail in [2] and [3]. Let us
shortly recall the definition and derive some results that will be used
in the proof of our main result.

DEFINITION 1.1. A continuous real-valued function w:G — R,
® =0, is called a function of [left] translation type if it satisfies
the following condition (V) [(V,)]:

There is an open, compactly generated subgroup G(w) < G with
the property that for each compact set K C G(w) there exists a
constant Cx > 0 such that w(xa) < Cxo(x)[w(ax) < Crw(x)] holds for
all x€ G and each ac K.

By V(@)[VL(G)] we shall denote the cone of all functions of [left]
translation type. Furthermore, we put VEG): = V(@) N B(G) and we
write V?(@) and V**(G) if B(G) = L*(G) or L' (G) (analogously V*(G)
and V}*(G@)). Moreover, we denote VE(G)N VZ(G) by VG).

REMARK 1.1. (i) BEach we V3(G) has a representation of the
form w = 3,., L, @, with y, € G and w, € V*(G), 0,(z) # 0 = z € G(w).

(ii) If G is connected one has to choose G(w) = G.

(iii) A discrete group G is not of interest for the considerations
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of this paper, since in this case we may choose G(w) = {e} and hence
VHG) = B(G).

LeEMMA 1.1. Let we LNG), w = 0, be given such that @ satisfies
V) (VL. If ke.2Z (G) such that supp k C G(w) then w ~ w=k and
=k e V(G| VHG)].

Proof. We shall only consider the case (V) since the other case

is even easier.
It is obvious that w=k is a continuous, positive funetion in L'(G).

If we denote K: = supp k, we get:

wshle) = | 2 Y0y kw)dy = O - | A )y o)
= C,o(x)

and

@) = O | 4y @@l = C-Ce-| oy kwdy
= C,- wxk(x)
and hence wxke V(G).

LEMMA 1.2. Let o be a locally essentially bounded function on
G satisfying p = 0 and o(xy) = p@)o(y). Then for every function
®, € V}(Q) we can find some @€ Vi(G) such that @ -0 < w, holds.

Proof. Let VC G be a symmetric, compact neighbourhood of e
and let G’ be the open subgroup of G generated by V. Then there
exists a constant p > 1 such that (K|, < |K|;-p",neN (cf. [11]).

Moreover, the existence of a constant g > 0 satisfying
sup{o(x)|xe V"} = ¢

follows from the assumptions imposed on p. If we choose now a
constant ¢ > max{p, ¢} the function g{x): = >\7., 7" @y ypa—1(x) satisfies
gy 'z) < ag(x) as well as glxy) < ag(x) for all xeG and each ye V
and hence the properties (V) and (V)) are satisfied for G(g) = G'.
Moreover, it is obvious that g(z)o(x) <1 holds for all xeG. Using
Lemma 1.1 we get for any ke.2(G) with suppk C G": g«k ~ ¢ and
gk e V}(@). If we choose now w,€ V}G) and put w: = w,-(g=k) we
derive w-p £ w,-(gxk)- 0 = C"-w,-g-0 < C'-w,. Since we V}G) the
proof is complete.

COROLLARY 1.3. Let G be an arbitrary locally compact group.
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Then we have: V(@) # {0}.

Proof. Due to Lemma 1.2 there exists a nontrivial function
o€ V'*(@). Hence, by Lemma 1.1 wxke V3(G) for each ke 27.(G) C
B(@) with supp k c G(w).

LemMmA 1.4. If 22(GQ) is dense in B(G) then VE(G) is dense in
B.(G).

Proof. For every feB,.(G) there exists some ke . 2¢.(G) such
that | f — k|| < ¢/2. Moreover, choose some ® € V*G) with ||w||, <
¢/2 and supp k Csupp w. Then it is easily seen that w: =w + ke
VZG) and hence || f — @' ||; < e.

REMARK 1.2. (i) The left version of Lemma 1.2 will be used in
a crucial way in order to prove our main theorem.

(ii) V»*(G) is dense in (L%).(G).

(iii) If 2°(G) is dense in B(G) and ||L,||; = 1 for all y € G then
V(@) is contained in & °(G@). Since the proof is essentially the same
as the proof of Proposition 1 of [2] it is omitted.

II. The main results. Let us begin with the following de-
finition:

DerFINITION 2.1. (i) B¥G): = {f € €(G) | there exists some ®;¢€
VEG) with | f] = o).

(ii) Let ge % (G), g # 0, and put fux): = ||(L,9): f|l-. Then
we define: _Z2(G): = {f e €(G)]| f? € B(G)}.

