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A FOURIER TRANSFORM THEOREM ON
NILMANIFOLDS AND NIL-THETA
FUNCTIONS

RICHARD PENNEY

A theorem describing the image of the Euclidean Fourier
transform on certain nilmanifolds is proven. As an appli-
cation, we compute the Fourier transform of a certain class
of distributions on a manifold which is analogous with the
class of classical theta functions on C. It is shown that
our theta functions satisfy a functional equation which
generalizes the functional equation satisfied by the Jacobi
theta functions.

In this paper we present what we feel is a fascinating theorem
concerning the Euclidian Fourier transform of certain functions on
certain nilmanifolds. As an application of our Fourier transform
theorem, we compute the Fourier transform of a certain class of
distributions on a nilmanifold which is analogous to the class of
theta functions on C. It is shown that our theta distributions
satisfy a funectional equation which generalizes the functional equa-
tion satisfied by the Jacobi theta functions.

To describe our Fourier transform theorem, let <& be an
associative, finite dimensional, nilpotent algebra over R. <% is said
to be left commutative if zyw = yaw for all »,y, we . & is
said to be HAT if < is left commutative and dim 2(&) =1
(2 (<#) = center of &#). In this case 2 (<#) annihilates <& because
the two sided annihilator of <Z is nontrivial and central. (%)
is, in fact, precisely the two sided annihilator of <&. <Z defines
a nilpotent Lie algebra by setting [x, y] = 2y — yx. The correspond-
ing Lie group can be realized as the space <# along with the
product zxy = « + 9 + 2y. The exponential map exp., is given by
exXps & = Sy &/nl. The inverse of 2e€F is T = >, (—1)""
(We choose the notation # in preference to xz™* to avoid confusion
with inverses in <&, which of course don’t exist). When we wish
to think of <& as a group we will use the notation (<7 *).

Now suppose that <# is a HAT algebra which contains a closed
subgroup I” such that the component of the identity of I' is 2°(<%)
and I'\(<Z, *) is compact. Let ¢ be an abelian character of I" which
is nontrivial on 2°(&). A function 4 on & is said to be p-pri-
mary if 4 is C~ on < and 4 satisfies y(v*x) = p(¥)y(z) for all
vel' and xe<Z. Our Fourier transform theorem describes the
Fourier transform of the p-primary functions.
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The sense in which we mean the Fourier transform needs some
explanation. Let d<Z denote an additive Haar measure on the
vector space <& Let .57(<#) denote the Schwartz space of rapidly
decreasing functions on <. If + is any locally integrable function
on &7 that grows at most polynomially, we may use o to define a
Schwartz distribution (also denoted ) on &(<Z) by setting

G = revwize .

Schwartz distributions on < have Fourier transforms which are
Schwartz distributions on <#*. It is in this distributional sense
that we take the word “Fourier transform”. The specific conven-
tions we adopt for the Fourier transform are described below for
fe S (#*). The Haar measure d<Z* on <Z* is normalized by
requiring that & ‘& = I.

FTFO) = L F@) exp —27i (&, Ny dF@)  (ve B
T f () — L‘g()\,) exp2mi (x,\) dB*N)  (@eB).

Now <# anti-acts on <#* on both the left and the right accord-
ing to the formulas

- My) = May)
Nea(y) = Myx) .

(&2, ) also anti-acts on &Z* by setting z*Ax = A + o) and M@ = A+
ax. Each coset of Z*/(<Z, ) and (=Z, *)\<#* is an affine subspace
of #*. Hence each such coset carries an essentially unique Haar
measure. Our first theorem on the Fourier transform of g-primary
functions is the following.

THEOREM A. Let « be p-primary, then F + is supported in a
countable union of Z*|(<Z, ) cosets. On each of these cosets, F
18 a C> function times the Haar measure of the given coset.

This theorem, however, is just the beginning of the story. We
show that 7 4 is supported in a finite union of I'\Z*/(<Z, *) double
cosets. Let \, -+, N, be a complete set of representatives for these
double cosets. Let _Z(\;,) = \*<%. From the transformation pro-
perties of 4 under I', &+ is determined by its restrictions 4 to
A (N). On A (N,), 4 is a C= function. For xe ., let

V(X)) = exp 2T, NN+ T) .
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We prove the following

THEOREM B. For each © there is a closed subgroup 4, and a
unique character X; of 4; such that

(1) J0%2) = X;(8)9:(x) for all de 4.

(2) ;18 C~ on the connected hull _#; of 4, and ; is Schwartz
transverse to _#;.

(38) Let &, denote the space of functions satisfying (2) above
relative to 4,. Then the mapping + — (Jy, « -, ¥,) of into >,, D F%
18 an isomorphism of vector spaces.

(4) Let R(x) denote right translation of functions by xe€<Z

(B@)f () = f(y=x)). Then R@)(¥.) = (R(@)¥);.

It is also true that the spaces in question (i.e., the spaces &’
above and the space of y-primary functions) can all be given unitary
structures in a natural way and that, upon suitable normalization,
the mapping « — (4, « * -, ¥,) becomes a unitary isomorphism. Theo-
rems A and B taken together amount to an explicit computation of
the Fourier transform of an arbitrary g-primary function +, espe-
cially in the case that the induced representation ind (I, (<7 *), &)
is irreducible. In this case there is only one space &, and the
mapping « — 4, is an intertwining operator for two irreducible
representations ind (I, (<7, =), ¢#) and ind (4,, (<&, *), X,). The science
of constructing such operators is well developed (see [4] e.g.).
Typically 4, will be expressible in the form

@) = i

where K is an abelian normal subgroup of 4, and 4; is trivial on
the co-compact subgroup I';N K of K. A remarkable aspect of such
formulas in that # r(\) for a given )\ depends only on the values
of + along certain cosets of certain relatively small subgroups of
(B, *).

As an application we consider the following situation. Let &
be an abelian, nilpotent, finite dimensional algebra over R. Let B
be a symmetric, bi-linear form on % which satisfies B(xy, w) =
B(y, xw). We define the scalar log function [ on & by

@)= 3 (=1 B, 2" )n .

Note that the sum is really finite so [ is a polynomial.

We suppose that there is a vector lattice 4 .9 such that £2C
A and B4, 4) C Z. Let o be a complex number. We let 6,(x) denote
the following (usually divergent) series on &%
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0,(x) = Z/,Iexp 2ri(ol(n) + B(n, x)) .

This series is called the theta series of period ¢ associated with
& If o is real each term of 6, is bounded so 4, may be considered
as a sequence of Schwartz distributions on &~ We shall show that
in this case 6, converges in the sense of distribution theory. One
other case in which convergence occurs is where & is R* with
trivial multiplication and B is the usual scalar product. In this case
() = —||x|*/2. Let 4 = Z". Then

0,(x) = >, exp 2wi(—o||n|*/2 + n-x) .

If 0 has real imaginary part, this sum converges uniformly in x
and y. The limit is a slight variant of the classical Jacobi theta
on C".

The 4, series behave in many ways like classical theta functions.
For example, if ¢ is real we prove the following theorem (which
does not use the Fourier transform result).

THEOREM C. If o is real, then as a distribution

0,(x) = K(o) Z‘h exp 2wiol(c™(x + m))
where K(o) is some constant.

In the case that . = R* with trivial multiplication and B is
the usual scalar product, this result is equivalent with the usual
transformation identity of the Jacobi theta functions under the
modular group. We also outline a technique for computing K(o).

To apply the Fourier transform theorem we consider a slightly
larger class of functions—the mollified theta functions. A linear
mapping 7,: & — % is said to be a mollifier if 7, satisfies z,(xy) =
aty = 0 for all ¢, ye & and Bz, 7,y) = B(tw, ¥). The 0 map is a
mollifier, although & always has nontrivial mollifiers too. For
example, if e and e5”2 =0 then the mapping z,.x) = ex is a
mollifier. The two variable series

0., y) = [exp 2mi(ol(x) + B(rox, ¥))10,(y — o)

is called the mollified theta series with period ¢ and mollifier z,.
Using our Fourier transform theorem we may compute the Fourier
transfer on & X & of any mollified theta functions. See §III.

