THE ROOT SUBGROUPS FOR MAXIMAL TORI IN FINITE GROUPS OF LIE TYPE

Gary M. Seitz

Abstract

Let G_{1} be a finite group of Lie type defined over a field of characteristic p. The results of this paper represent an attempt to achieve a better understanding of the subgroup structure of G_{1}. It is somewhat surprising how limited our knowledge is, in this regard. For example, while centralizers of semisimple elements (i.e. p^{\prime}-elements) of G_{1} have been studied in detail and are fairly well understood, very little has been written about subgroups of G_{1} generated by such centralizers. Even in explicit examples the analysis of such subgroups can be very difficult, the difficulty stemming from an inability to relate the generated group to the Lie structure of G_{1}. To deal with these situations and others we set up a framework that allows us to effectively study a fairly large class of subgroups of G_{1} (those containing a maximal torus), by studying subgroups of the corresponding algebraic group. Essential to the development is a theory of root subgroups for arbitrary maximal tori of G_{1}.

1. Introduction. The theorems we establish have as their origin Lemma 3 of [22], which was later extended in [7] to show that if $q \geq 5$ and if H is a Cartan subgoup of G_{1} normalizing the p-group V, then V is the product of root subgroups of H. This result is quite useful and provided the starting point for the result in [21] which showed that with further field restrictions one could determine all H-invariant subgroups of G_{1}. For example, if $H \leq L \leq G_{1}$, then it was shown that L could be generated by $N_{L}(H)$ together with certain of the root subgroups of H. Hence, L is determined by a subset of the root system of G_{1} together with a subgroup of the Weyl group of G_{1}. One wants to extend these results to cover the case of an arbitrary maximal torus, not just a Cartan subgroup. Therefore, one would like to develop a theory of root subgroups that makes sense for an arbitrary maximal torus and then establish results like those above. The present paper carries out this program.

The group G_{1} satisfies $O^{p^{\prime}}\left(\bar{G}_{\sigma}\right) \leq G_{1} \leq \bar{G}_{\sigma}$, where \bar{G} is a connected simple algebraic group over the closure of \mathbf{F}_{p}, and σ is an endomorphism of \bar{G} whose fixed point set, \bar{G}_{σ}, is a finite group. Set $G=\bar{G}_{\sigma}$ and $G_{0}=O^{p^{\prime}}\left(\bar{G}_{\underline{\sigma}}\right)$. A maximal torus of G_{1} is a group of the form $T \cap G_{1}$, where $T=\bar{T}_{\sigma}$ and \bar{T} is a σ-invariant maximal torus of \bar{G}. The group \bar{G} has a root system, $\bar{\Sigma}$, and for each root $\alpha \in \bar{\Sigma}$, there is a \bar{T}-root subgroup \bar{U}_{α} of \bar{G}. These root subgroups are permuted by σ. If Δ is a $\langle\sigma\rangle$-orbit of such root subgroups, let $X=O^{p^{\prime}}\left(\langle\Delta\rangle_{\sigma}\right)$, a subgroup of G_{1}. Such a group is
called a T-root subgroup of \bar{G}_{σ}, and these groups are the groups we wish to consider. The T-root subgroups of G are either p-groups or themselves groups of Lie type, and even when they are p-groups their structure can be complicated. Nevertheless, the situation is manageable, as we indicate in the sample results below.

Write $G_{1}=G_{1}(q)$, where q is a power of p and fix a maximal torus T of $G=\bar{G}_{\sigma}$. Set $T_{0}=T \cap G_{0}$.

Theorem (6.1). Suppose $q>7, T$ is a maximal torus of \bar{G}_{σ} and $T_{0} \leq Y \leq \bar{G}_{\sigma}$ with Y solvable. Then $Y=O_{p}(Y) N_{Y}\left(T_{0}\right)$ and $O_{p}(Y)$ is a product of T-root subgroups of $\bar{G}_{\boldsymbol{\sigma}}$.

As a consequence of (6.1) we see that for $q>7$ any T_{0}-invariant p-subgroup is a product of T-root subgroups; the exact analogue of the result in [7]. When one considers arbitrary subgroups invariant under (or containing) a maximal torus, additional field restrictions must be made. In addition our proofs depend on the classification of finite simple groups.

In each of the following results assume that $p>3$ and $q>11$.
Theorem (12.1). The map $\bar{X} \rightarrow \bar{X}_{\sigma}$ is a bijection between the collection of all closed, connected, σ-invariant subgroups of \bar{G} containing a maximal torus of \bar{G}, and the collection of all subgroups of G generated by maximal tori of G.

The inverse of the map $\bar{X} \rightarrow \bar{X}_{\sigma}$ is given in $\S 12$; it involves the T-root groups described above. We remark that a group of the form \bar{X}_{σ} has known structure (see (2.5)), so by (12.1) we can describe the structure of any subgroup of G generated by maximal tori.

The next result contains parts of (10.1) and (10.2), and concerns those subgroups of G containing a maximal torus of G_{0}. The result establishes part of the conjecture in [24]; the full conjecture follows from (10.1).

Theorem. Let $T_{0} \leq Y \leq G$. Then
(i) The normal closure, $\left\langle T_{0}^{Y}\right\rangle$, of T in Y_{0} is generated by T_{0} and those T-root subgroups of G that are contained in Y.
(ii) If T_{1} is any maximal torus of G_{0} with $T_{1} \leq Y$, then $\left\langle T_{0}^{Y}\right\rangle=\left\langle T_{1}^{Y}\right\rangle$.
(iii) T_{1} can be chosen so that $Y=\left\langle T_{1}^{Y}\right\rangle N_{Y}\left(T_{1}\right)$.
(iv) $O_{p}(Y) \leq\left\langle T_{0}^{Y}\right\rangle$ and $O^{p^{\prime}}\left(\left\langle T_{0}^{Y}\right\rangle\right) / O_{p}(Y)=E\left(Y / O_{p}(Y)\right.$) (the product of all quasisimple subnormal subgroups of $Y / O_{p}(Y)$).

