HAUSDORFF MEASURE, BMO, AND ANALYTIC FUNCTIONS

ROBERT KAUFMAN

Besicovitch's theorem on removable singularities is extended to function of class BMO. The extende d theorem admits a converse.

Let W be an open set in the plane, and the class $\operatorname{BMO}(W)$ be defined as follows: a measurable function f on W is BMO if to each ball B contained in W there is a constant c = c(B) so that $\iint_B |f(x,y) - c(B)| dxdy \leq Am(B)$, with a constant A = A(f). For any complex function f on W, S(f) is the set of points at which f fails to admit a complex derivative; S(f) in general is neither open nor closed, but is in fact a Borel set.

THEOREM (a). Let $f \in BMO(W)$ and suppose that S(f) has 1-dimensional Hausdorff measure 0. Then there is a function f_1 , holomorphic on W, equal to f on W - S(f).

(b) Let S be a compact set of positive 1-measure. Then there is a function g, analytic off S, of class BMO (R^2) with Taylor expansion $g(z) = z^{-1} + \cdots$ at infinity.

Proof of (a). This relies on Theorem 1 of [3] and the following variant form of Vitali's covering theorem: if a sequence of open balls $(B(a_i, r_i))_1^{\infty}$ covers a bounded set E, then it contains a disjoint collection $(B(a_i, r_i))_1^{\infty}$ such that $\bigcup_j B(a_i, 3r_j)$ covers E. Let V be a bounded subset of W and $\varepsilon > 0$; we construct coverings of $V \cap S(f)$ and V - S(f) separately. Inasmuch as S(f) has 1-measure 0 we can cover it with balls $B(a_i, r_i)$ such that $B(a_i, 2r_i) \subseteq W$ and $\sum r_i < \varepsilon$. For each point z in V - S(f) we can find a number r(z) > 0 so that $B(z, 6r(z)) \subseteq W$ and $|f(w) - f(z) - (z - w)f'(z)| < \varepsilon r(z)$ when $w \in B(z, 6r(z))$. The collection B(z, r(z)) contains a disjoint sequence $B(z_j, r(z_j))$ such that $\bigcup B(z_j, 3\pi(z_j)) \supseteq V - S(f)$; by the disjointness, $\sum 9\pi\lambda^2(z_j) \le 9m(V)$. Using the fact that constants are analytic, we see that the conditions of [3, p. 108] are fulfilled, so that $f = f_1$ a.e., for some function f_1 holomorphic on W. Then $f - f_1$ is differentiable on S - S(f), and so $f = f_1$ there.

An easy improvement can be obtained from [3], namely, the constant c(B) in the definition of BMO(W) can be replaced by a polynomial (depending on B).

Proof of (b). By a theorem of Frostman [2, p. 7], S carries a

probability measure μ , such that $\mu(B(z, r)) \leq cr$ for every ball B of radius r > 0. Let

$$g(z) = \int (z - \zeta)^{-1} \mu(d\zeta)$$

so that g is analytic off S and $g(z)=z^{-1}+\cdots$. To prove that $g\in BMO(R^2)$ we choose a ball B=B(w,r), set $B^*=B(w,2r)$ and $C=R^2-B^*$. Let

$$g_1(z) = \iint_{B_*} (z - \zeta)^{-1} \mu(d\zeta)$$

 $g_2(z) = g(z) - g_1(z)$.

Now

$$egin{align} \int \int_B |g_{\scriptscriptstyle 1}(z)| \, dx dy & \leq \mu(B^*) \sup \int \int_B |z-\zeta|^{-1} dx dy \ & = 2\pi r \mu(B^*) \leq 4\pi c r^2 \; . \end{split}$$

Further

$$\iint_{B} |g_{\scriptscriptstyle 2}(z) - g_{\scriptscriptstyle 2}(w)| \, dx dy \leq \int_{C} \!\! \int_{B} |(z-\zeta)^{\scriptscriptstyle -1} - (w-\zeta)^{\scriptscriptstyle -1}| \, dx dy \mu(d\zeta) \; .$$

From the inequality $|\zeta-w|>2r$ $(\zeta\in C)$, we find that the inner integral doesn't exceed $(4\pi/3)\cdot r^3|\zeta-w|^{-2}$, and the entire integral is at most

$$egin{align} (4\pi/3) \cdot r^3 \!\! \int_{c} \! |w - \zeta|^{-2} \mu(d\zeta) \ & \leq (4\pi/3) \cdot r^3 c (2r)^{-1} = 2\pi/3 \cdot c r^2 \; . \end{align}$$

Hence

$$\iint_{B} |g(z) - g_{2}(w)| dxdy \leq 3cm(B).$$

REMARKS. (i) A Borel set S of positive 1-dimensional measure contains a compact set S_0 of the same kind (Besicovitch) [2, p. 11].

- (ii) Besicovitch proved (a) for bounded functions; for continuous f_1 he proved the sufficiency of the hypothesis that S(f) have σ -finite 1-dimensional measure. Combining his method for this variant, with the one presented above for BMO, we can replace continuity of f by VMO (vanishing mean oscillation), that is $\iint_B |f(x,y) c(B)| dx dy \leq m(B) \varepsilon(m(B)), \text{ where } \varepsilon(0+) = 0.$ (iii) The variant just mentioned also admits a converse; to
- (iii) The variant just mentioned also admits a converse; to explain this we observe that if the probability measure μ figuring in the proof of (b) has the stronger property that $\mu(B(z, r)) \leq r\varepsilon(r)$ with $\varepsilon(0+)=0$, then the function g is VMO (R^2) . We use the

following theorem [4]; a Borel set S_0 , not of σ -finite 1-dimensional measure, contains a compact set S_0 , with positive Hausdorff measure for a measure function $h(u) = u \varepsilon(u)$; by Frostman's theorem S_0 then carries a probability measure μ with the stronger property needed to improve VMO to BMO.

REFERENCES

- 1. A. Besicovitch, On sufficient conditions for a function to be analytic, Proc. London Math. Soc., 2 (32) (1931), 1-9.
- 2. L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand, 1967.
- 3. R. Kaufman and J.-M. Wu, Removable singularities for analytic or subharmonic functions, Arkiv for Mat., 18 (1980), 107-116.
- 4. M. Sion and D. Sjerve, Approximation properties of measures generated by continuous set functions, Mathematika, 9 (1962), 145-156.

Received August 3, 1981.

University of Illinois Urbana, IL 61801