II. General theory. We begin with a proof of Theorem A
above. Throughout this work we shall write distributions in func-
tional notation. For example if 4 is a Schwartz distribution on a
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vector space V and A is a topological isomorphism of V into V
which preserves the Haar measure dV, and preserves .&“(V), then
by x— +(A(x)) we shall mean the distribution +r, defined by {f, ¥, =
{foA™, 4>. Similarly, if g(x) is a C function which has bounded
derivatives of all orders, by x — g(x)y(x) we shall mean the distri-

bution f— {fg, ¥).
We consider pg-primary functions as distributions on <Z as

usual and let & denote the Fourier transform as described above.
First we shall prove the statements about the support of .# .

LEMMA 1. Let + be a Schwartz distribution on <&. Let L(g)y
be the distribution «— (gxx) and let R(g)y be x— p(xxg). (See
above comments for motation). Then

(a) F (L(g)p)(N) = exp —27i{g, \p F ¥ (g*N\)
(b) F(R(@)y)(\) = exp —2mi{g, \).F p(M+7) . O

Proof. Straightforward.

Now let &(<#) be the left annihilator of <Z,
(B = {we F e = {0}} .

Let _#.c <#* be the set of functionals ) such that exp-2mwin
equals ¢ on I'N A(F) =TI.,. It can easily be seen that _~z, is
nonempty, although the nontriviality also follows from the corollary
below.

LEMMA 2. Let + be p-primary. Then F+p has a restriction
to _#., in the semse that if f=g on _#., then F ¥(f) = F (9)
for f, ge P (Z*).

Proof. There is a character f# of the abelian group £ (<Z)
which equals ¢ on I',. There is a functional A\ €_ such that
exp 27N, | F(#) = fi. Let 4 be p-primary and let

A"(x) = exp —2miz, M) (2) ,
Then 4" (72) = 4" (x) for Yel' and xe.<# Also
FP\) = F A7 (N — M)

so it suffices to show that if f=0 on _# — A\, then _#°(f) =0. To
see this, let ¢ = F ~'f, g (). Let

go(x) = Zg gx + 7).
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This converges to a C= function because ¢ is Schwartz. It follows
from reasoning similar to that found in the proof of Corollary 19
below that g, = 0 implies that _#7(¢g) = 0. But, from the Poisson
summation formula

0@ = | FO) exp —2mie, Myan
(I )

where (I'y)* = {he F*|NI") T Z}. But then (I'.)* = _#Z. — N SO

indeed g,=0. Our lemma follows from this since ¢ (g)=_4+7(f). [

Now let ne_z,.. Let . Z(\) =rx+ L (Z)*. Then _#Z is a
countable union of sets of the form _#Z(\). The next lemma shows,
among other things that each _Z(\) is a coset of ZZ*/(<Z *).

LemMMmA 3. Let Me.Z* and suppose N 1s nonzero on 2 (<F).
Then x-3v=0 iff xc < (F). Also F(Z) ={\-xlxe P} and x-\=
N iff xe Z(F).

Proof. Suppose z-A =0 and z¢ < (<#). Then there is an =
such that x-<Z" = {0} and 2<#"* % 0. Then x.Z""'C 2 () so
MxeF ™) = 0. This is a contradiction to dim %(<#) = 1. The
second statement is equivalent to saying . (<#) = ), ker »-2. This
follows trivially from the first statement.

To prove the third statement, if z is not in 27(<#) there is an
% such that [z, &#"] =0 and [», &&" '] # 0. Then [z, Z"'|C 2 ()
so there is a ye<F™* such that A([x, y]) 0. But then (z-x —
nex)(y) = 0, which is a contradiction. ]

Next we show the “finiteness” claim in Theorem B. Let 7, =
{(Be Z* || Z(F) = N2 (F) for all ne _#Z}.

LEMMA 4. 7, = Br=B.

Proof. Consider the mapping = — z-A — :-x of <& into 2 ()"
By the lemma this mapping is surjective. Let y=%. Then x+\*y=
M+ a2 4+ e 4 2nvy. By left commutativity aavy = vy = —\(x + %)
since x + vy + xy = 0. Hence x\*xy = N -+ - N — A-2. 1

COROLLARY 5. _#Z, is a finite union of sets of the form
s 7 (N), NE_ .

Proof. Let ne_ . Let I'={xe<F|zsne_#). Then zel
iff @x(\+Z) = wx A (\) intersects .. Hence I's Z(\) = _# by
Lemma 4. [I" not be a subgroup of (& ). However, on .<7(F),
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x+My) = Ma+y*E). Hence I is a union of right I' cosets. The
component of 0 in [7 is I, = {x|x-N]| () =0}. This is a two
sided ideal of <Z and hence a normal subgroup of (<7, *). sl is
a closed subgroup of (<Z *) and the quotient M, = (7, *)/[+[, is
compact. The image of I’ in M, is a discrete, closed subset. Hence
[Ir«I*, is compact. The image of I’ in M, is a discrete, closed
subset. Hence I'/I'sx[", is finite. Let =z, be a collection of coset
representatives for I°. Then

Ay = U @[+ )x ' (N) . D

The spaces I'\I'x_# (\) are conveniently describable as homo-
geneous spaces. Let I'y'={vel'|vsne Z\)}={vel|7- ML (F)=0}=
{velr|v« #Z®)=_#()}. Then N\I's.#Z(N)=I\.#Z(\). From Lemma
3, for each v eI, there is a 6 € & such that v\ = Ax6. Let 4, =
{6 e Z|7vs\ = Ax0 for some YeI'}. Note that 4,D {x e F | v = A},
There is a one-to-one correspondence between elements of I'\.Z(\)
and (2, *)/4;. In fact for ge._#(\) there is an z such that g =
Mg, gx@ = Ax(xx4;). The mapping I'y*3 — xx4; defines the corres-
pondence. Hence we have proven the following

PROPOSITION 6. I'\ #. is a finite union of sets of the form
I\I's.#Z(\). FEach of these sets is a (£, x) homogeneous space.

Next we prove the fact that Fw is C~ on _#. This the
hardest part of the proof of Theorems A and B. The main techni-
que is a pair of theorems on C* vectors for representations of Lie
groups due to Poulsen. Specifically, let U be a continuous unitary
representation of a Lie group G in a Hilbert space S#(U).

Let C=(U) be the space of differentiable vectors for U — i.e.,
C=(U) is the set of vectors v for which g —U(g)v is a C~ mapping
of G into the representation space S (U) of U.

We give C=(U) its usual topology (see [9]). Let C~=(U) be the
conjugate dual space to C*(U). The scalar product on 2#°(U) allows
us to imbed S~ (U) in C~=(U). C=(U) is U invariant. We set
U = U|C=(U). We let U™ denote the contragredient representa-
tion. The theorem which allows us to conclude that .+ is a C*
function is the following beautiful result due to Poulsen ([9], Corol-
lary 2.1).

THEOREM 7. Let U, and U, be unitary representations of the
Lie group G. Suppose T: C>(U) — C~(U,) is a continuous operator
which intertwines U and U;>. Then the image of T is contained
in C=(U,) and T is continuous from C=(U,) to C=(U,).
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Proof. Let B:C=(U,) x C(U,) —C be defined by pAx,y) =
{y, Tx). Then apply Corollary 2.1 of [9] and note the comments
following 2.1 in [9]. O

The following result, which also is a corollary of results of [9],
enables us to explicitly compute ..

THEOREM 8. If either U, or U, is a finite direct sum of irre-
ducible representations then T has a unique bounded extension to
an intertwining operator from £ (U, to =7 (U,).

Proof. It is known that C~(U,) is reflexive. Hence T*: C=(U,)—
C~=(U,). T has a bounded extension iff T* does. Hence it suffices
to assume that U, is a finite sum of irreducible representations.
Therefore, it suffices to assume that U, is irreducible. By Theorem
7, T*:C~(U,) — C=(U,). T*T is then a self intertwining operator
for U;>. By Corollary 3.5 of [9], T*T=xI. Hence ||T|=|n"%. [

Next we describe the representations we intend to use as U,
and U,. First some generalities on induced representations. Let
K be a closed subgroup of a nilpotent Lie group N and let V be a
unitary representation of K in a Hilbert space 5#°(V). Let &£ (U7)
denote the set of 5#°(V) valued measurable maps f on N which
satisfy

(1) fkx) = V(k)f(x) for ke K and ze N.