In view of the above results it is clear that subgroups of G generated by T-root subgroups are of particular importance. The next result indicates such subgroups can be studied by studying \bar{G} and subsets of $\bar{\Sigma}$.

Theorem (12.9). Let T be a maximal torus of G and $X_{1}, \ldots, X_{k} T$-root subgroups of G corresponding to $\langle\sigma\rangle$-orbits $\Delta_{1}, \ldots, \Delta_{k}$ of \bar{T}-root subgroups of \bar{G}. Then $\left\langle X_{1}, \ldots, X_{k}\right\rangle=O^{p^{\prime}}\left(\left\langle\Delta_{1}, \ldots, \Delta_{k}\right\rangle_{\sigma}\right)$.

The following are applications of some of the above results. The second theorem should be compared with the main results in [23].

Theorem (12.10)(ii). Assume \bar{G} is simply connected and let S be an arbitrary set of p^{\prime}-elements of G. Then $G_{1}=\left\langle C_{G_{1}}(s): s \in S\right\rangle$ if and only if $\bar{G}=\left\langle C_{\bar{G}}(s): s \in S\right\rangle$.

Theorem (12.12). Let T_{1} be a maximal torus of G_{1} and $R \leq T_{1}$. Then $G_{1}=\left\langle E\left(C_{G_{1}}\left(R_{1}\right)\right): R_{1} \leq R\right.$ and R / R_{1} cyclic \rangle.

The paper is organized into three chapters, each containing several sections. The first chapter is the basic development of T-root subgroups. In the second chapter we begin the consideration of subgroups of G invariant under a maximal torus, although the classification of finite simple groups does not enter in. The last chapter contains the proofs of several of the main results and it is here where we apply the classification theorem.

The author would like to thank R. Steinberg for communicating a proof of the main result in $\S 5$ much shorter than the original, and M . Kaneda for several helpful comments.

Notation. Throughout the paper \bar{G} will denote a connected simple algebraic group over the algebraic closure, K, of the prime field \mathbf{F}_{p}. As before, σ is a surjective endomorphism of \bar{G} with \bar{G}_{σ} finite. Then $G=$ $\bar{G}_{\sigma}=\bar{G}_{\sigma}(q)$, where q is a power of p. If \bar{T} is a maximal torus of \bar{G}, let \bar{U}_{α} denote the \bar{T}-root subgroup corresponding to the root $\alpha \in \bar{\Sigma}$, the root system of \bar{G}. Let $\bar{W}=N_{\bar{G}}(\bar{T}) / \bar{T}$, the Weyl group of \bar{G}.

If X is a finite $\operatorname{group}, \operatorname{Fit}(X)$ denotes the unique largest normal nilpotent subgroup of X and $F^{*}(X)$ is the product of Fit (X) and $E(X)$, where $E(X)$ is the (commuting) product of all subnormal quasisimple subgroups of $X . O_{p}(X)$ denotes the largest normal p-subgroup of X and $O^{p^{\prime}}(X)$ is the normal subgroup of X generated by all p-elements of X. If d
is a positive integer, then let $\Phi_{d}(x)$ be the corresponding cyclotomic polynomial of degree $\varphi(d)$. Some additional notation is given at the beginning of $\S \S 2,3,5,9$, and 10 .

We label Dynkin diagrams as follows

I. T-Root SUBGROUPS

2. Preliminaries. In this section we establish a number of basic results concerning maximal tori. In addition there are results on subgroups of algebraic groups generated by root subgroups and a somewhat curious number theoretical result.

The group \bar{G} is as in §l with root system $\bar{\Sigma}$ and Weyl group \bar{W}. We assume that $\bar{\Sigma}$ is indecomposable, so that \bar{G} can be regarded as a Chevalley group over $K . \sigma$ is a surjective endomorphism of \bar{G} and $G=\bar{G}_{\sigma}$ is finite. Then G is of Lie type and associated with a field \mathbf{F}_{q} of characteristic p. The number q will be specified below; in nearly every case it is the order of the center of a root subgroup of G for a long root. Write $G=G(q)$. Usually we will regard σ as an element of the semidirect product $\bar{G}\langle\sigma\rangle$; hence σ acts on \bar{G} by conjugation.

By (10.10) of [26] we may choose a σ-stable maximal torus, \bar{H}, of \bar{G} contained in a σ-stable Borel subgroup of G. Let \bar{T} be a fixed σ-stable maximal torus. Then $\bar{T}=\bar{H}^{g}$ for some $g \in \bar{G}$. Therefore, $\bar{H}^{g \sigma}=\bar{H}^{g}$ so
$\bar{H}^{g \sigma g^{-1}}=\bar{H}, g \sigma g^{-1} \sigma^{-1} \in N_{\bar{G}}(\bar{H})$, and we write $g \sigma=n \sigma g$ for $n \in N$. This shows that the diagram

$$
\begin{array}{ccc}
\bar{H} & \xrightarrow{n \sigma} & \bar{H} \\
g \downarrow & & \downarrow g \\
\bar{T} & \vec{\sigma} & \bar{T}
\end{array}
$$

commutes. Hence we will identify the action of σ on \bar{T} and on the character group $X=X(\bar{T})$ with the action of $n \sigma$ on \bar{H} and on $X(\bar{H})$, the identification being made via conjugation by g. Now, n induces an element $w \in \bar{W}$ on $X(\bar{H})$ and, except for the Ree and Suzuki groups, σ induces $q \gamma$ on $X(\bar{H})$, where γ is a graph automorphism of $\bar{\Sigma}$. If G is a Ree or Suzuki group, then setting $q_{1}=\sqrt{q}, \sigma$ induces $q_{1} \gamma$ on $\mathbf{R} \otimes X(\bar{H})$ and γ is an isometry (which interchanges long and short roots). So σ induces $q \tau$ or $q_{1} \tau$ on $\mathbf{R} \otimes X(\bar{H})$, where $\tau=w \gamma$ is an isometry of $\mathbf{R} \otimes X(\bar{H})$ of finite order. We now carry this over to \bar{T} and X, regarding $w \in \bar{W} \cong N_{\bar{G}}(\bar{T}) / \bar{T}$ and w, γ acting on X. We then have
(2.1)(i) If G is not a Suzuki or Ree group, then σ induces $q \tau=q w \gamma$ on X.
(ii) If G is a Suzuki or Ree group, then σ acts on X and induces $q_{1} \tau=q_{1} w \gamma$ on $\mathbf{R} \otimes X$.
(iii) $\bar{T}_{\sigma} \cong X / X(\sigma-1)$.
(iv) $\left|\bar{T}_{\sigma}\right|=|f(q)|\left(\left|f\left(q_{1}\right)\right|\right.$ in the Suzuki or Ree groups), where $f(x)$ is the characteristic polynomial of $w \gamma$ on $\mathbf{R} \otimes X$.