(iii) BYG): = {f’|f e Z"(G)}

If B = L? we shall write 8?(G) and _~*(G). If B = L}, we write
L-(G) and _Z,(G).

THEOREM 2.1. _#Z*(G) is a Banach space with the norm || f||z: =
1 79\lz that is continuously embedded into B(G) and satisfies (B1)-(B3)
with respect to each Banach algebra L.(G) that acts on B(G).

Proof. It is obvious that || |/ is a norm and that _#%(G) is
a Banach space with this norm, continuously embedded into B(G)
and satisfying (B1) and (B2). To show (B3) let he LL(G) and fe
AZHG) be given. Then

(he @) = [[(Lg)- el = | 1) (Ly-10)- 1oy
= {10 | L@y = h]+7@)
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bolds and hence [|h+f |l = |llLwl flla-

Moreover, we shall use the following uniform partition of unity
that was introduced by H. G. Feichtinger in [8] in a more general
form. Let V =V~ be an open, relatively compact subset of G. Then
there exists a subset ¥ = {y;};c; © G such that

(*) G=UyV and sugl{ilxeyiV}|§_C<oo
iel ze€

holds. Furthermore, there exists a bounded partition of unity (®,);.,C

z°(G), i.e.,

%@z(x) =1 and sup “(701,”00 < C < o ,
such that supp®; Cy,V, iel

REMARK 2.1. (i) The spaces ¥?(G) where introduced in [2] and
the spaces _Z?(G) in [12]. In [12] the independence of the spaces
AZP(@) of the funection g was claimed but the argument used there
fails, if no additional properties—related to commutativity—are im-
posed on G. In Theorem 2.4 we shall give necessary and sufficient
conditions for the independence of g. In the case B(G) = L*(G) it
turns out that the spaces _#;?(G) are in fact independent of the choice
of the function g for arbitrary G. Moreover, this theorem shows
that B%G) = _#(G) if and only if these conditions are satisfied.
Furthermore there will be given an example of a Banach space
satisfying (B1)-(B3) such that _#,°(G) is not independent of g.

(ii) In [2] it was shown that BY(G) = W'(G) holds, where W'(G)
denotes Wiener’s algebra as introduced by H. G. Feichtinger in [5]
and, using the main result of [5], B*(G) = _#,°(G) was derived. Our
main theorem gives a direct proof of this result, as well. It seems
to be worth noticing that it is possible to give a characterization
of the Banach space _,*(G) in terms of functions of translation type
without the direct use of a norm.

(iii) The spaces _#,"(G) were considered by various authors
using other but equivalent definitions (ef. [1], [4], [5], [10], [15]).
Using the terminology of these authors we have successively: _Z,?(G)=
&), 4" (@) =Z,GONFG), #£'(G) =W (G), #"R)=(&"°,1") and
AP = (Z°, 7). In all these cases except in [5] G is supposed to
be abelian.

LEMMA 2.2. Let VCG and {y})ie; ©G be given such that (+)
holds and let (®,);.; be a partition of unity corresponding to the
covering (y;V). Then each e VY(G) satisfies
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2 llpol. = CE o(y,) < o .

Proof. ||P:@|« = sup,er |Pi(y@)0(y2)| < || P:|lCro(y:) = C- o(y,)
and therefore >);.; || 20| <C-3;.; ®(y;). Furthermoresup,.;|{i|x¢
¥:;V}| < C' implies >;.; P, < C' and hence

5| r@de = re
iel JyiV (o]
for each fe L' (G).

From this relation we derive:

2 0W) = Cr-> S

iel Jy

w@)ds < CVC’-SGw(w)dx < oo
v ‘

LeMmA 2.3. For all g€.277(G), g = 0, we have B*(G) < _7Z,%G).

Proof. Let fe®B5G) with |f| < w and we VZG). Then w(z) =
[ (L.9): @]l = sup {|g(y)@(xy)|, y € supp 9} = Cx||g[l.o(x) and || f |z =
lwlls £ Cllo|ls < o since B(G) and _Z;(G) satisfy (B2).

Now we are able to prove our main theorem.

THEOREM 2.4. The following conditions are equivalent.

(1) RB'CB and pa): = sup {[| R.f*|ls/ll *15), f € #4HG)} is
locally bounmded for all ge 2% (G), g + 0.

(2) BEG) = _ZG) for all ge 2 (G), g # 0.

(3) _Z"G) s independent of the choice of the fumction ge
Q) g # 0, and different functions g yield equivalent norms.

Proof. (1)=(2) We have to show that to every fe_Z%G)
there exists some w;e VZG) with |f| Z C-w;, C < co.