(2) |Iflle LXK\N) relative to the canonical measure.

Let UV be the unitary representation of N in S#(U”) defined
by right translation. We shall also write U” = ind (K, N, V).
Whenever we discuss induced representations we always will be
using the above realization unless otherwise stated.

Now let U, = ind (I, (<7, %), 7). It follows from theorem of
[9] and the compactness of I'\(<Z =) that C<(U,) is precisely the
space of p-primary functions of (<7, *).

LEMMA 9. U, is a finite sum of irreducible representations.

Proof. Since I'\(<Z, *) is compact it is known that U, is an
utmost countable sum of irreducible representations and any given
irreducible representation occurs in U, with utmost finite multiplicity.
We claim that U, is in fact primary. This will prove our lemma.
The primarity of U, follows from results of Moore-Wolf and the
following sublemma.

Sublemma 10. Every irreducible unitary representation U of
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(&4, *), which is nontrivial on Z(<#) is square integrable in the
sense of Moore-Wolf [8].

This sublemma implies the primarity of U, for from Moore-Wolf
[8] two square integrable representations are equivalent on (<7 x)
iff they have the same character on Z(<#). Clearly each irreducible
subrepresentation of U, is equivalent to every other irreducible
subrepresentation by this criterion. To prove the sublemma it
suffices to show that for any A\ e.cZ* such that \|Z(<#) = 0 we have
Mz, y]) = 0 for all y iff xe Z(B). (See Moore-Wolf, loc. cit.) This
was shown in Lemma 6 above. 1

To describe U, let _#. be as before. By the previous results
I'\_#, is a finite union of sets of the form I'\I"'x.#(\) and each of
these sets is a (<&, *) homogeneous space. Homogeneous spaces
carry invariant measures so I'\_#, has a (<%, ) invariant measure.
This measure is far from unique since I'\_#, is not necessarily con-
nected. However, we may normalize the measure on I'\_#, as
follows. _. is an additive coset of the additive subgroup .#; of
Z* given by #,={Ne F*INI.. =0}. Recall I'. =TI N L (F)).
As such, _#, carries an essentially unique measure d_# which is
invariant under the transformation x >« +y —z forallx, y, z€ _#.
Let f be a continuous function on _ with compact support. Then
Siror f(7N) = f(\) defines an element of C,(I'\.#.) and there is a
unique choice of invariant measures v on I'\_#, such that S B fa# =

2ins, fdv. We assume that v has been so chosen. *

Let 5#(¢) be set of measurable functions on _#, for which

(1) p(MfO) = exp —2midy, My f(ven) veT.

(2) |fleLX(I\Aw-

Then 5#(p) is a Hilbert space with the obvious innerproduct.
We define a representation U, of (<7, *) in S#4(¢) by setting
U, (9)f(\) = exp —27i{(g, Ay f(A+g). The point of these definitions is
that they mimic the invariance properties of the Fourier transform
of primary functions as described in Lemma 1. In fact, if 4 is a
primary function, .7 + meets the algebraic condition necessary to
define a functional on C=(U,): t(7). 7 ¥(\) = exp —2wi{Y, A\). 7 Y(V*N\),
for all YelI'. The question is, does .77+ have the correct rate of
decay at o to define an element of C~=(U,). In fact, if we can
show that 4 eC~(U, then 4 — .7+ will define a continuous
intertwining operator between C=(U,) and C~=(U,. By Poulsen’s
theorem (7 above) o — .74 will then be a continuous mapping of
C=(U,) into C=(U,). It will be shown that C=(U,) consists of C~
functions on I'\_#. so we will have proven that .7+ is a C~ func-
tion. Actually C~(U,) is not a subset of .5”(<#), in part because
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the elements of C~(U,) are supported in _#. This would not cause
problems if each element f of C*(U,) could be extended to an ele-
ment f of /(<#*) for then we could define T (f) = . F4(f).
Unfortunately, the elements of C*(U,) cannot be so extended as the
elements of C~(U,) do not tend to zero at infinity. What we will
show is the following:

Let fe & (#*) and let yel'. Set

Vi) f(N) = p(y) exp —2miy, M) f(y*\) .

Note that for yel', = I'N (<) and v€.<F we have yxx =y +
z, y*An = » and p(y) = exp —2miy, ). It follows that as a function
of y, V(y) is constant on cosets of 'y in I'. Of course I', D Z(#)
so that I',\I" is discrete. Let

wf = 2 VOO A .

We will show that 7, is a surjective mapping of (<) onto
C=(U,). Furthermore we shall show that kerz,Cker 7. It will
follow that we may define an element + of C~=(U, by setting
Vf) = TW(f). 4 —+ will then be an intertwining operator
from C=(U,)) to C~=(U,).

It will then be an easy matter to show that Z4 is a C*
function on _/#Z,.

To deseribe C=(U,) let Z. = Uk, '*.#Z(\;) as in Lemma 5.
Let 22°(\;) be the set of functions in .2#;(¢) which are supported
in I's.#Z(\;). The 27 (\;) are mutually orthogonal, invariant sub-
spaces of 2% (1) and % (p) = 3. P F (). Let U(\) be the
restriction of U, to .2#°(\,). We shall describe C>(U(\,)). Let ¢ be
fixed and set » = \,.

As commented above, I'\['x_# (\)~(B, x)[4; where ={0 € & |\+0=
Y*n for some vel',}. This suggests that U(\) should be equivalent
with a representation induced from a character X; of 4,. This is
the case as we now show. First we define X,.

LEMMA 11. For o€ 4, let
X(0) = E(\(0)) exp —2miNd — Y(9))

where Y(0) is any element of I' such that V(0)-n = N-0. Then X,(6)
18 a well defined character of 4.

Proof. First we show that X, is well defined—i.e., H(7(d))
exp —2mi{v(0), M) does not depend on the choice of ¥(d) in I. Let
Yxxn = Y'sx for ¥ and ¥’ in I'. Then (V*¥)*xx =\ so Y*7el'. by
Lemma 3. Let o =7*y. Then 7' = o0xY = ¢ + 7. By definition,
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p(o) = exp —2rmi{o, \) so
p(v) exp —2wilv, ) = pu(v') exp —2mi{Y’, \)

as claimed.

To show that X, is a character, let §,, d,e4,. We may take
Y(0,%0z) = 7(0.)*7(dy). Then §,%6,—7(8,%8,) = 8, — 7(8,) + 0, — 7(8,) + 0,0, —
Y(0,)v(dy). Since g is a character on I', it suffices to show that
<51'32, 7y = <7(81)7(82)7 Ay. But <31‘521 Ay = (04 N0y = {05, () -A) =
{Y(02)0,, My = <'7(32), N0 = <7(31)7(32); Ay O

THEOREM 12. U(M\) 1s equivalent with the induced representation
ind (4, X5, (4B, *))-

Proof. For fe 22°(\) let
Tf(x) = exp 2mwilE, Ay fF(\+T) .

Tf is a map of <# into C. We claim Tf belongs to 2#7(ind 4,, X,,
(&%, «)). Let ded,. Then

Tf(o*x) = exp 2wilT*0, Ny F((ANx0)*T) .

Now

F(O0)+8) = f(V(0)*(\+T)) = [(7(D)) exp —2wi{¥(8), ATy f(A+T) .
Also

@0, Ny = & + 6 + &, M) = & + 6 + MOF, y) = {V(0), M)
+ {0 — M), Ay + (&, N .
Combining these equalities we see
Tf(0xx) = X2(8)Tf () .

Since the measure on I'\I'x_# (\) is defined by the identification
of IN\I'x.#Z(\) with 4\(<Z, =), T is unitary. We need to show that
T intertwines the given representations. This, however, is a
straightforward computation similar to the above.