Proof. This follows from the above identification and (1.7) of [25].
The following lemma explains (2.1)(iv) and can be used to obtain the structure of $T=\bar{T}_{\sigma}$ in certain cases.
(2.2) Let Y be a free Z-module and θ an endomorphism of Y. Suppose that $\mathbf{R} \otimes Y$ is a Euclidean space and θ induces $q_{1} \varphi$ on $\mathbf{R} \otimes Y$, where φ is an isometry of finite order and $\left|q_{1}\right| \geq 1$. If $q_{1}= \pm 1$, assume that $C_{Y}(\theta)=0$. Then
(i) $\operatorname{rank}_{Z}(Y)=\operatorname{rank}_{z}\left(Y_{0}\right)$, where $Y_{0}=Y(\theta-1)$.
(ii) $\left|Y / Y_{0}\right|=\left|f\left(q_{1}\right)\right|$, where $f(x)$ is the characteristic polynomial of φ on $\mathbf{R} \otimes Y$.
(iii) Suppose that q_{1} is an integer, $(Y) \varphi=Y$ and Y has a free basis in which the matrix of φ is in rational form. Then $Y / Y_{0} \cong$ $Z_{f_{1}\left(q_{1}\right)} \times \cdots \times Z_{f_{k}\left(q_{1}\right)}$, where $f_{1}(x)|\cdots| f_{k}(x)$ are the invariant factors of φ on $\mathbf{R} \otimes Y$.

Proof. Let $V=\mathbf{R} \otimes Y$. If $q_{1}= \pm 1$, then we are assuming that $C_{Y}(\theta)=0$. If $\left|q_{1}\right|>1$, then use the fact that φ has finite order to conclude $C_{V}(\theta)=0$. In either case $C_{V}(\theta)=0$ and $\theta-1$ is injective. This proves (i).

For (ii), choose a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of Y and positive integers z_{1}, \ldots, z_{n} such that $z_{1}|\cdots| z_{n}$ and $\left\{z_{1} v_{1}, \ldots, z_{n} v_{n}\right\}$ is a Z-basis of $Y_{0}=Y(\theta-1)$. For $i=1, \ldots, n$ let $\left(v_{i}\right)(\theta-1)=\sum a_{i j} z_{j} v_{j}$. There is an integral matrix $\left(b_{i j}\right)$ such that

$$
\left(b_{i j}\right)\left(a_{i j}\right)\left(\begin{array}{lll}
z_{1} & & \\
& \ddots & \\
& & z_{n}
\end{array}\right)=\left(\begin{array}{lll}
z_{1} & & \\
& \ddots & \\
& & z_{n}
\end{array}\right)
$$

Then $\left(b_{i j}\right)\left(a_{i j}\right)=1, \operatorname{det}\left(b_{i j}\right)= \pm 1$, and $\operatorname{det}(\theta-1)= \pm z_{1} \cdots z_{n}$. Passing to V, we have $z_{1} \cdots z_{n}=|\operatorname{det}(\theta-1)|=\left|\operatorname{det}\left(q_{1} \varphi-1\right)\right|$. Since φ is an isometry of V, φ and φ^{-1} have the same eigenvalues with equal multiplicities, hence φ and φ^{-1} have the same characteristic polynomial, say $f(x)$. Since $\operatorname{det}(\varphi)=\operatorname{det}\left(\varphi^{-1}\right)= \pm 1$, we have $\left|\operatorname{det}\left(q_{1} \varphi-1\right)\right|=$ $\left|\operatorname{det}\left(q_{1}-\varphi^{-1}\right)\right|=\left|f\left(q_{1}\right)\right|$, proving (ii).

For (iii), suppose $Y=Y_{1} \oplus \cdots \oplus Y_{k}$, where $Y_{i}=\left(Y_{i}\right) \varphi=\left\langle\beta_{i}\right\rangle$ and β_{i} is a Z-basis of Y_{i} in which the matrix of φ is the companion matrix of $f_{i}(x)$. Here, $f_{1}(x)|\cdots| f_{k}(x)$ are the invariant factors of φ. Fix $1 \leq i \leq k$ and let $\beta_{i}=\left\{\beta_{1}, \ldots, \beta_{l}\right\}$. Write $f_{i}(x)=a_{1}+a_{2} x+\cdots+a_{l} x^{l-1}+x^{l}$. Then $Y_{i}=\left\langle\beta_{l}\right\rangle \oplus\left\langle q_{1} \beta_{l}-\beta_{l-1}\right\rangle \oplus \cdots \oplus\left\langle q_{1} \beta_{2}-\beta_{1}\right\rangle$. Also, $q_{1} \beta_{i}-\beta_{i-1}$ $=\beta_{i-1}\left(q_{1} \varphi-1\right)$ for $i=1, \ldots, l-1$. Thus,

$$
Y_{i}\left(q_{1} \varphi-1\right)=\left\langle q_{1} \beta_{2}-\beta_{1}, \cdots, q_{1} \beta_{l}-\beta_{l-1}\right\rangle+\left\langle\beta_{l}\left(q_{1} \varphi-1\right)\right\rangle
$$

