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TOPOLOGICAL TRANSVERSALITY II.
APPLICATIONS TO THE NEUMANN
PROBLEM FOR y” = f(¢, y, y')

A. GRANAS, R. B. GUENTHER AND J. W. LEE

In this paper the Neumann problem for the nonlinear equation
y"” = f(t, y, y") is studied. A priori bounds are derived and the results of
Granas, Guenther and Lee, are invoked to obtain existence theorems.
The existence theorems are in many cases quite different from those of
the Dirichlet problem, e.g. it is possible to obtain general existence
theorems where f(¢, y, y") can grow very rapidly in the y’ variable.

1. Introduction. Several existence theorems are established for the
Neumann problem,

y' =f(t,y,¥), 0<:r=<1l,

N) YO =r.  y(1)=s.

where f: [0,1] X R X R - R is continuous and r, s are given numbers.
Here R = (-0, o0). The Neumann problem is homogeneous if r = s = 0;
otherwise, it is inhomogeneous. Our results include analogues for the
Neumann problem of well-known results for the Dirichlet problem as well
as some surprising results which set the existence theory for the nonlinear
Neumann problem apart from that of the other standard boundary value
problems. Also, an unexpectedly sharp distinction in the behavior of the
homogeneous and inhomogeneous Neumann problems emerges. In the
comparisons made below, we restrict our remarks to the Dirichlet and
Neumann problems for y” = f(¢, y, y’); however, the assertions made for
the Dirichlet problem hold under virtually the same hypotheses when any
set of standard Sturm-Liouville boundary conditions replace the Dirichlet
conditions, provided these conditions do not include a pure Neumann
condition at + =0 and/or ¢ = 1. Thus, the comparisons indicate the
special position of the Neumann problem among Sturm-Liouville prob-
lems. Precise formulations of the results for Sturm-Liouville problems can
be found in [4] and [5].

We say that a function f(¢, y, p) defined on [0, 1] X R X R satisfies
the Bernstein growth condition if there are nonnegative functions A(z, y)
and B(t, y) defined on [0, 1] X R and bounded on compact sets such that
| (2, y, p) |< A(t, y)p* + B(t, y). The following result for the Dirichlet
problem is well known; see, for instance, [4].
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THEOREM 1.1. Let f be continuous on [0, 1] X R X R and assume:
(1) There is a constant M = 0 such that,

yf(t,y,0) =0 forall |y|= M;

(i) f satisfies the Bernstein growth condition. Then the Dirichlet prob-
lem,

y'=f(t,y,y), 0=r=<1,
y©)=r, y(1)=s,

has at least one solution for any choice of r and s.

(D)

Theorem 1.1 extends the following basic theorem proved by
S. Bernstein in [1].

THEOREM 1.2. Let f be continuously differentiable on [0,1] X R X R
and assume:
(1)’ There is a constant k > 0 such that
(¢, y,p) =k, on[0,1] X R X R;

(ii) f satisfies the Bernstein growth condition. Then the Dirichlet problem
(D) has a unique solution for any choice of r and s.

The analogue of Theorem 1.1 for the homogeneous Neumann prob-
lem is known to be true; see [4]. Surprisingly, the analogue of Theorem 1.1
does not hold for inhomogeneous boundary data. A simple counterexam-
pleis,

y =y y0)=1, y(Q1) =s,

where s is arbitrary. The hypotheses of Theorem 1.1 hold; however, by
direct integration any solution to y” = y’> and y’(0) = 1 satisfies y =
»(0) —log| 1 — ¢|. This shows that the Neumann problem has no solu-
tion on 0 < ¢ < 1. In contrast to this, Theorem 1.2 below establishes the
analogue to Bernstein’s Theorem 1.2 for the inhomogeneous Neumann
problem.