Next we must describe the C= vectors for ind (4;, X, (7 %) =
U(n, X). They are describable in terms of the Schwartz functions
on . Actually our description will be valid for any connected,
simply connected nilpotent Lie group. Let N be any such group
and let _#~ be the Lie algebra of N. Let .9~ be a vector subspace
of the vector space ¢ Let () denote the Schwartz space of
rapidly decreasing C* functions on .7~. Let TC N be the set T =
expy.7 . By S(T) we shall mean the set of complex functions f
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on T such that foexpy belongs to (7). If 7 is a topological
vector space, by “(T,7") we shall mean the set of functions
f: T— 7 such that t— {(f(t), w) belongs to S(T) for all we7*
(7°* is the continuous dual of 77).

We shall require an intrinsic description of $“(N). A poly-
nomial function on N is a function p on N such that poexp, is a
polynomial on N. A right, polynomial, differential operator on N
is an operator D expressible in the form D = >, p,X; where X, are
left invariant differential operators on N and p, are polynomial
functions on N.

LEMMA 13. exp, maps the set of polynomial differential oper-
ators on 4" surjectively onto the set of right polynomial differen-
tial operators on N.

Proof. Let Ye 4. Let D,f(x) = d/dt|,—f(x + tY). We begin
by showing that there is a polynomial operator F, on N such that
(Fyf)oexpy = Dy(foexpy). Let {X, ---,X,} be a Jordan-Holder
basis for _4 —i.e., [X,, X;]espan{X,, ---, X,;_;} for all 4, 5. It
suffices to show F, exists for all j. We proceed by induction on
j. For Ye_ s let Y denote also the left invariant differential
operator defined by Y. If ¢ =1 we claim that F,, = X,. In fact

X,foexpyx = —gt—‘ f(expy x expy tX))
t=0

=L | flexpy (@ + tX) = Ds,f)° expy -

Now suppose that the theorem is true for all j, < j. There is
a polynomial mapping p of _#" X R into _#~ such that exp, X
expy tX;=expy p(x, t). Furthermore p(x, t)=2+tX; mod span {X,, - - -,
X;_.}. Hence

X,fo expy(@) = -2 | foexpy p(, t)
dt [t=0

j—1
= Dy,(f ° expy @) + 3, pu(2) Dy, f ° expyx
i—1
= Dy, (foexpy2) + g;lm(w)(kaf )oexXpy ¥ .

We get the desired result upon solving the above for Dy,.

It is now clear that exp, maps polynomial differential operators
on 4" to right polynomial differential operators on N as the Dy,
generate the algebra of polynomial operations as a module over the
polynomial functions. The surjectivity of the mapping is obvious
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since it is clear that for any right polynomial operator D, the
operator D' given by f — (D(f-logy)oexpy) is polynomial on .4~ []

COROLLARY 14. A C= fumction f belongs to L (N) iff Df is
untformly bounded for all right polynomial differential operators D.

Now let K be a closed, but not necessarily connected, subgroup
of N. Let X be a character of K. Let U* = ind (K, N, X) realized
as usual (see the above comments). Let z be the map of S(N)
into 227 (U%) given by:

cf@) = SKX(k—l) F(kw)dks .
Our main result on C* vectors is the following

THEOREM 15. Suppose U* is a finite direct sum of irreducible
representations. Then T is a surjective mapping of S7(N) into
C>(U%.

Proof. According to theorem of [9], C~(U”) is the largest space
% of C= functions which satisfies the following

(1) fe< implies that f(kx) = X(k)f(x) for all k€ K and z € N.

(2) |[fleLXK/N).

(3) <& is closed under all left invariant differential operators.

From this characterization, it is clear that S7(N)c C>(U%).
The only problem is to prove the surjectivity. Let L D K be the
smallest closed connected subgroup of N containing K. Let & be
the Lie algebra of L and let .7~ be a vector compliment to & in
4. Let T=exp.Z2. Then N = LT and the mapping of L x T—
N given by (I, t) — It is a C~ isomorphism.

LEMMA 16. There is a C= function ¢ on N such that (i) ¢ is
independent of the t variable and is compactly supported im the -
variable.

(i) S o(kw)dk = 1 for all e N.
K
(iii) ¢ 18 positive.

Proof. It suffices to assume L = N for we may extend a ¢
which is defined on L to N by setting ¢(lt) = ¢(I). Hence K\N may
be assumed compact. (See [1]). Let us also assume for the moment
that the identity component K, of K is trivial so K is discrete. Let
7: N— K\N be the projection map. There is a finite family of
open sets U, -+, U, of N such that 7| U, is a homeomorphism onto
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an open subset of K\N and =(U;) cover K\N. By passing to a
subordinate covering of K\N if necessary, we may assume that
there is a partition of unity of K\N relative to the =n(U,) — i.e.,
there are C~ functions h; on K\N such that each h; is supported in
w(U;) and 37, h; = 1. Let ¢; be the function which is equal to h;om
on U, and is 0 otherwise. Let ¢ = D7, ¢,.

We claim that >, ¢(kx) =1 for all z. To see this note that
>k ¢(kx) = h;om(x) since kU, Nk, U, = ¢ =k, = k,. Hence >, ¢(kx)=
Sghiew =1.

If K, + {e}, then K, is normal. We form the ¢ corresponding
to K\K on K\N. Let 7, N— K,\\N be the projection and let ¢, =
¢om. There is a C= function - with compact support on cosets of

K, such that S w(kx)dk =1 for all . Then gw is the desired ¢
K
on N. ’ O

We shall use ¢ to prove the surjectivity of z as follows. Let
fe€C=(U%. Then fis a C= function on N. We claim that f = z4f.
In fact

wof(a) = | 10)060) 7 o)

= | s(ho)dief @)
= f@).

Hence we need only show that ¢fe (N). Let L and T be
as in the above proof. Let p be a polynomial function on 7. We
shall show that sup..,|»(t)|sup;..|flt)] < oo for all feC=(U").
This will imply that gfe S (N) for let g: & x .9~ — C be given by
9(, )=¢f (expy lexpy t). Let fi(l, t)=f(expylexpyt) and let g,(l, t)=
é(expy l expy t). The mapping (I, t) — logy (expy l expy t) of & X 7~
into N is a polynomial diffeomorphism with polynomial inverse.
Hence ¢fe & (N) iff ge (¥ x 7). Let D be a polynomial differ-
ential operator on & X .7~. Then from the product rule of differ-
entiation Dg = 3, D6, F;f, where D, and F’, are polynomial differential
operators on & x 7. We may assume that the D, are constant
coefficient operators for we may absorb the coefficient of D, into
F;. Then D,p, is independent of the .7~ variable and is compactly
supported in the [ variable. Let ¢, (expylexpyt) = D,g(l, t) and
let fi(expy l expy t) = F,fy(l, t). There is a right, polynomial, differ-
ential operator F, such that f, = F,f. To show that ¢f is in S”(N),
it suffices to show that ¢,/,f is bounded. We may write F, =
>, p;X; where p; are polynomial functions on N and X; are left
invariant differential operators. X;feC=(U*) for all j so it suffices
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to show that ¢,pf is bounded for all polynomial functions » and all
feC=(U". To this end, note that p»p may be written p(l,t) =
> a;l)b;(t) where a; and b; are polynomial functions.

If we replace ¢, by ¢,a; and replace » by b;, we see that it
suffices to show that ¢pf is bounded whenever 4 is a C= function
on N = LT which is compactly supported in [ and independent of ¢
and p is any polynomial in ¢ and independent of I.

Thus we are reduced to proving the following

LEMMA 17. If fe C=(U%), then
sup |p(t)| sup | f(IE)| < oo
tel leL

for all polynomial fumctions p on T.

Proof. For teT, let f, denote the function I — f(lt) on L. If
feC=(U* then f, is C~ on L and |f,| belongs to L K\L) since
K\L is compact. Hence f, belongs to the representation space of
V*=ind (K, L, X). f. in fact belongs to C=(V*) for C=(V*) consists
of all C~ functions A on L which satisfy h(kl) = X(k)h(l) since such
functions are automatically square integrable modulo K due to
compactness. C=(V*) has two natural topologies—the usual topology
as a space of C> vectors (see [9]) and the topology of uniform con-
vergence of functions and their derivatives. By the closed graph
theorem, these topologies agree on C=(V?*. In particular 2()f;
will be uniformly bounded on L in ¢ if p(t)f, is bounded as a mapp-
ing of T into C=(V*). The mapping t— f, has a representation
theoretic interpretation. Note that U* ~ ind (L, N, V*) due to the
theorem on inducing in stages. We may realize ind (L, N, V*) as a
space of Z (V%) valued functions on 7. Then ¢— f,e .2 (ind (L,
N, V") and the mapping f— f, defines the intertwining operator.
To finish the proof of theorem, we need to show:

LEMMA 18. C=(ind (L, N, V¥) is .S#(T, C=(V*)).