Now,

$$
\begin{aligned}
\beta_{l}\left(q_{1} \varphi-1\right)= & -a_{1} q_{1} \beta_{1}-\cdots-a_{l-1} q_{1} \beta_{l-1}-\left(a_{l} q_{1}+1\right) \beta_{l} \\
= & a_{1} q_{1}\left(q_{1} \beta_{2}-\beta_{1}\right)+\left(a_{1} q_{1}^{2}+a_{2} q_{1}\right)\left(q_{1} \beta_{3}-\beta_{2}\right) \\
& +\cdots+(-1)\left(a_{1} q_{1}^{l}+\cdots+a_{l} q_{1}+1\right) \beta_{l} .
\end{aligned}
$$

Therefore, $\quad Y_{i} / Y_{i}\left(q_{1} \varphi-1\right) \cong\left\langle\beta_{l}\right\rangle /\left\langle g\left(q_{1}\right) \beta_{l}\right\rangle$, where $g(x)=a_{1} x^{l}$ $+\cdots+a_{l} x+1$. Now $g(x)=x^{l} f_{i}(1 / x)$. Since $|\varphi|<\infty, f_{i}(x)$ is a product of cyclotomic polynomials, hence the roots of $f_{i}(x)$ and $g(x)$ are equal and also $a_{1}= \pm 1$. Thus, $g\left(q_{1}\right)= \pm f_{i}\left(q_{1}\right)$ and $Y_{i} / Y_{i}\left(q_{1} \varphi-1\right) \cong Z_{f_{i}\left(q_{1}\right)}$. From here (iii) is immediate.
(2.3) Let $\pi: \tilde{G} \rightarrow \bar{G}$ be the natural surjection, where \tilde{G} is the universal covering group of \bar{G}, and let \tilde{T} be the preimage of \bar{T}. Then σ can be
viewed as an endomorphism of \tilde{G}. Also,
(i) $\left(\tilde{G}_{\sigma}\right) \pi=O^{p^{\prime}}\left(\bar{G}_{\sigma}\right)=O^{p^{\prime}}(G)$.
(ii) $\bar{T}_{\sigma} /\left(\tilde{T}_{\sigma}\right) \pi \cong G / O^{p^{\prime}}(G)$.

Proof. The first fact is standard (see (12.6) of [26]). The second assertion is proved as in (2.12) of [23] (or see 5.10.1 in [10]).
(2.4) Let \tilde{G} be as in (2.3), $\left|Z\left(\tilde{G}_{\sigma}\right)\right|=d$ and $\left|Z\left(O^{p^{\prime}}\left(\bar{G}_{\sigma}\right)\right)\right|=d_{1}$. Then
(i) $\left|\bar{G}_{\sigma}: O^{p^{\prime}}\left(\bar{G}_{\sigma}\right)\right|=d / d_{1}$.
(ii) If $T_{0}=T \cap O^{p^{\prime}}\left(\bar{G}_{\sigma}\right)$, then $\left|T_{0}\right|=\left(d_{1} / d\right)|f(q)|\left(f\left(q_{1}\right)\right.$ in the Suzuki and Ree groups), where $f(x)$ is as in (2.1)(iv).
(iii) If \bar{G} has Lie rank r, then

$$
\begin{aligned}
& (q-1)^{r} \leq|f(q)| \leq(q+1)^{r} \\
& \quad\left(\left(q_{1}-1\right)^{r} \leq\left|f\left(q_{1}\right)\right| \leq\left(q_{1}+1\right)^{r} \text { for Suzuki and Ree groups }\right)
\end{aligned}
$$

Proof. With notation as in (2.3), $\left(Z\left(\tilde{G}_{\sigma}\right)\right) \pi=Z\left(O^{p^{\prime}}\left(\bar{G}_{\sigma}\right)\right)$. By (2.1)(iv) $\left|\tilde{T}_{\sigma}\right|=\left|\bar{T}_{\sigma}\right|$, so $|f(q)|=\left|\bar{T}_{\sigma}\right|=\left(d / d_{1}\right)\left|\left(\tilde{T}_{\sigma}\right) \pi\right|=\left(d / d_{1}\right)\left|T_{0}\right| \quad$ (similar equations in the Suzuki and Ree cases). Then (i) and (ii) follow. For (iii) use the triangle inequality and the fact that the roots of $f(x)$ are roots of unity.
(2.5) Let $\bar{D}=\bar{D}^{\sigma}$ be a closed connected subgroup of \bar{G} with $\bar{T} \leq \bar{D}$.
(i) $\bar{D}=R_{u}(\bar{D}) \bar{L}$, where $\bar{L}=\bar{L}^{\sigma}$ is reductive and $\bar{T} \leq \bar{L}$.
(ii) $\bar{L}=\bar{L}^{\prime} \bar{T}$ and $\overline{L^{\prime}}=[\bar{L}, \bar{L}]$ is semisimple.
(iii) $R_{u}(\bar{D})$ is a product of \bar{T}-root subgroups of \bar{G} and \bar{L}^{\prime} is generated by \bar{T}-root subgroups, corresponding to a subsystem of $\bar{\Sigma}$.
(iv) $\bar{D}_{\sigma}=O^{p^{\prime}}\left(\bar{D}_{\sigma}\right) \bar{T}_{\sigma}=R_{u}(\bar{D})_{\sigma} O^{p^{\prime}}\left(\bar{L}_{\sigma}^{\prime}\right) \bar{T}_{\sigma}$.
(v) $O^{p^{\prime}}\left(\overline{L_{\sigma}^{\prime}}\right)$ is a commuting product of groups of Lie type and \bar{T} contains a maximal torus of each factor.