The Neumann and Dirichlet problems differ in another important
respect. Examples, going back at least to S. Bernstein, show that condi-
tions (i) and (ii) of Theorem 1.1 cannot be relaxed substantially and still
imply the solvability of the Dirichlet problem, unless rather strong addi-
tional assumptions are made about the explicit structure of the nonlinear-
ity f. (In this regard see [S].) On the other hand, we establish existence
theorems below for the inhomogeneous Neumann problem under fairly
arbitrary rates of growth of f(¢, y, p) in its p variable. In fact, in Theorem
3.3 below the principal growth rate restriction on f is that |f(z, y, p) |
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should not be too small when |p|— oo and (¢, y) is restricted to a
compact set!

In this introduction as well as in what follows, we often assume that f
satisfies the Bernstein growth condition. In each such case, we could
slightly extend the generality of our presentation by replacing the
Bernstein condition by an appropriate Nagumo condition. Since the
statements of our results are less technical when the Bernstein condition is
used rather than a Nagumo condition and the gain in generality is not
great, we omit these more general formulations. The interested reader can
easily supply them.

2. A general existence principle. In this section we set some stan-
dard notation and state, for reference purposes, a general existence
theorem whose proof is based on the topological transversality theorem of
Granas; see [2], [4], or [6] for details.

The Banach space of continuous functions on [0, 1] will de denoted by
Cor C°and,

lulo = max{|u(z)|: 0 <r =<1}

defines the norm of a continuous function u. Likewise, C* = C¥[0, 1]
denotes the Banach space of functions u which have a continuous kth
derivative on [0, 1] and,

|ule = max{|ulo, ['o,...,[u"o}

defines the norm on C*.
Let % denote the set of functions u which satisfy the linear inhomoge-
neous boundary conditions W(u) = r,, i = 1,2, where,

Wi(u) = a,u(0) + a,u’(0) + b,u(1) + byu'(1),

a,, a,, b, b,,, and r, are given numbers. In this context we let B, be the
set of functions satisfying the corresponding homogeneous boundary
conditions W(u) =0 for i = 1,2, and C& be the set of functions in C*
which also satisfy the boundary conditions .

Let b(¢) and ¢(¢) be continuous functions defined on [0, 1], and for u
in C? define Lu = u” + b(t)u’ + c(t)u, a second order linear differential
operator. In this context we have:

THEOREM 2.1. Assume g: [0, 1] X R X R — R is continuous, L: ngo - C
is one-to-one (where B, B, and L are as above) and that there is a constant
M < oo such that |y|, <M for each solution y to the boundary value
problem,

Ly = \g(t, y,y'), 0<r=<1,
yeEB,
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for each X in [0, 1]. Then the boundary value problem,
Ly=g(t,y,5), 0<r=<1,
yED,

has at least one solution in Cg.

The following lemmas, see [4] and [S], are often used to establish the a
priori bound M in Theorem 2.1.

LEMMA 2.2. Suppose there is a constant M, = 0 such that,

yg(z, »,0) >0 for |y|> M,.

If y(t) is a solution to the differential equation y” = g(t, y, y") and | y(t) |
does not achieve its maximum at t = 0 or t = 1, then,

y(t)|=M, fortin[0,1].

If in addition y(t) satisfies homogeneous Neumann boundary conditions and
| () | achieves its maximum at t, = 0 or 1, then | y(t,) | =< M,,.

LEMMA 2.3. Let My =0 be fixed and y(t) be a solution to y" =
g(t, y, y’) whose derivative vanishes at least once in [0, 1] and for which
|¥lo = M,. Suppose there are constants A, B =0 such that | g(t, y, p)|=
Ap* + B for all (t, y, p) in [0,1] X [-M,, My] X R. Then there is a
constant M, depending only on M, A, and B such that |y'(t) |< M, for t in
[0, 1].

3. The nonlinear Neumann problem. Let f: [0,1] X R X R > R be
continuous and consider the Neumann problem,

y'=f(t,y,y), 0=t=I1,
(N) oy — H1Y —
y©) =r, y(@)=s,

where r, s are given constants. Our first result is the analogue of Bernstein’s
Theorem 1.2 for the Neumann problem.