Proof. By assumption U*~ ind (L, N, V*) is a finite direct sum
of irreducible representations. Hence V* is a finite sum of irredu-
cible representations (otherwise U* would have an infinite family of
mutually orthogonal invariant subspaces). Let V* = 3\ @ V, where
the V., are irreducible and let U, = ind (L, N, V,). Then U=3PU,
and C=(U) =3 PC=(U,). It suffices to show that C=~(U,) =
HF(T, C=(V,)). Of course, U, is a finite sum of irreducible repre-
sentations. However an irreducible representation of a connected
subgroup of a nilpotent Lie group N either induces an irreducible
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representation of N or induces a representation which decomposes
with infinite multiplicity. Hence U, is irreducible. Now we change
realizations of U, and V,. There is a connected subgroup M of L
and a character A of M such that V,~ind (M, L, \). Then U, ~
ind (M, N, ). Let _# be the Lie algebra of M in .4". Let & be
a vector compliment of _# in &¥. Then "= ZPFSPH.7. Let
S=expy .&”. Then N=MST. We define the Schwartz class S“(ST)
by setting fe.S7(ST) iff the function g(s, t)=f(expy s expy t) belongs
to (7 x 7). It follows from results of Corwin, Greenleaf and
the author that ind (M, N, \) can be realized in L*ST) and
C>(ind M, N, ) = S“(ST), [4]. For each fe.~”(ST) and teT let
fi(8) = f(st). Then for each t, f,e . S”(S) and t — f, defines a bounded
element of SA(T, .&7(S)). Now V,~ ind (M, L, \) can be realized in
LA(S) and C=(V,)~ S(S) by the results of [4] mentioned above.
The representations ind (L, N, ind (M, L, \)) and ind (M, N, \) are
equivalent and the equivalence is given by mapping f— (t — f,) as
defined above. Since ¢ — f, belongs to (T, &7(S)), it follows that
C>(U,) ~ C=(ind (L, N, ind (M, L, \))) C (T, &(S)). But F(S)=
C>(ind (M, L, \)) ~ C>(V*. Hence C=(U,) = (T, C=(V9). O

COROLLARY 19. Let K be a closed subgroup of N and let X be
a character of K such that ind (K, N, X) = U* is a finite sum of
irreducible representations. Then C~(U*) may be canonically iden-
tified with the space of distributions « on S (N) which satisfy
y(kx) = X(k)y(x) for all ke K. (y(kx) denotes left translation of
distributions).

Proof. Let ¢ be a C~ function of N such that S o(kx)dk = 1
K

as in Lemma 16. Then f — ¢f defines a continuous mapping of
C~(U" into &“(N). Let 4 be a distribution on .&(IN) which satis-
fies the hypothesis of the theorem. Let &(f) = X(¢f). (—denotes
complex conjugate. Recall C~ is the conjugate dual). Then ¢ ¢
C—(U%. We claim that 4 does not depend on the choice of ¢.
Let ¢, be another such ¢ and let f, = ¢.f — ¢f. Then zf, =0. We
need to show that (f,) =0. To see this let ge S (N). Let

L@)g) = gl@'y). Let Forg = SNJ‘_},(w)gdx, interpreted as an S7(N)

valued integral. We shall show that this integral converges in
S (N). Granting this for the moment we see

w(forg) = SNfo(x)n#(L(w)g)dw

= | Fwow@ame = | cn@ yLwods = 0.



A FOURIER TRANSFORM THEOREM ON NILMANIFOLDS 555

Here we have used y(L(kx)g) = X(k)y(L(x)g). Hence 4(f,+g) =0 for
all g. This implies (f;)=0 as claimed. Convergence of the ./(N)
valued integral means precisely that for all 4 € &'(N), ﬂ(w)q;r(L(x)g) €
LYN). (Recall that S (IN) is reflexive and the integral is defined
by reflexivity). This will follow from the following lemma.

LEMMA 20. There is a polynomial function » on N depending
on + and g such that |v(L(x)g)| < p(x) for all x e N.

Proof. As shown above S7(IN) can be characterized as the
space of functions g such that Dg is bounded for all right polynomial
differential operators D. For each such operator D let p,(g9)=|Dg|..
The family {o,} defines the topology on S*(N) so there are operators
D, such that

|9(9)| = 22 [[ Dig |-

for all ge A (N). We may take D, = p, X, where X, is left invariant
differential operator on N and p, is a polynomial function on N.
Then [4(L(x)g)| is bounded by a sum of terms of the form
o L(x)X.9 |l = || (Lx)p)X;9]|l.. There are polynomial functions ¢
and 7 on N such that p,(xy) < |g(x)||7(y)| for all z, ¥ in N and all
i.  Hence | L )pXigl.=|9@®) || rXigl.. Thus, |y(L@)g)|=
2 (lrXeg|lw) | a(@) | O

Now we are ready to prove our first main theorem. We refer
the reader to the material following Sublemma 10 for notation.

THEOREM 21. Let 4 be a p-primary function on N. Then 7 «
is a C> function on _#.. In fact there is a function fe (™)
such that 7 (\) = Tuf(N) for all Ne _#.. The image of 7 1s
precisely the image of Tp.

Proof. Let + and 27 (¢) and U, be as before.
LEMMA 22. 7, is a surjective mapping of S (Z*) onto C=(U,).

Proof. From Lemma 5, _#. is a finite union of sets of the
form I's.#Z(\) for ne _#,. C=(U,) is the direct sum of C~(U(\))
where U(\) is (as before) the restriction of U, to the space of
functions in 9%;(¢) supported in I's.Z(\). I'\I's.Z(\) is in turn
isomorphic with I'\.#Z(\) where I'y = {vel'|v- N L (F) =0}. Let
fe A(#(\) and let

Tof (V) = 3 () exp —2miY, M f(T*)) .
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It suffices, we claim, to show that 7z, is a surjective mapping of
(A (\)) onto C=(U(N)), considered as a space of funections on
A(N). In fact let geC~(U(\), considered as a function on
I's_#(\). Then, assuming that 7, is surjective, there is a funection
fin FA(#Z(\)) such that 7,f = g| #Z(\). There is a neighborhood
U of . Z() such that Un . #Z(\)=¢ if e . Z(\). f may be
extended to an element f’e.%”(<#*) which is supported in U. It
is easily verified that z,f’ is zero off of I'x.Z(\) in _#. and
T.f | [« #(\) = g, proving our claim.

To show the surjectivity of 7, we trace through the identifica-
tion of U(\) with ind (4, X;, &&) = U* developed above. It will turn
out that z, is essentially the 7z associated with U*. In fact, for
fe FA(#(N) let Tf: & — C be given by Tf(x)=exp 2ai{Z, Ny f(A+E).
Let {x e Z|nxx = N} = (4),. (4), is in fact the identity component
of 4,. For ze(4,), and y e &, My*xx) = My) + Mx). It follows that

Tf(x+y) = exp 2w ,{%, M) Tf(y) = X:(x)Tf(y)

for xe€(4,), Since (4;), is connected, there is a Schwartz function
g such that

Tf(x) = SW L) g o) de

We claim that zg = Tt,f. In fact
g = 3, Tf(6x)Xy(9)

4300\ "2

= X exp 271iT0, N)X;(0)f(\+0)+F)) .