Proof. Set $\bar{Q}=R_{u}(\bar{D})$ and let \bar{A} be a Borel subgroup of \bar{D} with $\bar{A} \geq \bar{T}$. Embedding \bar{A} in a Borel subgroup of \bar{G} we see that $R_{u}(\bar{A})$ and \bar{Q} are both products of \bar{T}-root subgroups of \bar{G} (one can modify the argument of Lemma 3 of [22] to establish this). Let Δ_{1} be those roots $\alpha \in \bar{\Sigma}$ with $\bar{U}_{\alpha} \leq \bar{Q}$ and let Δ be all roots $\alpha \in \bar{\Sigma}$ such that $\bar{U}_{\alpha} \leq \bar{A}$ and $\bar{U}_{-\alpha} \leq \bar{D}$. We then have $\bar{Q}=\Pi_{\alpha \in \Delta_{1}} \bar{U}_{\alpha}$ and $(\bar{D} / \bar{Q})^{\prime}=\left\langle\bar{U}_{ \pm \alpha} \mid \alpha \in \Delta\right\rangle \bar{Q} / \bar{Q}$ (from the structure theory of reductive groups).

Let $\bar{E}=\left\langle\bar{U}_{ \pm \alpha} \mid \alpha \in \Delta\right\rangle$. From the Bruhat decomposition and the fact that Δ is a subsystem of $\bar{\Sigma}$ we conclude that $\bar{L}=\bar{E} \bar{T}$ is reductive, and then \bar{E} is semisimple. Then $\bar{L}^{\prime}=\bar{E}$, and since $\bar{D} / \bar{Q}=\bar{E} \bar{T} \bar{Q} / \bar{Q}$, we have established (i), (ii), and (iii).

Since \bar{Q} is connected, Lang's theorem implies that $(\bar{D} / \bar{Q})_{\sigma}=\bar{D}_{\sigma} \bar{Q} / \bar{Q}$. As \bar{D} is the semidirect product of \bar{Q} and \bar{L}, (iv) will be proved once we know that $\bar{L}_{\sigma}=O^{p^{\prime}}\left(\bar{L}_{\sigma}^{\prime}\right) \bar{T}_{\sigma}$. We first note that $\bar{L}_{\sigma}=\bar{E}_{\sigma} \bar{T}_{\sigma}$. To see this let $\bar{J}=\bar{E} \cap \bar{T}$, a maximal torus of \bar{E}, normalized by σ. Suppose $e \in \bar{E}, t \in \bar{T}$ and $(e t)^{\sigma}=e t$. Since \bar{E} and \bar{T} are both σ-stable, we have $e^{\sigma}=e j$ and $t^{\sigma}=t j^{-1}$ for some $j \in \bar{J}$. From Lang's theorem ((10.1) of [26]) there is an element $j_{1} \in \bar{J}$ with $j_{1}^{\sigma}=j_{1} j^{-1}$. Then $e=\left(e j_{1}\right)\left(j_{1}^{-1} j\right)$ represents e as an element in $\bar{E}_{\sigma} \bar{T}_{\sigma}$. The proof of (iv) has now been reduced to the semisimple group \bar{E}, where the result follows from (2.12) of [23] (that result concerned a simple adjoint group, but these conditions were never used).

For (v), apply (11.7) of [26] to get the structure of $O^{p^{\prime}}\left(\overline{L_{\sigma}^{\prime}}\right)$. The remaining part of (v) is obtained by considering orbits of $\langle\boldsymbol{\sigma}\rangle$ on the simple factors of \bar{L}^{\prime}.
(2.6) Let $T_{0}=T \cap O^{p^{\prime}}(G)$ and assume $q \geq 4$. Then $C_{G}\left(T_{0}\right)^{0}=\bar{T}$.

Proof. From the Bruhat decomposition of \bar{G} (with respect to a Borel subgroup $\bar{B} \geq \bar{T})$ we see that the result holds unless $T_{0} \leq C\left(\bar{U}_{\alpha}\right)$ for some root subgroup \bar{U}_{α} of \bar{G}. Let $\Delta=\left\{\alpha \in \bar{\Sigma} \mid\left[T_{0}, \bar{U}_{\alpha}\right]=1\right\}$. Then Δ is closed under taking negatives and we set $D=\left\langle\bar{U}_{\alpha} \mid \alpha \in \Delta\right\rangle$.

We have $D^{\sigma}=D$ and by (2.5) $D=D_{1} \cdots D_{l}$, a commuting product of quasisimple groups D_{i}, where each D_{i} is generated by certain of the root subgroups, \bar{U}_{α}, for $\alpha \in \Delta$. Each D_{i} is a Chevalley group with indecomposable root system. Reorder so that $\left\{D_{1}, \ldots, D_{k}\right\}$ is a $\langle\sigma\rangle$-orbit. Then σ^{k} normalizes each $D_{i}, 1 \leq i \leq k$, and $\left(D_{i}\right)_{\sigma^{k}}=D_{i}\left(q^{k}\right)$, a group of Lie type associated with $\mathbf{F}_{q^{k}}$ (see (11.6) of [26] and the proof of (2.6) of [23]). Also, $\left(D_{1} \cdots D_{k}\right)_{\sigma}$ is obtained as a diagonal copy of $D_{1}\left(q^{k}\right)$ (except for amalgamation of centers). Let $T_{1}=\bar{T} \cap O^{p^{\prime}}\left(\left(D_{1} \cdots D_{k}\right)_{\sigma}\right)$. Then $T_{1} \leq T_{0}$ $\leq C\left(\bar{U}_{\alpha}\right)$ for each $\alpha \in \Delta$, and projecting to D_{1}, we see that $T_{2}=$ $\bar{T} \cap O^{p^{\prime}}\left(\left(D_{1}\right)_{\sigma^{k}}\right) \leq Z\left(O^{p^{\prime}}\left(\left(D_{1}\right)_{\sigma^{k}}\right)\right)$.

By (2.4)(ii) and (2.4)(iii) $\left|T_{2}\right|=\left(e_{1} / e\right)\left|f\left(q^{k}\right)\right| \geq\left(e_{1} / e\right)\left(q^{k}-1\right)^{r}$ (replace q by q_{1} if $\left(D_{1}\right)_{\sigma^{k}}$ is a Suzuki or Ree group), where $e_{1}=$ $\left|Z\left(O^{p^{\prime}}\left(\left(D_{1}\right)_{\sigma^{k}}\right)\right)\right|, e$ is the order of the center of the universal covering group of $\left(D_{1}\right)_{\sigma^{k}}$, and r is the Lie rank of D_{1}. But $\left|T_{2}\right| \leq e_{1}$ (which is 1 in the Suzuki and Ree cases), whereas $q^{k}-1 \geq 3$ ($\sqrt{3}$ in the Suzuki and Ree cases). Then $3^{r} \leq e$ (or $(\sqrt{3})^{r} \leq 1$), a contradiction.