THEOREM 3.1. Assume f(t, y, p) is continuously differentiable with
respect toy for all (t, y, p) in[0,1] X R X R and:
(i) There is a constant k > 0 such that

(t, ¥, p) =k,

for (t, y, p)in[0,1] X R X I where I = [min(r, s), max(r, s)];
(i) f satisfies the Bernstein growth condition. Then the Neumann
problem (N) has a solution for all choices of r and s.
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Proof. To prove existence, consider the family of Neumann problems,

y' =N, y,y) =yl +y
y(©0)=r, y(1)=s,

for A in [0, 1]. This family of problems can be written as

(N

Ly = Ag(t, , "),
yEeRB,

where Ly =y” —y, g(t, y, y) =f(t, y, ') — y, and B stands for the
inhomogeneous Neumann conditions. It is easily checked that L: C%ZO - C
is one-to-one in this case. So the existence of a solution to (N),, that is to
(N), follows if the a priori bound required in Theorem 2.1 can be
established. Thus, to show that (N) has a solution it suffices to prove that
there is a constant M < co such that | y |, < M for each solution y to (N),
for A in [0, 1].

Suppose y is a solution to (N), for some A in [0,1] and define
u =y — p where

() =5~ > "2 4.

Then u satisfies

u’ = F(t,u,v),

(3.1) w(©0)=0, w(1)=0,

where
F(t,u,w) =N f(t,u+p,u +0)— (u—p)] + (utp)—(s—r).
Also,
uF(t,u,0) = u{Af(t,u+p,p) —NMu+p)+(utp)—(s—r)}
= u{A[f(t, u + p, p') = f(t, 0, 0")] + Af(¢, 0, 0))
At p) +u+ p) (s = 1))
> Aku? +(1 — Nu? — Iy,
where,
1= max{|f(t,w, p)| +|w|+|s — 1|},

and the maximum is over (¢,w, p) in [0,1] X [-|p|s |p|o] X I. The
inequality

uF(t,u,0) =[Nk + (1 — A)]u? — [y
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implies uF(t, u,0) > 0 for |u|> I/k’ where k' = min(/, k). Then Lemma
2.2 implies |u(t)|<1/k’ = M, for any solution u(¢) to (3.1). Since
F(t, u, p) satisfies a Bernstein growth condition because f does, it follows
easily that there are constants 4, B independent of A, suchthat | F(¢, u, p) |
< Ap* + B for all (t,u, p) in [0,1] X [-M,, My] X R and A in [0, 1].
Then Lemma 2.3 implies that there is a constant M, < oo independent of
A such that |« |, < M, for any solution u to (3.1). Finally the differential
equation in (3.1) together with the a priori bounds already found for u and
u’ imply that | u” |, < M, for a constant M, < oo and independent of A.
Thus, |u|, < M’ = max(M,, M,, M,) for any solution u(¢) to (3.1), and
so |y|, <M’ +|p|, =M for any solution y(¢) to (N),. The existence
proof is complete.

The next result has an essentially different character because it allows
quite general growth of f in its derivative variable, p.

THEOREM 3.2. Suppose f(t, y, p) is continuously differentiable with
respect to its three arguments on [0, 1] X R X R. Assume:

(i) There is a constant k > 0 such that f (1, y, p) Z k for all (1, y, p)
in [0,1] X R X I where I = [min(r, s), max(r, s)];

(11) There is a constant M| such that

pfi(t, v, p) + p*f(t, y, p) >0,

for all (1, y) in [0,1] X [-M,, M,] and | p |> M, where M, =|p|, + I/k’
and 1, k', p(t) are as defined above. Then the Neumann problem (N) has a
solution.

REMARK. Condition (ii) is often checked by inspection in practice by
showing that for (¢, y) in a compact set, pf, + pzfy > 0 provided |p| is
sufficiently large.

