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DEGREE OF UNIFORM APPROXIMATION
ON DISJOINT INTERVALS

CHARLES K. CHUI AND MAURICE HASSON

In this note, the problem of degree of uniform approximation by
polynomials on disjoint intervals is considered. It is interesting to note
that the error estimates cannot be obtained by extending the given
functions to functions on a single interval and applying the one-interval
estimates.

1. Introduction. If AT is a compact subset of the real line, C(K) will
denote, as usual, the Banach space of all real-valued continuous functions
on K with the supremum norm || | |^. For each / in C(K), let En(f; K)
denote the distance from / to the subspace πn of all algebraic polynomials
with degrees not exceeding n. When there is no possibility of confusion,
we will also use \\ || for || || ̂  and En(f) for En(f; K).

Let K=[-b9 -a] U [a, b] where 0 < a < b and / G C(K). In this
paper, we will show that En(f\ K) — O(n~r) where r > 0, if both
£„(/; [-b, -a]) and En(f; [a, b]) are of order O{n~r). We will also show
that this is a disjoint interval result, in the sense that it cannot be obtained
by extending / to a function in C[—6, b]. If / has the property that
/|[_ftf_β] &ndf\[ah] are restrictions of functions analytic in the left and
right half planes respectively, we will show that En(f\ K) decreases not
slower than a geometric progression. Our proofs of the above results are
very elementary, using only the well known classical results of Bernstein
(cf. [4]).

When entire functions are considered, Fuchs [2] obtained very sharp
estimates for the case where K is the union of finitely many mutually
exterior Jordan curves satisfying certain smoothness conditions. The main
tools in [2] are function-theoretic techniques and the results in Widom [6].
In a private communication, Professor Fuchs also pointed out that his
results in [2] are also valid for disjoint intervals.

Our proof of the analytic functions result will rely on the following
theorem of Bernstein (cf. [4], p. 76).
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THEOREM A. Letf G C [ - 1 , 1 ] , Then

if and only if f is the restriction of a function analytic in the interior of the
ellipse with foci at ± 1 and vertices at ±(ρ + ( l/p))/2.

Hence, if f\{_b _a] a n d / | [ β b] are restrictions of two different entire
functions a n d / E C[—by b] is any extension of/from K to [ — b, b\ then
Theorem A implies that

M (En(f; [-b,

In other words it is not possible to prove that En(f; K) decreases faster
than a geometric progression by extending/G C(K) to a n / G C[~b, b]
and using the inequality En(f; K) < En(f; [-b, b]).

2. The main results. We will need the following lemma which is a
direct consequence of Theorem A by using the change of variable

2x a2 + b2

u = b2 - a2 b2-a2'

LEMMA 1. Let 0 < a < b andf G C[a2, b2]. Then f is the restriction of
a function analytic in the interior of the ellipse with foci at a2 and b2 and a
vertex at the origin if and only if

/ i \ T'— / ^ ( r r ? , ? i \ \ i A ^b — a

Our first result in this paper is the following.

THEOREM 1. Let 0<a<b and K - [-b, -a] U [a, b]. Suppose that
f G C(K) such that f \[_b_a] is the restriction of a function fx analytic in the
left half plane Rez < 0 and that f\[ayb] is the restriction of a function f2

analytic in the right half plane Re z > 0. Then

(2)

Furthermore, equality is attained if fx and f2 are two different entire
functions.
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We remark that in our proof of inequality (2), we only need to assume
^ / 1 ^ ) and/2(v^) are analytic in the interior of the ellipse with foci

at a1 and b2 and a vertex at 0. Here and throughout, the principal value of
the square root is used. If fλ and f2 are different entire functions, the
results in [2], which are also valid for disjoint intervals, also give equality
in (2) with limit supremum replaced by limit.

Our proof of Theorem 1 is very elementary. Let Pn and Qn be the
polynomials of best uniform approximation on the interval [a2, b2] from
πn to the functions f2{yfx ) and f2(yfx)/ y/x respectively. By Lemma 1, we
have

(3) ^ f

(4) |
n —* oo

Let R2n+ι(x) = [Pn(x2) + xQn(x2)]/2. Then Rln+X e ir2ll+1, and since
Pn(x2) is even in x and xQn{x2) is odd in x, it follows from (3) and (4)
that

(5) S£f lΛ 2 Λ + I -/C 4 1 *!^f ,
n—* oo

ίs\ v II n it l/« ^ b — a

(6) lim \\Rin+\\\[-b,-a]^-rτ-:

Similarly, we can find S2n+\(x) E TΓ2/2-HI
 s υ c h

w—»oo

I*111 1 1 ^ l l

The relationships (5)-(8) imply that

2/i+l ~~ f\\[-b,-a]j

- a
~ b + a'

and (2) follows immediately.
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If fx and f2 are two different entire functions, we will show that
equality in (2) holds. First, let us assume that /is an even function (that is,
f2(x) = fχ(—χ) for x E [α, b]). Let P2n be the polynomial of best uniform
approximation to / on K from π2n. By uniqueness, P2n is also an even
function, so that P2n(x) = qn(x2) for some qn E πn. This gives

fi);[a\ b2]) *\ = E2n(f).

Assume that equality is not attained in (2). Then we have

\/n b — a

b + a '

and by Lemma 1, the function /2(/x ) is analytic at x = 0. Since f2 is an
entire function, it is clear that f2 must be an even function. That is,
fι(x) = f2(~x) — f2(x) for x E [ —fc, —a], so that /, = /2, which is a
contradiction. Hence, if/is even and/ l 9 / 2 are different entire functions,
then equality in (2) must hold.