An immediate consequence of (2.6) is
(2.7) Let $q \geq 4$ and set $T_{0}=T \cap O^{p^{\prime}}(G)$. Then $N_{G}\left(T_{0}\right) \leq N_{\bar{G}}(\bar{T})$.

For $q>5$, we also have control over $C_{G}\left(T_{0}\right)$.
(2.8) Let $q>5$ and set $G_{0}=O^{p^{\prime}}(G), T_{0}=T \cap G_{0}$. Assume that \bar{G} is adjoint. Then
(i) $C_{G}\left(T_{0}\right)=T$.
(ii) If $G_{0} \neq \operatorname{PSL}(2,9), \operatorname{Sz}(8)$, or ${ }^{2} F_{4}(8)$, then $C_{\mathrm{Aut}\left(G_{0}\right)}\left(T_{0}\right)=T$.

Proof. \bar{G} is adjoint, so $Z(\bar{G})=Z\left(G_{0}\right)=1$. Let $a \in \operatorname{Aut}\left(G_{0}\right)$ and suppose $a \in C\left(T_{0}\right)-T$. Replacing a by a power of a we may assume that $a^{s} \in T$ for some prime s. Extend a to an endomorphism of \bar{G} commuting with σ. By (2.6) \bar{T} is a-invariant, so a acts on $X . C_{X}(a)$ is G-invariant and both $C_{X}(a)$ and $\tilde{X}=X / C_{X}(a)$ are free Z-modules.

Let X_{0} denote the annihilator in X of T_{0}. Since $T_{0} \leq C_{T}(\sigma) \cap$ $C_{\bar{T}}^{-}(a)$ we have $[X, a] \leq X_{0} \geq[X, \sigma]$. Also $\left|X_{0}:[X, \sigma]\right|=\left|T: T_{0}\right|=d$, where $d=\left|G: G_{0}\right|$ (see (2.3)ii). Both $[X, a] /([X, a] \cap[X, \sigma])$ and $[\tilde{X}, a] /([\tilde{X}, a] \cap[\tilde{X}, \sigma])$ are isomorphic to sections of $X_{0} /[X, \sigma]$. In particular, each has order a divisor of d and exponent dividing that of $X_{0} /[X, \sigma]$.

Write $A=\operatorname{Aut}(G)$ and let A_{0} be the subgroup of A generated by all inner, diagonal, and graph automorphisms of G_{0}. The elements of A_{0} are precisely the automorphisms of G_{0} that can be extended to automorphisms of the algebraic group \bar{G} (elements of $A-A_{0}$ can be extended to surjective endomorphisms of \bar{G}).

Let \bar{Y} be the subgroup of $\operatorname{Aut}(\bar{G})$ normalizing \bar{T} and let F be the Frobenius morphism with respect to \bar{T}. Then σ and F commute in their action on X, so σF and $F \sigma$ differ in their action on \bar{G} by an inner automorphism induced from an element of \bar{T}. Using Lang's theorem, we modify F so that it commutes with σ. For convenience we postpone discussion of the cases where \bar{G} has type C_{2}, G_{2}, F_{4} and $p=2,3,2$, respectively. Then there is a power n such that $\sigma \in \bar{Y} F^{n}$. Consequently, $q=p^{n}$ and σ induces $t p^{n}$ on X, where t is an isometry of $\mathbf{R} \otimes X$. Similarly, there is an isometry ε and power $p^{m}, m \geq 0$, such that a induces εp^{m} on X. Let $f(x), \tilde{f}(x)$ be the characteristic polynomials of t on $\mathbf{R} \otimes X, \mathbf{R} \otimes \tilde{X}$, respectively. Similarly, let $g(x), \tilde{g}(x)$ be the corresponding polynomials of ε.

Assume $a \notin A_{0}$. The group A / A_{0} is cyclic of order n and generated by γA_{0}, where $\gamma=\left.F\right|_{G_{0}}$. Replacing a by a suitable power, we may assume that $a \in A_{0} \cdot \gamma^{n / s}$. That is, $a \in \bar{Y} \cdot F^{n / s}$ and so a induces $\varepsilon p^{n / s}$ on X. By (2.2)(ii) $\left|f\left(p^{n}\right)\right|=|X:[X, \sigma]|$ which divides $|X:[X, \sigma] \cap[X, a]|$. Another application of (2.2)(ii) and previous remarks show that the latter number divides $d\left|g\left(p^{n / s}\right)\right|$. So (2.4)(iii) yields the inequality $\left(p^{n}-1\right)^{r} \leq$ $d\left(p^{n / s}+1\right)^{r}$. Using this together with the inequality $d \leq r+1$ we calculate and obtain $r=1, p^{n}=9, s=2$. But then $G_{0} \cong \operatorname{PSL}(2,9)$, which is excluded in (ii). So $a \in A_{0}$ and a induces ε on X.

One checks that $C_{\tilde{X}}(a)=0$, so by (2.2)(ii) we argue as above that $|\tilde{f}(q)| \leq d_{0}|\tilde{g}(1)| \leq d|\tilde{g}(1)|$, where d_{0} is the order of

$$
[\tilde{X}, a] /([\tilde{X}, a] \cap[\tilde{X}, \sigma])=D
$$

Then (2.4)(iii) yields $(q-1)^{\tilde{r}} \leq d_{0} 2^{\tilde{r}} \leq d 2^{\tilde{r}}$. Since $d \leq q+1$, we are led to $\tilde{r}=1, \tilde{f}(x)=x \pm 1, \tilde{g}(x)=x+1$, and $6 \leq q-1 \leq 2 d_{0} \leq 2 d$.