Proof. Just as before the existence proof reduces to establishing an a
priori bound M such that |y |, < M for all solutions y(¢) to (N), for A in
[0, 1]. In view of (i) it follows, exactly as in the proof of Theorem 3.1, that

I)"0<|P|o+l/k/-

To get an a priori bound on y’ we let u = y’ and differentiate the
original family of problems (N), to obtain,

u’ = )\[f,(t, y,u) + f(t, y, w)u+ f(¢, y, u)u’ — u] + u,

(32) u(0) =r, u(l) =s.
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Let G(t, u, u’) stand for the right-hand side of the differential equation in
(3.2). Then,

uG(t,u,0) = )x[f,(t, y,u)u+f,(¢, y, u)uz] +(1—-MNu>>0

if |u|>M,. Lemma 2.2 implies that |u|, < max(M,,|r|,|s]|); that is,
|y |o < max(M,,|r|,|s|) for every solution y to (N),. The differential
equation in (N), now yields an a priori bound for | y” |, and consequently
there is a constant M such that | y |, < M for each solution y(#) to (N), for
A in [0, 1]. This completes the existence proof.

A rather interesting corollary of Theorem 3.2 pertains to autonomous
differential equations.

COROLLARY 3.3. Suppose f = f(y, p) is continuously differentiable on
R X R and that f(y, p) =k >0 for some constant k and all (y, p) in
R X R. Then the Neumann problem,

' =f(y,y)s
y©0)=r, y(Q1)=s,

has a unique solution.

Proof. Existence follows from the theorem and uniqueness from §5 in

[4]).

The preceding theorems are of primary interest in the case of inhomo-
geneous Neumann conditions where r? + 52 > 0 because in the case of
homogeneous Neumann conditions existence of a solution can be estab-
lished with virtually no growth rate restrictions on the nonlinearity.
Specifically we have:

THEOREM 3.4. Suppose f: [0,1] X R X R — R is continuous and.:
(1) There is a constant M, = 0 so that,

yf(t, y,0) >0 for [y|> My;
(1) There is a constant M, > 0 so that,
inf|f(z, y, p)|> 0,
where the infimum is calculated over (t, y) in
[0,1] X[-M,, My| and |p|=M,.

Then the homogeneous Newmann problem (N) with r = s = 0 has at least
one solution.
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Proof. Let € = p/2(M, + 1), where p > 0 is the infimum in (ii) and
consider the family of problems,

y“ — &y = A[f(t’ Vs y,) - Ey] + (1 - A)qS(t, Y yl))"z,
y'(0)=0, y(1)=0,

where ¢(¢, y, y’) is a bounded continuous function for which,

o(t, ¥, p) =sgn f(¢, v, p),

for (¢, y) in [0, 1] X [-M,, M,] and | p |= M,. In the appendix, the con-
struction of such a function is given. To prove existence of a solution to
(N) we note that Theorem 2.1 is again applicable with Ly = y” — ey in
(3.3). Thus, (3.3) with A = 1, i.e. (N), will have a solution provided there is
a constant M < oo such that |y |, < M for each solution y to (3.3) for A in
[0, 1].

To establish the required a priori bound note that the differential
equation in (3.3) can be expressed as,

Y =AMy, )+ (1= Ney + (1= Nz, p, y)y”.

(3.3)

Since,

y[Af(2, y,0) + (1 = N)ey] = Apf(z, y,0) + (1 — N)ey* >0,

for | y|> M, by (i), Lemma 2.2 implies that |y |, =< M, for any solution
y(t) to(3.3) for Ain [0, 1].

Next let M| = max(1l, M,, p) and suppose y is a solution to (3.3).
‘Then"y1, = M, as we have seen. Suppose |y’ |, > M|. Then, in view of
the boundary date, there is a point 7, in (0, 1) where | y’(¢) | achieves its
maximum, y"’(¢,) = 0, and | y’(¢,) |> M. The differential equation gives,

0=y5 =Nf(ty, yo» ¥5) + (1 = N[ eyo + ¢ (26, yo, ¥5) 93]

where y, = y(¢,), etc. Multiply the equation above by sgn f,, where
Jo = M1, Yo, ¥5), and use &(2o, Yo, ¥5) = sgn f(1y, y5, y;) to obtain,

(sgn fo)(X — Deyy = Alfl + (1 = A)y5.
Since,
elvol=[p/2(My + DMy <p/2,  |fl=p,y5=MT=M =p,
the preceding equation yields the inequality,

pP_ ,
2 = min(lf. y3) = o,
a contradiction. Thus, |y’ |, = M| for each solution y(z) to (3.3). The
differential equation now gives a bound independent of A for | y” |, and so
| ¥ |, < M for some constant M. The proof is complete.
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Theorem 3.4 has as a corollary the Neumann problem analogue of a
theorem of Nirenberg [7] for periodic boundary data.