Since p is locally bounded, strictly positive and satisfies o(zy) <
o(x)o(y) we can choose functions w, w, € V;(G) such that w-p < w,
holds (Lemma 1.2). If we now put:

@s(x): = [[(L,@)- f ||

we obtain:

(i) |f@)| =C:|Lo@)f(x)] = C-ox).

(ii) w; is continuous and w; = 0.

(i) ws(@a) = ||(Lee®)- f |l = sUD,eq|@(@™27'y) f(y)]

= sup,ee | @@ Y) f(Y)]-Cx = Cx-@s(w) for all xeG.

(iv) Without loss of generality we can assume that supp g con-
tains an open, symmetric neighbourhood V of ¢ satisfying g(v)-C' = 1
for all e V. Now choose a set {y;};c; G such that () is fullfilled
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and a corresponding partition of unity. Then we have:

o0 = || (L. (5 p.0))-7| S S Lip.0)- £ -

tel

= 03 [(Lu(@) Ly fll. = C 2|90 (Lo, 9)- i

tel

= O3 190 (B, (f)@)
Now Lemma 1.2 and Lemma 2.2 yield:
foslls = € 5 [P0 [ By (f)]1z = C" 3 0y)owa) [ £l
= C S 0@ F o < .

Hence w;e€ V#G) and | f| £ wy.
(2)=(3) 1is a simple application of the closed graph theorem.
(83)=(1) Let ge.% (G) be given and K C G be compact. Then
there exists he.% (G) such that sup,.,|L.0| <h and || f; =
C-lfoll, for all fe. z%G) = . #*G), C < . Thus we obtain
Sup,cx | R(fNils = C-ll f71], for all fe. #(G) and hence p is locally
bounded.

From now on we shall always assume that the conditions of the
above theorem are satisfied and therefore we shall write _Z"(G)
instead of _Z5G).

COROLLARY 2.5. ¥%G) ts @ Banach space with the norm {| |,
and satisfies the conditions (B1)-(B3).

REMARK 2.2. The following statements are easily derived from
Theorem 2.4.

(i) If heVi(G) then we have . 7Z%G) = {f € &(G)| f' € B(G)}.

(ii) If 7" c B\(G)C By(G) then _7%(G) = _z"(G).

(iii) The spaces [?(L?) of measurable functions being locally in
L and globally in 17 (ef. [1], [10], [15]) satisfy of course the condi-
tions of our theorem. Especially 1?(¢”°) = . #" holds (ef. [1]). It
is easy to see that also . Z? = _#Z"" holds.

At the end of this section we shall introduce a new family of
Banach spaces satisfying (B1)-(B3) that will give us an example of
a Banach space that does not satisfy the conditions of Theorem 2.3.

For a continuous function f on G and a closed subgroup H < G
f/H shall denote the restriction from F to H. For simplicity we
write [| f/H||, instead of || f/H ||zi)-

DEFINITION 2.2. Let 1 < p < co. Then we define
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E*G, H): = {f ¢ L@ N 2°(@)| sup | (Lf)/H], < =} .

THEOREM 2.6. E?*(G, H) is a Banach space with the norm

| Fllswt = 1£ s + 117l + s0D || (Lo f Y/
satisfying (B1)-(B3) with respect to LY(G).

Proof. It is a matter of routine to check that E?(G, H) is a
Banach space and satisfies (B1) and (B2). Moreover, even || L, f ||z, =
| fllz, holds. Now let feL'G) and ge E*G, H) be given. Then

we have
| @feoE ] = | I L.r@)] Lot h)| dydn
= | 1Ls@)1| |9 n) | dhdy < | £ |-sup | LoV H |
and hence [ £+0]5 = [ £ -9

ExAMPLE. Let us consider the space E~(G, H), where G denotes
the “ax + b’-group, i.e., G = {(a, b)|a, be R, a > 0} with multiplication
(a, b)-(a’, b'): = (ad’, ab’ + b) and H: = {(d", 0)|nec Z, d fixed}, where
d will be chosen in a appropriate way. Then H is a non-normal
subgroup of H.

Now let g, ke 2#.(G) be given such that g(e) = 0 and k(e) + 0,
and let K: =suppg and K,: =suppk. If furthermore, ¢ = (¢, ¢,),
¢, # 0, is given and ¢,: = (d*, 0)-(¢c,, ¢.) then a simple computation
shows that d can be chosen such that

(#) Kye,Ki'HN Ky, Ki'H= @ holds forall n,m=1,n +m .