If $\bar{G}=D_{r}$, then T / T_{0} is a subgroup of $Z_{2} \times Z_{2},{ }^{*}$ so D is isomorphic to a cyclic (as $\tilde{r}=1$) subgroup of $X_{0} /[X, \sigma] \cong T / T_{0}$. Hence $d_{0} \leq 2$, against the above inequality. Suppose a is an inner automorphism. Then a centralizes T / T_{0} and hence a centralizes D. However, a inverts \tilde{X} (since $\tilde{g}(x)=x+1)$ and \tilde{X} is cyclic. We conclude $|D| \leq 2$, so again $d_{0} \leq 2$, giving a contradiction. At this point we have a in the coset of an involutory graph automorphism of \bar{G}, and the inequality of the previous paragraph shows that \bar{G} is either of type E_{6} (and $q=7$) or of type A_{r}. Also, (i) has been proved (except for the excluded possibilities of \bar{G}).

Write $\bar{W}=\bar{N} / \bar{T}$ and consider the action of a on \bar{W}. Then $\bar{N}\langle a\rangle=$ $\bar{N}\langle b\rangle$, where $\bar{N}\langle b\rangle / \bar{T}=\bar{W} \times\langle b \bar{T}\rangle, b$ sends each root to its negative and inverts $X . a$ acts as $w_{1} b$ for $w_{1} \in \bar{W}$, and the eigenspace of w_{1} for eigenvalue -1 has codimension 1 in $\mathbf{R} \otimes X$. If $\bar{W} \cong S_{r+1}$, use the cycle decomposition of w_{1} to see that no such involution exists for $r>3$. If $r=2$, then $G_{0} \cong \operatorname{PSL}(3,7)$, while if $r=3$, then $G_{0} \cong \operatorname{PSL}(4,9)$ or $\operatorname{PSU}(4,7)$. If $G_{0}=\operatorname{PSL}(3,7)$ or $\operatorname{PSL}(4,9)$ we can take w_{1} to be $s_{\alpha_{1}}, s_{\alpha_{1}} s_{\alpha_{3}}$, respectively. If $G_{0}=\operatorname{PSU}(4,7)$, take w_{1} to be $s_{1} s_{3},\left(s_{1} s_{3} s_{2}\right)^{2}$, or $s_{2} s_{1} s_{3} s_{2}$. In all cases we can explicitly compute $[X, a],[X, \sigma]$, and contradict the earlier observation that $[X, a] /[X, a] \cap[X, \sigma]$ has order dividing d.

Suppose $\bar{W} \cong E_{6}$. Then w_{1} has determinant -1 . Now $\bar{W} \cong$ $\operatorname{Aut}(\operatorname{PSU}(4,2))$ and by (19.5) of [1] $\bar{W}-\bar{W}^{\prime}$ has two classes of involutions, represented in \bar{W} by reflections and the product of 3 commuting reflections. This contradicts the condition on eigenvalues.

At this point we have proved the lemma for all cases except \bar{G} of type C_{2}, G_{2}, F_{4} and $p=2,3,2$, respectively. We indicate the necessary adjustments in the previous arguments. First note that $d=1$ in all cases. As in (2.1) σ acts on $\mathbf{R} \otimes X$ as $t \hat{q}$, with t an isometry and $\hat{q}=q$ or \sqrt{q}. If $a \in A_{0}$, proceed as before to get the inequality $|\tilde{f}(\hat{q})| \leq d|\tilde{g}(1)|=|\tilde{g}(1)|$. By (2.4) we then obtain ($\hat{q}-1)^{r} \leq 2^{r}$, a contradiction. So $a \notin A_{0}$.

Let \hat{F} be the endomorphism of \bar{G} such that $\hat{F}^{2}=F$ is the Frobenius map (with respect to \bar{T}). If $\hat{q}=\sqrt{q}=p^{l+1 / 2}$, then A / A_{0} is cyclic of order $2 l+1$, with quotient generated by a field automorphism. Since $\left.F\right|_{G_{0}}$ induces a field automorphism of order $2 l+1$, we argue as before that a

[^0]can be taken in $\bar{Y} F^{n / s}$. Now argue as before to get a contradiction (recall that $G_{0} \neq \mathrm{Sz}(8),{ }^{2} F_{4}(8)$). Finally, assume $\hat{q}=q=p^{n}$. Here $\gamma=\left.\hat{F}\right|_{G_{0}}$ has order $2 n$ and $A / A_{0}=\left\langle A_{0} \gamma\right\rangle$. We may then assume that a induces $\varepsilon p^{n / 2 s}$ on X, for ε an isometry ($n / 2 s$ need not be an integer). The usual inequalities give a contradiction and complete the proof of (2.8).
(2.9) Let $x \in T$. Then $C_{G}(x)$ contains normal subgroups Y_{0} and Y such that
(i) $Y=Y_{0} T$.
(ii) $Y_{0}=D_{1} \cdots D_{k} X$, a commuting product, where for each $i=$ $1, \ldots, k$ there exists a power, $q^{l_{i}}$, of q such that $D_{i}=D_{i}\left(q^{l_{i}}\right)$ is a quasisimple group of Lie type defined over $\mathbf{F}_{q^{l^{2}}}$. Also $Z\left(Y_{0}\right) \geq X \leq T$.
(iii) If each $q^{l_{i}} \geq 4$, then D_{1}, \ldots, D_{k} are the components of $E\left(C_{G}(x)\right)$ and $X=C_{Y}\left(E\left(C_{G}(x)\right)\right) \leq T$.
(iv) $C_{G}(x) / Y$ is isomorphic to a subgroup of the center of the universal covering group of G_{0}.

Proof. Since $x \in T \leq \bar{T}, C_{\vec{G}}(x)$ can be computed from the Bruhat decomposition of \bar{G} (with respect to the root subgroups of \bar{T}). We have $\bar{T} \leq C_{G}(x)^{0}$ and $C_{G}(x)^{0}=Y_{1} \cdots Y_{l} Z$, where the product is a commuting product, each Y_{i} is a Chevalley group defined with respect to an indecomposable subsystem of $\bar{\Sigma}$, and $Z \leq \bar{T}$. Let $Y=\left(C_{\bar{G}}(x)^{0}\right)_{\sigma}$. Since $Y_{1} \cdots Y_{l}$ is connected, Lang's theorem (see (10.1) of [26]) implies that $Y=\left(Y_{1} \cdots Y_{l}\right)_{\sigma} \bar{T}_{\sigma}$.