COROLLARY 3.5. Let a, B: [0, 1] X R X R — R be continuous. Assume:
@) a(z, y, p) > 0; ‘
@ii) | B(¢, y, p) |~ o and a(t, y, p)/B(t, y, p) = 0 as | p |- oo uni-
formly for (¢, y) in a compact set in [0, 1] X R.
(iii) There is a constant M = 0 such that

B(t, y,0)
22 <1 for |y|> M.
ya(t, y,0)

Then the homogeneous Neumann problem,

v =ya(t,y,y) — B(t, y,y),
y(©0)=0, y(1)=0,

has a solution.

The proof is obtained by observing that f(z, y, p) = ya(t, y, p) —
B(t, y, p) satisfies the hypotheses of Theorem 3.4.

As another corollary of Theorem 3.4, we obtain the following counter-
part to Theorem 3.1 for the inhomogeneous Neumann problem. In
Theorem 3.1 the monotonicity condition f, =k >0 is coupled with a
quadratic growth rate restriction on f with respect to increasing |p| .
Surprisingly, Theorem 3.6 shows that we can eliminate the quadratic
growth restriction entirely provided only that f is suitably bounded away
from zero as | p | increases.

THEOREM 3.6. Suppose f: [0,1] X R X R — R is continuous and.

(1) There is a constant k > 0 such that f(t, y, p) =k for (¢, y, p) in
[0,1] X R X I where I = [min(r, s), max(r, 5)];

(ii) There is a constant M, > Q so that,

inf|f(z, y, p) + (r —5)|>0,

where the infimum is calculated for (t, y) in [0,1] X [-M, — | p |y, M, +
|plo] and | p|= M,. (Here M, = 1,/k is a constant defined in the proof
below.) Then the Neumann problem (N) has a solution.

REMARK. In interesting special cases (ii) is often confirmed by inspect-
ion by showing the | f(¢, y, p) + (s — r) | becomes infinite for (¢, y) in a
compact set as | p |~ co.
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Proof. Let p(t) = [(s — r)/2]t* + rt as usual. Then y(z) solves y” =
f(¢t, y, y") with y’(0) = r and y’(1) = s if and only if u = y — p solves,

W =ft,u+p(t),u +p'(t) = (s—r)=F(t,u,u)

(3.4) w(0)=0, w(1)=0.

From (i) we get

uF(t,u,0) = uf(t,u + p(2), p'(¢)) + u(r —s)
= u[f(tv u+ p(l), p/(t)) ~f(t’ p(l), pl(t))]
+ uf(t, p(2), 0'(2)) + u(r — s) = wk —|ull,,

where /, = max | f(¢, y, p) + (r — 5)| and the maximum is over [0, 1] X
J X I, I has the usual meaning and J = [min p(¢), max p(¢)] with the min
and max computer over [0, 1]. Consequently, uF(¢, u,0) > 0if |u|> M, =
l,/k.

Next, if U= {(t,u,v): (¢, u) €[0,-] X[-My, My], |v|=M, +
| 0" |o) and V is the set of points (¢, y, p) when (¢, y) in [0, 1] X [-M, —
|plos My + |p|o] and | p |= M, simple triangle inequality estimates con-
firm that

inf |[F(¢, u, 0)|Zinf|f(z, y, p) + (r —5)]| >0,

by (i1). Thus the hypotheses of Theorem 3.4 are satisfied by the homoge-
neous Neumann problem (3.4). Consequently, (3.4) has a solution u(t)
and y(¢) = u(t) + p(t) solves (N).