Now define f(»): = 3.,z (1/n)R.1k(x). Then we have

£1@) = | (Log) o =3, %n (L,g)- Rtk

721

due to (x) since supp(f?) = U.,:: K. K;* and hence f, f7e % °(G).
Moreover (x) implies

| (L = 00 | LW HL S 90 58D (Lamsg) - (Rt -

heH

= g@)igllelklle for all zeG.

Therefore we have f, f'e E~(G, H). On the other hand we have:
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IRV 2 S 7% = 5 L (Le0) R -

a1

2 3 Z19(0)| k@) = o
since {(d", 0), n = 1}C HNsupp(R.(f?) and g(e), k(e) 0 .

Thus f and f? are functions in E~(G, H) such that B (f?) is not in
E~(G, H) and hence the space E~(G, H) does not satisfy the condi-
tions (1)-(3) of Theorem 2.4.

II1. Applications.

THEOREM 3.1. LB““(G) is the minimal space in the family of all
Banach spaces satisfying (B1)-(B3) with respect to L.(G).

Proof. Let fe®B"*(G) be given. By Remark 1.2 (resp. Lemma
1.4) V**(GQ) is dense in (L.),(G) and hence, given ¢ > 0, there exists
®e V(@) such that |f| < wand ||w|,,, £ || fll,. + ¢ Choosing any
ke %#.(G) such that suppk is contained in the component of the
identity (which in turn is contained in G(w)), Lemma 1.1 yields w <
C,-(w*k) and C, does not depend on @w. Thus we get

I Flls = llollz = Cellkllzll@]y0 = Cilll £ 110 + €) for all e > 0.
Hence || fllz = C-|| fll.,. for every feL"*(G).

REMARK 3.1. This theorem reduces to Corollary 3 of [2] and
to Theorem 4 of [5] in the case w=1. The case w =1 was also
generalized in an other direction in [8].

For the rest of this section we shall assume that G is abelian
and that B(G) satisfies (B1)-(B3) with respect to LYG).

. THEOREM §.2. Let f e L{G) with compact support be given. If
feB(G) then fe #%G) and there eog\ists a constant M depending
only on B(G) and supp f such that ||f|lz < M| f]l5.

Proof. Take any_ function ke 2#.(G) such that k¥ = 1 on supp f
and ke 2% G) = B(G) (in fact for every function ke .%,(@) with
ke LY(G) one has ke BYQ®), since BYG) is a Segal algebra, cf. [2],
[13]). Thus there is a function we V{G®) with |k| < and from
f = f-k we derive |f| < |fl*®. Since it is obvious that |F|x®w e V)
we have fe QSB(@. Moreclver, f )’glf | *@° holds (see proof of Theorem
2.1) and hence ||f || = [|(f)llz= | @ |l If||ls = M| flls with M= || o?|,<
oo gsince w! ~ w (see proof of Lemma 2.3).
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REMARK 3.2. (i) This theorem generalizes earlier results of F.
Holland (cf. [10]), Edwards—Hewitt—Ritter (cf. [4]) and J. Stewart
(ef. [15]). Besides, our proof seems to be the simplest one. For
arbitrary abelian G this theorem was first established by Edwards—
Hewitt—Ritter in the case B(G) = L*(G),2 < p < o, in order to
prove their main results on multipliers. But their proof, using the
theory of entire functions, runs over several pages. The proofs of
Holland (G = R) and Stewart (G abelian) use Holder’s inequality
together with other results from Harmonic Analysis.

(ii) Let f satisfy the hypothesis of Theorem 3.2 with B = [?(L?)
(ef. [1]). Under these assumptions 7 el?(L') is stated in Lemma 2
of [1]. Using Theorem 3.2 together with Remark 2.2 (iii) we get
Ffe _#*@) = 1%(%). This improves part of this lemma, since I(&")&
I?(L") (except for discrete @).

Added in proof. In the paper “Banach convolution algebras of
Wiener’s type” (to appear in Proc. Conf. “Functions, Series, Operators”,
Budapest) H. G. Feichtinger introduced so called Banach spaces of
Wiener’s type W(B, C). The construction involves a certain compact
set @ G. In order to show the independence of @ the author assumes
C to be right invariant. Since it can be shown that for the special
case B = @ °(G) this independence is equivalent to the independence
of the spaces _#,°(G) of the function g, it follows from our example
that one cannot omit a condition related to right invariance of C.
Right invariance of C also implies BY(G) = #ZYG) = W& °(G), C).
In fact even for arbitrary spaces W(B, C) our condition (i) of Theorem
2.4, if modified in the obvious way, is necessary and sufficient for
the independence of @. However, a characterization of the spaces
W(B, C) in the sense of Theorem 2.4 by functions of translation
type is impossible for general B.
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