Let a+6 = v(0)*\ where Y(0) e I',. 7(6) is uniquely determined modulo
I' . and the mapping & — Y(0) gives rise to a one-to-one correspond-
ence between I' \I', and (4,),\4,. Furthermore, in the proof of
Theorem 12, it was shown that

exp 2w, {T+0, Ny = exp 2mi({7(0), M+Z) + <&, N))X;(0) .
Hence

79(x) = exp 2wiZ%, \) F;p exp 2w, MEy f(V:nxE) = Trof (x) -

It follows that the image of 7, is contained in C~(U()\)). Con-
versely, let ¢ (). Let

o) = | | DMk gtka)de

and let f(\+Z) = exp —27i{E, M) go(E). On (4, XLi(x) = exp 2wilw, \)
so f is well defined. It is easily seen that fe & (.Z(\) and as
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above T.f = rg. Hence 7, is onto C(UX)) as claimed.
Now let 7 be a Schwartz distribution on <Z* which satisfies
N(veN) = fg(v) exp —2widy, \yn(n) for all verl'.

LEMMA 23. There is an element 7' € C~>(U,) such that (f) =
N (Tuf) for all fe P (Z*).

Proof. For all xe _#, let 1, be the restriction of 7 to .Z(\).
By this we mean the following. For each fe . &(_.#(\)) there is
an element fe.S(<#*) such that f is zero on _Z, ~ #(\). Let
7:(f) = 9(f). This is independent of the extension f by Lemma 2
and its proof. We lift », to a distribution 7. on _#(<Z) by setting

7]@(9) = 7]1( T™g,)

where T is as above and

9i(@) = §M L)k

Then 7,(6x) = X, (8)n.(x) for xe<&. By Corollary 19, there is a
functional 7, in C~=(U%) such that 7,(3) = 7.(rg). Let 7,(f) =
N ATf) for fe C*(U(\)). Then, for fe .7 (F*),

(7o f) = 0a(T7of)
= 75(z9)
= N4(9)
= 0(f)

where ¢ is any element of $°(<#) such that
Tf) = | L glew)d
(4y)o

Now write _Z, = N, I'«.#Z(\;). We use the isomorphism of
U, with 3@ U(\) to define an element 7' of C—(U,) by setting
7 =37, It is easily seen that %'(z.f) = 7(f), as desired. |

It follows from Poulsen’s theorem above that (7 ) € C=(U,)
for all p-primary functions 4 since +» — (7 )" is a C* intertwining
operator.

LEMMA 24. 7 e C=( ) and (T ) =T |
Proof. Let (F +) = geC=(U,). Let heC=(_#,) and suppose

h has compact support. Since _#, is a countable union of affine
subspaces, we may define Lebesgue measure on _#,. Let dx denote



558 RICHARD PENNEY

this measure. Let

{g, ) = g hgdz .

e

Then it can be seen that

S e
e N iy )dv

Using the invariance property of g this is seen to the (g, 7.h) where
(, ) indicates the 5#(#t) innerproduct. But by definition

(tih, 9) = (T ) (t,h) = T () .

Hence .97+ is integration against g, as claimed. 1

Next we prove surjectivity. Let ¢geC=(U,). Then geC=(_#,)
and ¢ is bounded on _#,. since ¢ is in the image of z,.

We consider g as a distribution on <Z* given by integrating
over _#, against gdx where dx is as above. As a distribution, gdx
has an inverse Fourier transform, say 9 '(gdz) = € (). It
is easily verified that . satisfies (vxx) = p(V)r(x) for all velrl.
Hence s may be considered as an element of C~=(U,). Hence, as
above, .7 ! maps C=(U,) into C=(U)). .7 ' is the inverse of 7~
so .7 maps C=(U,) one-to-one and onto C=(U,). |

I11. Examples.

ExAmMPLE 1. In this section we describe a specific class of
algebras from which our main examples come. Our class is motivated
by Howe’s work [6]. Let .7 Dbe an abelian, nilpotent algebra which
carries a nondegenerate symmetric form B which satisfies Bxy, w)=
By, zw). Let 7, & — 7 be a mollifier (see §1 above). Let .7 =
F X 7 with the algebra structure (x,, x.)- (¥, ¥.) = @Y, ©.¥.). We
shall adopt the notation that if 2.9, then the 7th component of
x will always be denoted by x,. On .97 let 6 be the form

¢, y) = B(@, ¥:) — By, @)
It is easily seen that ¢ satisfies the “twine” idenities:
o(wy, w) = ¢y, 2w) = ¢z, [y, w]) .

¢ is a nondegenerate, bi-linear form on .o and .o is a left com-
muntative algebra. Let z: .97 — .97 be the form

= (T %, (I — To)®,)
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Let ¢ =1—r7.
Then 7 is a left, % -module homomorphism of .97 into &£ ()
which satisfies

¢(tw, y) = ¢(x, T°Y)
for all z, ye .7, Let a(z, y) = ¢(x, Ty).

LEMMA 25. Let <% = . X R with the product (x,s)(y,t)=
(xy, a(x, v)). Then <& isa HAT algebra. Furthermore [(z, s), (¥, )]=

([, y], ¢(x, ¥))-

Proof. Associativity and left commutativity of <Z are equi-
valent to the identities

a(zy, w) = a(yx, w) = a(x, yw) .

These follow easily from the twine identities and the properties of
7. The Lie bracket identity is equivalent with ¢(z, y) = a(x, y) —
a(y, ®) which follows from the fact that I — 7 is the adjoint of =
relative to ¢. It is now easily seen that Z(<#) = 0 X R. ]

We shall use similar direct product notation for elements of
P =¥ X R—e.g., if xe¢<#, then z = (v, x,) where x, €. and
2,€ R. Note that under our conventions x,=((z,),, (x.),) where (x,); €
.#. We shall seldom use this notation however.

Now, suppose 4 is a vector lattice in .# such that 4-4c 4.
Let us also suppose that 7,: 4 — 4. Let 4* = {xe€.5”| B4, x) C Z}.
Let 4, =4 X A*c and let I' = 4, x RC<#. Then I' is co-com-
pact subgroup of (7, ). Let ¢ be the character of the subgroup
I" defined by p(x) = exp2rni x,. ¢ is a character because a(4, 4)CZ.

LEMMA 26. U* = ind (I, (&Z, *), p) is irreducible.

Proof. We assume that the reader is familiar both with
Kirillov theory [7] and the results of [5] or [10]. Let ne.<Z* be
defined by Nx)=2,, Let #Z =0x FA)XRCH. _# is an
ideal of <# which satisfies .Z* = {0}. It is easily seen that as a
Lie algebra, _# is an abelian, maximal subordinate subalgebra for
A and \ is integer valued on I' N _#. The mapping exp, from <
to (&, *)ise—ex+a2+ - +2"/n! + --- so on _#Z, exp, is the
identity map. Hence the character corresponding to \ on _#Z is

X(m) = exp 2wi{m, \) .
From Kirillov theory ind(_#, (<7, ), X) = U* is irreducible. Since
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(<2, *) has square integrable representations (Lemma 10), U* is
determined by its character on Z(<#) =0 x R. U* has the same
character as U* on Z(<#) so U* is a direct sum of copies of U~*.
U¢ may in fact be identified with the U* primary summand of
ind (I, (&Z, *), 1). The multiplicity of U” in U* is given by formulas
in [10]. Let xe€<# and let X, (m) = X(x+m=Z). Since _# is normal
in (& =), X, is a character of _#Z. Let

X={eeZ|00T N 2)=1).

Then X is a finite union of I's_# cosets and the multiplicity of
U* in U* is the number of such cosets. However, note that xxyx%T =
r+ T+ ax+2y+yr oy =y +ay +y@ + 2%) =y + vy — yxr =
y + [x, y]. Hence X, (y)=%X(y)exp27i ¢(x, y,). Thus ze¢X iff ZD
oz, 4,N (0% _#)) = B((x,),, 4*). Hence (x,),€4 so X =TI'*_#. Hence
the multiplicity is one so U* is irreducible.

Now to explicitly deseribe the Fourier transform, we use ¢ to
identify <# with <#*. Specifically, for y € <& we let y* denote the
functional defined by

<i)(7, y*> = 95(%1, y1) + XY .
LemmA 27. 2-y* = (09, — ¥,7%x, 0)*

y*x + ([, ¥.] + v, 0)* .
Proof.
(aw, y*) = gl@w, ¥,) + al@, w)y:
= ¢(w,, .Y,) — $(W,, Y.T°%,)
= {w,, (@Y, — Y.T%%;, 0)*) .