Suppose that/is not even and/ l 9/2 are different entire functions such
that fx(x) + f2(-x) is not identical with f2(x) + / , ( - * ) . Let

+ f2(-x)]/2,F2(x) := [f2(x) + / 1(-*)]/2,and

W * 2 [F 2(JC) forjce[α,6].

Then Fj ^ F2 and F is even. Hence, from what we have just proved,
equality in (2) holds for F. If Pn is the best uniform approximant of /on K
from τrΛ, then we have

= £„(/)>

so that equality in (2) also holds for/.
Finally, suppose that fx(x) +f2(~x) =/ 2 (*) + / i ( - * ) for all JC. We

define ^ ( x ) := xt/^x) - / 2 ( - χ ) ] / 2 , H2(x) := x[/2(x) - / , ( - ^ ) ] / 2 ,
and

i/2(x) forx E [ α , * ] .
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Since /, ^ / 2 , we have Hx s H2. Hence, since H is even, equality in (2)
holds for H. Again, let Pn be the best uniform approximant of /on K from
πn. Then

x[Pn(x)-Pn(-χ)]
-H(x)

Pn(-χ)-f(-χ)

so that equality in (2) also holds for /. This completes the proof of
Theorem 1.

For functions which are not necessarily analytic, we have the follow-
ing result.

THEOREM 2. Let 0 < a < b and K - [ — b, -a] U [a, b]. Suppose that
fϊΞC(Klfλ=f\_h^a] andf2=f\[atb]9 such that En(fx;[-b,-a]) =
O(n~r) and En(f2; [a, b]) = O(n'r) for some r>0. Then En(f; K) =

Before we proceed with the proof, we remark that while Theorem A
already shows that Theorem 1 is a disjoint interval result, the following
example shows that Theorem 2 cannot be obtained by extending / to a
function in C[ — b, b] either.

Let f(x) = / |JC| - 1 where \x |> 1. Since En(Jx; [0,1]) = 0(1/n)
(cf. [5, p. 131] or [3]), and En(f; [-2, -1]) - En(f; [1,2]) = En(&; [0,1]),
Theorem 2 implies that En(f\ [-2, -1] U [1,2]) = 0(1 A ) also. However,
by a result of Bernstein (cf. [5, p. 129]), En(f\ [-2,2]) φ O(n~a) for any
a > 1/2, where/is any extension of/to [ — 2,2].

Our proof of Theorem 2 relies on the following result of Bernstein (cf.
[4; p. 42]).

THEOREM B. Let Pn e πn such that \ Pn(x) | < 1 for all x G [-1,1].
Then I Pn(z) \ < pn for all z in the interior of the ellipse with foci at ± 1 and
vertices at ±(p + l/p)/2.

Hence, if Pn E
 fnn such that || Pn || [Λ^j < d, then we have

(9)

where c, = (3b + a + ihb2 + lab )/(b - a).

Consider the function

_ /0 if -b<x< -a,
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and let Qn G mn be the best uniform approximant of g on K = [—b, —a]
U [a, b] from ττπ. By Theorem 1, we have

(10) \\Qn-ήκ^dxcΓ

for some constant dx and all n, where c2 > ]j(b + a)/ (b — a). Let Pπ be
the best uniform approximant of the given function f2 on [a, b] from τrn.
Then || Pn \\ [ab] < d2 for some constant d2 and all«. By (9), we have

for all n. For a real number x, let [*] denote, as usual, the integer part of
x. Then for 0 < a < 1, we have, by (10),

\\P[an]Q{(\-a)n} ~~ flWfab]

^^Ijp II ||/^ i | | I II p / ||
— llMβΛ]ll[β6]ll^[(i-α)Λ] Mile*] "Πr [«π] /2ll[fl6]

On the other hand, we have, from (10) and (11),

(]Ϊ\ \\p n || </////»[««

\1*) \\r[an)V[(\-a)n]\\[-b,-a) ~ "l"2Cl

Let F2 be defined by

ΓO

By choosing α, 0 < α < 1, such that cf < c\ β> w e c a n conclude from
(12), (13) and the hypothesis En(f2;[a, b]) = O(n~r) that En(F2; K) =
O(w~r). Similarly if we let

F(χ) =

we also have En(Fx; K) = O(n~r). Hence, it follows that

En(f; K) < En(Fx; K) + En(F2; K) = O(/i"0

completing the proof of the theorem.

3. Final remarks. There are many important unanswered questions
in the subject of degree of approximation on disjoint intervals. The
purpose of this paper is to introduce some elementary techniques and
present two results which cannot be obtained by extending the given
functions to one interval and applying the one-interval estimates. Unfor-
tunately, the techniques in this paper cannot be easily generalized to
handle the case when the two disjoint intervals are of different length.
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There is also a big gap between the rates O(n~r) and [(b — a)/(b + a)]n/2.
For instance, if/is analytic in a (smaller) neighborhood of K = [ — 6, — α]
U [α, ft], we do not know the (exact) rate of convergence of En(f; K). As
we pointed out in §1, the sharp estimates in Fuchs [2] also hold for
disjoint intervals when entire functions are considered. The basic tech-
niques are function theoretic and the results in Widom [6]. Many related
but different results have been obtained by Akhiezer [1], where in particu-
lar, transfinite diameters of a union of disjoint intervals have been
obtained.
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