We conclude this section with a comment about uniqueness of solu-
tions to the nonlinear Neumann problems above: It is proven in §5 of [4]
that the inhomogeneous Neumann problem has a unique solution pro-
vided f(¢, y, y’) is continuously differentiable on [0,1] X R X R, f, =0
there, and f(4,, y, p) >0 for a fixed #, in [0,1]. In many practical
applications of Theorems 3.1, 3.2, and 3.6, condition (i) in each theorem is
checked by showing that f, = k > 0 on [0, 1] X R X R; in these cases the
solution in unique.

4. Examples and remarks.

ExaMPLE 1. The use of Lemma 2.2 to obtain a priori bounds for the
homogeneous Neumann problem uses r = s = 0 in an essential way. For
instance, the Neumann problem,

y” =a*y — 1,  a> 0 constant,
y'(©0)=0, y(1)=s,
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can be embedded naturally in the family of problems,

Y’ —y=MAa*—1-y),
(4.1) V) =0, (1) =s,

for A in [0, 1]. The differential equation is,
y'=Naly - 1)+ (1A -N)y=g(, ),

and we have yg(t, y,0) > 0 for | y|> m = 1/min(a?, 1), for all A in [0, 1];
however, if the initial datum s is chosen so that s > mM sinh M where
M = max(a?, 1), then each solution to (4.1) satisfies | y |, > m. To see this
simply note that the unique solution of (4.1) is,

— S
Y~ wsinha

where @ = yAa? + (1 — A) . The solution is strictly increasing so, for ¢ in
[0, 1],

A
cosh at + —>
a

\%

y(1) = 3 +A — >
asinha 42 Msinh M

Thus, no solution to (4.1) satisfies | y |, < m.

EXAMPLE 2. It is possible to construct whole families of problems for
which (N) is not solvable. The simple observation to follow shows that the
existence of a solution to the Neumann problem depends much more
delicately on the relation between the boundary data r, s and the nonlin-
earity f than is the case for the Dirichlet problem. Indeed if problem (N)
has a solution y the mean value theorem implies that y”(o) = s — r for
some o in (0, 1). Thus, s — r must be in the range of f. Consequently, (N)
cannot have a solution, regardless of any growth rate or monotonicity
assumptions which f may satisfy, if f never take the value s — r. For
instance, none of the problems,

Y=yl =0, y(1)=0,
y' =1+ y(©0) =1, y'(1) =0,
y’ =y, y'(0) =2, y'a) =1,

has a solution; however, in each case, the corresponding Dirichlet problem
is solvable. In fact for the first and third problems this can be seen by
direct integration. For the second we note that 8 = 2 is an upper solution
and a = t> — ¢ is a lower solution to the Dirichlet problem. Also, the
third Neumann problem shows that the condition f, = k > 0 in Theorem
3.1 cannot be relaxed to yf(¢, y,0) = 0 in contrast to the situation for the
Dirichlet problem (Theorem 1.1).
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ExXAMPLE 3. Care must be taken in reducing a Neumann problem to a
Dirichlet problem as was done in the proof of Theorem 3.2. For instance,
the problem,

y// :yr2,
y'(©0) =2, y(@1)=1,

has no solution by Example 2. On the other hand, if one tried to construct
a solution by setting y’ = u one would obtain the problem,

u’ =2uu’,
u(0) =2, u(l) =1,

for u. This problem does in fact have a unique solution,
_a(l — be**)
u= 7 )
1 + be*

where a ~ 2.0238 and b~ 0.0051. However, the function [ju(s)ds +
constant does not satisfy the original Neumann problem no matter how
the constant is chosen.

ExaMPLE 4. The Neumann problem,
Y =142y,
y'(0) =1, y(1)=0,

has a solution by Theorem 3.1. (Compare with problem 2 in Example 2.)

ExaMPLE 5. The Neumann problem for each of the equations,

y'=t(y)""'+y+1, n=0aninteger,
y" =(cost)y +y"(y)", n=10dd, m=0even,
' =e(1+y"), m = 0 and real,

has a solution on [0, 1] for arbitrary initial date r, s by Theorem 3.2.