Hence zy* = (.9, — y.7%x, 0)*. Similarly
y* o = (2, v.] + vo7w, 0)° . O

Now let » = (O, 1)*.

Since U* is irreducible, I'\_#, is connected so I'\.Z,=\.Z(\)
where I')={veI'|7 N ¥ (&#)=0}. From Lemma 3, . Z(\)=NF =
{(zz, 1)* |z € 7}. Recall 4, ={0eF|N-06 =7-N for some 7vell}.
Hence 4; = 774(z%(4 X 4*)) x R. For 6 e 4;, let 7,(0) be any element
of () (z(6,)) N (4 x A*) and let ¥(0) = 7,(6) X 0. The character X,
of 4, is deseribed by

%:(0) = p(7(0)) exp 2mi{ (9 — Y(9)),
= exp 27i0,.

Let 2: 57 (U%) — 2#£(U*) be an intertwining operator. The
Fourier transform .7~ of a p-primary function g is described by
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7 g(zxx) = Cexp —2milx, NY2f(T)

from Theorem 21. Let 7:7(%7)— & be a linear mapping such
that ¢7(x) =2 for all xez(). Then (z, 1)* = N*(Tx, 0) so this
formula may be written as

T 9((x, 1)*) = CRg((Fx, 0)7) .

The special case of 7, = 0 should be mentioned. In this case 4,
is the connected subgroup &, = (& x 0) X R, and X;(p) = exp 27ip,.
The intertwining operator from U* to ind X* is known by [4]. It
is, for feC=(U", Tf(ac):gr ()" F (p*x)dp. This then describes

coASy

the Fouries transform. Note that in this case 7(.%) =0 x & and
7 can be chosen to be the identity map. Furthermore ((0, x), 0)~ =
(0, —2), 0). Hence

TIO, @, 1 = "0, (0, —3), ).

<0

Note also that if we identify <& and <Z* in the more “conventional”
manner by setting

<(xr t)y (y; x)> = B(xl, tl) + B(x2; y2) + ts .
Then ((0, z), 1)* = ((—x, 0), 1) so we would write

TH@ 0, = @0, @), D@ dp

The “flip” from (x, 0) to (0, x) seems very interesting.

Now let us discuss theta functions. Let ce R and let & =
{((s, 08), t)|se .7, te R}. Then &7, is an abelian subalgebra of 7.
Let X, be the character of &7, given by X, (p) = exp 2wirn(log, p).

We shall say that a Schwartz distribution 6, on &7 is a p-theta-
distribution if

(@) 0,(vxx) = p(7)6,(x) for all verl

(b)  0,(xxp) = 6,(x)X,(p) for all pe.F,.

The number ¢ is called the period of #,. Note that (b) can be
written

0,(xxexp, ) = exp 2win(p)f,(x) .
Differentiating this equality we see that
Po, = 2nin(P)b,

for all left invariant differential operators P which pass through
Z,.
Note that from Lemma 19, 6, gives rise to an element ®, of
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C~=(U#* which satisfies (U*)=(p)w, = X,(p)w,. Conversely, every
such w, gives rise to a unique g-theta distribution 4,.

LEMMA 28. For each o€ R there is an essentially unique (up
to scalar multiples) theta distribution 6,.

Proof. Let X, be as above. 7, is a maximal subordinate
subalgebra of <& relative to ) so the representation U° = ind (&,
(&, *), X,) is irreducible and equivalent with U*. Now, from
Cartier’s C>-Frobenius reciprocity theorem, the number of times U*
occurs in U’ is the dimension of the space of elements we C~=(U*)
which satisfy U#(p)w = X,(p)w. ([3], theorem). Since the multipli-
city is one, we’re done. ™

We would like to explicitly describe 6,. To this end let .#
and X be as in the proof of Lemma 26 above. Let U* = ind ( 4,
(&%, *), n). It is a simple matter to construct an element ® of
C~(U*%) such that Ux(p)w = X ,(p)w. Once we have constructed such
a w, we shall construct an intertwining operator T from U* to U-.
Then the image of w under T will be w,. To construet w, recall
that C~=(U%*) can be cannonically identified with the space of
Schwartz distributions 4 which satisfy

p(mxx) = X(m)p(x) for all me 27 .
Let w be the distribution defined by the function @ defined by
w(mxp) = X(m)X,(p) me.#,pesF,.

Note that # =+, =< and on .# N.#, X and X, agree so this
does define a function w.

Next we need to describe 7. This is easy due to results [16]
and [4]. For fe C=(U%*), the function Y — f(v*x) is constant on
cosets of I'N.# in I' for each s. Let

Tf=rr§{\rf(7*x) .

Then by [4], this sum converges uniformly on compact subsets to
an element of C°(U#. T is the desired intertwining operator. The
image of w under T (i.e., woT*) is then the element of C~=(U¥)
defined by the distribution

a,(x) =m§,\r0)(7 xL) .

This sum converges in the sense of distributions.
Next we would like to compute 6, explicitly in terms of the
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“coordinates” for <&. Since 6,((w, t)) = exp 2witd,((w, 0)), it suffices
to compute 6,(w, 0). First we must compute X, which means com-
puting X,. X, involves log, so we compute log,(w, 0) first. We
begin by noting that a((,y), (x, ¥)) = ¢((x, ¥), (@', ¥")) = ¢((z, v),
(zo2'(I — 70)y")) = B(x, I — 7o)y") — B(y, 7s¢’). Now by induction it is
seen that for n = 2,

(=, ), O)" = (@, " 'y), a((x, ¥), (@", 2" *Y)))
= ((x", 2" 'y), B(x, (I — 7.)2"*y) — B(y, t:x" ™)) .
If » = 2 this says
(&, 9), 0)* = ((&*, 2y), —2B(zx, y) + Bz, v)) .

If n > 2, then 72" *=0 since 7,,#*=0. Thus ((z, ¥), 0)"=((x", " 'y),
B(x, x"%). Now suppose y = ox. Let

o

W) = X (=1)""B(x, " )/n .

n=2

The following lemma is easily proven from the above comments.

LEMMA 29.
log, ((x, ox), 0) = ((log ~ @, 6log. x), oB(t, x) + ol(zx)) .

Hence %,((x, o%), 0)=exp 2mic(B(rx, £)+1(x)). Now let ((z, ¥), 0) €
. Then ((z,¥), 0)=(0, y — ox), —a((0, y—o2), (2, 02)))*((z, 0%), 0)=
(0, y — ox), By — ox, 7,%))*((x, 0x)). Hence

o((x, ¥), 0) = exp 2ni(B(y — ox, 7,¢) + oB(t 2, x) + al(x))
= exp 27i(B(y, tx) + ol(x)) .

Now the set 4, = {((», 0), 0)|n e 4} is a complete set of inequi-
valent representatives of the I'N _#Z cosets in I'. Given w =
((xz, ), 0) in <# and 7 = ((n, 0), 0) in 4,,

vxw = (n+x, y + ny), B(n, (I — 7)y)) .
Now, note that z,(n*x) = 7,(n + ) since 7,.#* = 0. Hence,

B (Y + ny, t(nxx)) = B (y + ny, t(n + x))
= By + ny), n + ) = BTy, n + ) .
Hence
o(7xw) = exp 2wi((Toy, © + 1) + ol(nxx) + B(n, (I — 7,)y))
= exp 2wi(B(ryy, ) + B(n, y) + ol(n*x)) .

Finally, then
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6,(w) = exp 27iB(z,y, «) ZA exp 2ni(B(n, y) + ol(nxx)) .

We simplify this by means of the following lemma which
follows easily from Lemma 29 above with ¢, = 0.

LEMMA 30. For all x,ye. 7, l(x*y) = l(x) + l(y) — Bz, y). It
Jfollows from this lemma that
0. (w) = exp 27i(B(z .y, x) + U(x)) >, exp 2ni(B(n, y — ox) + al(n)) .

This is exactly the mollified theta series of §I.

To prove the theta identity we re-compute 6, in the 7, = 0 case.
We follow the same procedure as above except that we use the
subgroup &, and the character X, instead of the pair (_#,X). Let
@o(Dex0,) = Xo(P)X () for p,€ G, p. €, Then from the uniqueness
of 4,

0,(w) = K(o)g %l\rwo(‘f*w) .