ExAMPLE 6. The Neumann problem,
y' =y +w+1+y”",  n=0,integer,
y'(0)=0, (1) =0,
has a solution by Theorem 3.4, while,
y" =y(y? +1) = ((cos2)y? + y?y*),
y'(0)=0, y'(1)=0,
has a solution by Corollary 3.5.
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ExaMpLE 7. The Neumann problem,

v =y(1+y"),
y©0)=r, y(Q1)=s,

has a unique solution for all r, s by Corollary 3.3. It is interesting to note
that Theorem 3.6 does not apply in this case.

ExaMpLE 8. The homogeneous Dirichlet problem for
y'=1+y+a™*

where a > 0 is a constant only has a solution for a < b where b is some
constant not greater than 3®/2°% see [5]. In contrast, the homogeneous
Neumann problem for this equation has a solution for all a >0 by
Theorem 3.4. Additionally, by Theorem 3.6 the inhomogeneous Neumann
problem has a solution for all r and s.

ExAMPLE 9. To illustrate the scope of Theorem 3.6 we note that it
implies that the inhomogeneous Neumann problem for,

m

y'= Y alt)y*+b(z, ),
k=1

always has a solution provided:

(1) a,(¢) is continuous for k = 1,...,m, a,(t) # 0 for ¢ in [0, 1];

(i1) b(¢, y) is continuously differentiable and bz, y) =k >0 for
some constant k.

The equation in Example 8 is a special case.

ExaMpLE 10. It is useful to contrast the preceding example with some
related work in [S]. Let f(¢, y, p) be continuous on [0,1] X R X R and

g(t, y, p) = f(t, y, p) — y. If for each fixed (z, y), g(¢, y, p) =0 has
both positive and negative solutions for p, define,

r(z, y) = sup{p: g(t, y, p) = 0},
and,
s(t, y) = inf{p: g(¢, y, p) = 0}.

It is proved in [5] that the homogeneous Neumann problem for y” =
f(t, y, y’) has a solution if:
(a) There is a constant M = 0 such that

¥f(t,y,0) =0 for |y|> M;
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(b) The functions r(z, y) and s(¢, y) are defined and continuous on
[0, 1] X [-M, M].

This general result implies that the homogeneous Neumann problem for
v’ = Z7oa,(t, y)y'* has a solution provided: The a,(t, y) are continu-
ous on [0, 1] X R such that,

(1) for some M =0, ya,(t, y) =0 for |y |> M,

(ii) the polynomial in p, 27"_,a,(t, y)p* has both positive and nega-
tive roots for each (¢, ) in [0, 1] X [-M, M] and a,(?, y) # O there.
For instance, it is not difficult to check that the homogeneous Neumann
problem for,

Y =(cost)y® +2epy” +y? +y?— (2 + 1)y +y+1,

has a solution. In this case M = 1 in (i). Note that Theorem 3.6 does not
apply here because f, = 2e’ y® 4+ 1; however, Theorem 3.4 for the homo-
geneous case does apply.

APPENDIX

A function such as ¢(¢, y, p) used in the proof of Theorem 3.4 can be
constructed along the following lines. Let M, and M, be defined as in
Theorem 3.4 and S = [0, 1] X [-M,,, M,]. By the continuity of f and the
definition of M, thereis a P, 0 = P < M, such that inf | f(¢, y, p) |> O for
(¢, y)in S and |p|= P. Let,

A={(t,y,p): (1,y) €S, |p|= M},
B={(t,y,p):(t,y) €S, |p|= P},
and define p: § X R - [0, 1] by

d(x, B)
d(x, )+ d(x, B)’

p(x) =

where d(x, A) is the distance of x = (¢, y, p) from the set A. Then p = 1
on A and p = 0 on B. Define ¢(¢, y, p) = p(¢, y, p)sgn f(t, y, p) where
sgnr= +1if r=0 and sgnr= -1 if »r <0. Then ¢ is bounded and
continuous on S X R and equal to sgn f(7, y, p) for |p|= M,. The
domain of ¢ can be extended to [0, 1] X R X R by setting ¢(z, y, p) =
o(t, Mysgn y, p) for (¢, y, p) with |y |> M,,.
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