To explicitly compute ®,, observe that ((x, ¥), 0) = ((u, 0), 0)=((v,
ov), t) where w =& — 07y, v=u+@ and t=—0cB(u, v). Then w,(w)=
exp 2wio(l(v) — B(w, v)). We simplify using the above lemma.

l(v) = l(z) + l(w) — Bz, @) .
0 = l(u*#t) = l(u) + (&) — B(u, @) .

B(u, v) = B(u, ® + 2% + %) = B(u + ui@, x) + B(u, #) = B(@, x)+ B(u, &).
Hence

wo(w) = exp 2rio(l(x) — ()
= exp 2rnio(l(x) — l(x — 07'y)) .

Hence we see that

0,(w, 0) = K(o) exp 2micl(x) Zh exp 2niol(c™(ox — y + n)) .

Equating the above expression of 4, with our first expression
and replacing ox — y by ¢ we see:

THEOREM 31.

> exp 2wi(al(n) + B(x, n))
= > exp 2riol(c™(x + n)) .

This is the desired theta identity.

REMARK. It was originally our hope that one could use the
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generalized theta series to compute sums of the form 3322 exp 2win®/p
where p is some integer. Formulas for such sums are known classi-
cally only for 0 < k < 2. The relevance of the theta series is as
follows. Let % =span,4. Let xe€. % and let 0e@. It is easily
verified that there is a sub-lattice 4, 4 such that the functions
exp 2wiB(n, x) + ol(n) and exp 27wicl(c~(x + n)) are both constant on
coset of 4, in 4 as functions of n. Let:

02(x) = [4,: A1 Az\‘,Aexp 2ni(B(n, x) + ol(n))
Pw) = [4y: 4] /%Aexp 2niol{c™(x + n)) .

The function 67 represents, in some very real sense, the “values”
of the distribution #, at the elements of _%,. It seems reasonable
to conjecture that 6° = K(o)y§. Granted this, let ¢ be an integer
chosen so that ol(n)e Z for all ned. It is easy to see that such
o exist. Let « = 0. Then 6%(x) =1 while %(x) = 3] exp 2wol(o™'n).
The theta identity says %0) = K(s)™*. Of course gl(¢™*n) can have
arbitrarily large degree so we can compute some greater than
quadratic sums provided we can compute K(o). K(o) should be
computable as follows.

For p arbitrary, let U* = ind (&, (<Z, *), X,). Also set U* =
ind (_#, (<&, «), X). Let T*° be the operator from S#°(U*) to £ (U

defined by T*°f(x) = S Flox)Y(p)dp. It is easily verified that

NF\

Te° defines an intertwiningO\ gperator Ur to U°. Let Ter:U*—U*® be
defined similarly using (_#, X) in place of (&, X,). T*°and T** may
be extended to intertwining operators on the C~ spaces of the cor-
responding representations. Let 6 € C~=(U) be defined by 6(f)= f(0).

Note that o(U°(p)f) = f(p) = X.(0)f(0) = X(0)o(f) for pe &, It
is easily verified that 7°°0) = ®w, and T°%() = w. Recall w, is
defined by wy(pe*p,) = Xo()X.(,) and w(m=p,) = X(m)X(p,) for p, e &,
p, € P, and me _#. Let T** and T"* be the respective intertwining
operators from U° and U* to U’ = ind (I'Z(<Z, =), ») used in the
computation of 6, above. Then 6, = T**w = K(¢)T**®w,. Hence
TvAT'§ = K(o)T"*T*%. From the uniqueness of intertwining
operators this implies 74T ** = K(o)T**T*°. However

Tz,lTa,x — Tz,ZTO,z(TO,z)'—ITO,X
— CTO,Z(TO,x)—lTa,X

where C is a constant independent of o.
It follows that

CK(0)T* = (T T

i.e., up to constant multiple K(¢) is the intertwining “constant” of
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To°, T>* and T°*. Note that this constant doesn’t depend on I' at
all. It should be expressible as an integral of some sort. Presum-
ing that the intertwining constant can be computed we can evaluate
C by setting 0 =1, 2 = 0 and using the theta identity which says
1 = K1)4(0) = K(1) >, exp 2mil(n). This computes K(1) from which
C can be found.

We have not been anxious to carry out the above procedure
for the following reason. In every example we have tried to com-
pute, so far, we only obtain information concerning the linear or
quadratic sums, regardless of the nilpotent degree of 7. This is
probably due to the tendency of nilpotent analysis to reduce to the
two step case. The formulas for K(o) should still be computed, as
the expressions for +,(0) in terms of Gauss sums are complicated
and a formula for them might express interesting number theoretic
information. It is conceivable also that by exploiting a more general
class of algebras one could obtain more information. For example,
one might try making ¥ non-abelian or using solvable groups
instead of nilpotent groups.

Next we compute the Fourier transform of the mollified theta
series. We shall do this in general only in the case that the molli-
fier 7, is trivial. However, we shall demonstrate the effect of the
mollifier by considering two special cases. One case is the Heisenberg
group and the other is a case that _# is cyclic (generated by one
generator). The effect of the mollifier is quite interesting. The
effect is to increase the singular support of the Fourier transform.
At first glance it may seem undesirable to inerease the singular
support. However, recall that the Fourier transform of a C* funec-
tion is a C= function times Haar measure on the singular support,
and is zero off of the singular support. Hence the larger the singular
support, the more the Fourier transform looks like a C= function.

Another curious fact concerning the effect of the mollifier on
the Fourier transform is that the mollifier does not alter the isomor-
phism class of the Lie algebra. In fact a mollified algebra gives
rise to precisely the same Lie algebra as the corresponding un-
mollified algebra. Despite this the Fourier transforms of the same
function ecan be quite different, depending on the particular algebra
chosen to represent the Lie algebra. This occurs even in the
three dimensional case.

To describe the Fourier transform of the mollified theta series
in the 7, = 0 case, let w, be as before:

@(De*D,) = Xo(0)X,(D,) -

From the above computations .77 4,, may be identified canonically
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with an element of C~=(U*?) where U*: = ind (4;, (B, *), ;). In the
7, =0 case, 4,=F, X; =¥X. The uniqueness of #,, implies the
following.

THEOREM 32. There is a constant C(o) such that 7 6, ,=C(0)®,.

Thus, except for computing C(o), the Fourier transform of 6,,
is automatic. We shall not attempt to compute C(o) as we have
no need for this information at the moment.

In the mollified cases, things become more complicated.

ExAMPLE II. Let . = R with trivial multiplication. Let 4=2Z
and let Bz, y) = zy. Let 7, .# — # be the map 7,(x) = (1/2)x. T,
is a mollifier. The mapping 7: .F X F X # is given by 7(z,y) =
1/2(x, y). Hence 4, =7t (z*(A X A)) X R=Z* X R=1T. It is easily
checked that X, = . Hence, in this case, the Fourier transform is
a scalar multiple of the identity map. Note, however that we are
using an unconventional identification of <& with <#*. In more
conventional terms .7 4 is supported in (R X R) X Z and .7 ((, ¥), n)=
Cy(I(—y, =), 0).

ExampLE III. Let _# be generated by a single generator e
subject to the relation ¢ = 0. Let B be defined by

B(et, e’) =1 ifi+45=3
=0 otherwise.
We extend B bi-linearly to .7 x 7. It is easily verified that
B(xy, w) = B(z, yw) for all x, vy, w. Let 7,: . X . be multiplica-
tion by e. 7, is a mollifier. Let 4 . be the span of {¢', ¢’} over
Z. It is easily computed (from z7'(z¢(4 x 4))) that 4,={((x, ne?, t)jx €

F,meZ, tcR} and X, is the map ((x, ne®), t) — exp 2wit. An inter-
twining operator from U, to U* is given by

of(@) = X f((0, ne’), 0%x) .

From the uniqueness of 4,., it follows that .76, (w) = @,((0, ne?),
0)*(w, 0). Letting w = (x, ¥) and computing we see

T 0,,.(w) = Clo) 3, @(w + ne’)
= ¢(0) 3, 0%, ¥y + ne’) .
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