Let $R=Y_{1} \cdots Y_{l}$. The argument in (2.13) of [23] shows that $R_{\sigma}=$ $O^{p^{\prime}}\left(R_{\sigma}\right)(\bar{T} \cap R)_{\sigma}$. Moreover, the proof of (2.6)(ii) of [23] shows that $O^{p^{\prime}}\left(R_{\sigma}\right)=D_{1} \cdots D_{k}$ has the required structure. So setting $Y_{0}=$ $O^{p^{\prime}}\left(R_{\sigma}\right) Z_{\sigma}$, we have (i), (ii), and (iii) holding. For (iv) see (4.4) of Springer-Steinberg [25].

The following number theoretical result will be needed in $\S 7$.
(2.10) Let $p>3$ be prime, $x=\prod_{i=1}^{m} \Phi_{d_{i}}(p)$, and $y=\prod_{i=1}^{n} \Phi_{f_{J}}(p)$. Suppose that
(a) $x \mid y$;
(b) $d_{1}<\cdots<d_{m}$; and
(c) $\sum \varphi\left(d_{i}\right) \geq \Sigma \varphi\left(f_{j}\right)$.

Then $m=n$ and $\left\{d_{i} \mid 1 \leq i \leq m\right\}=\left\{f_{j} \mid 1 \leq j \leq n\right\}$. In particular, $x=y$.
Proof. Suppose false. Factoring out common factors we may assume $d_{i} \neq f_{j}$ for each $1 \leq i \leq m$ and $1 \leq j \leq n$. Suppose it is not the case that $d_{i}=2$ and p a Mersenne prime. Then by Zsigmondy [28], for each $1 \leq i \leq m$ there is a prime r_{i} such that $r_{i} \mid p^{d_{i}}-1$, but $r_{i} \nmid p^{d}-1$ for $d<d_{i}$. We call these primes primitive divisors. In the exceptional case,
$\Phi_{d_{i}}(p)=p+1$ is a power of 2 and we set $r_{i}=2$. If this case occurs and $d_{i^{\prime}}=1$ for some i^{\prime}, then $d_{i^{\prime}}=d_{1}$ and $\Phi_{d_{i}}(p)$ is divisible by some odd prime, which we may take to be r_{1}. Therefore, $r_{i} \neq r_{i^{\prime}}$ for $i \neq i^{\prime}$. Choose $r_{1} \neq 2$, if possible.

In the primitive divisor situation, d_{i} is the order of p modulo r_{i}. So $d_{i} \mid r_{i}-1$ and $\varphi\left(d_{i}\right) \leq d_{i} \leq r_{i}-1$. Fix $1 \leq i \leq m$. There exists $j \in$ $\{1, \ldots, n\}$ such that $r_{i} \mid \Phi_{f_{l}}(p)$. Then $d_{i} \mid f_{j}$. Set $g(t)=\left(t^{f_{j}}-1\right) /\left(t^{d_{i}}-1\right)$ and expand $g(t)$ in powers of $t^{d_{t}}$. Letting $t=p$ and using the congruence $p^{d_{i}} \equiv 1\left(\bmod r_{i}\right)$ we have $r_{i}\left|\left(f_{j} / d_{i}\right)\right| f_{j}$.

We estimate $\sum \varphi\left(f_{j}\right)$ as follows. If $1 \leq j \leq m$ is fixed and $r_{L_{1}}, \ldots, r_{i_{k}}$ are the primes satisfying $r_{i_{l}} \mid \Phi_{f_{j}}(p)$, then, by the above, $\varphi\left(f_{j}\right)$ is divisible by $\left(r_{i_{1}}-1\right) \cdots\left(r_{i_{k}}-1\right)$. If $c>1$ and $d>1$ are integers, then $c d \geq c+d$. Suppose that no $r_{i}=2$. Using these facts we have $\Sigma\left(r_{i}-1\right) \leq \Sigma \varphi\left(f_{j}\right)$. This inequality combined with our hypothesis and the remarks of the previous paragraph yield

$$
\begin{equation*}
\sum \varphi\left(f_{j}\right) \leq \sum \varphi\left(d_{i}\right) \leq \sum d_{i} \leq \sum\left(r_{i}-1\right) \leq \sum \varphi\left(f_{j}\right) . \tag{*}
\end{equation*}
$$

Therefore all inequalities are equalities. In particular, $\varphi\left(d_{t}\right)=d_{i}$ for $i=1, \ldots, m$. But this forces $d_{i}=1$, and so $1=d_{i}=r_{i}-1$, against our supposition. Therefore, either $d_{1}=1$ and $r_{1}=2$ (p a Fermat prime) or $d_{i}=2=r_{i}$, for $i=1$ or 2 (p a Mersenne prime).

To deal with these cases we slightly modify the above argument. Say $d_{i}=2=r_{i}$. Choose j with $r_{i} \mid \Phi_{f_{j}}(p)$ and $f_{j} \neq 1$. Then $r_{i} \mid f_{j} / d_{i}$, so $4 \mid f_{j}$. If $r_{i_{1}}, \ldots, r_{i_{k}}$ are the other primes among r_{1}, \ldots, r_{m} that are factors of f_{j}, then $\varphi\left(f_{j}\right) \geq 2\left(r_{i_{1}}-1\right) \cdots\left(r_{i_{k}}-1\right)$. So we again have the inequality $\Sigma\left(r_{i}-1\right)$ $\leq \sum \varphi\left(f_{j}\right)$. So we will again obtain (*) provided $\sum d_{i} \leq \Sigma\left(r_{i}-1\right)$. Suppose this fails and let $1 \leq k \leq m, k \neq i$. Since $d_{i}=\left(r_{i}-1\right)+1$ and $d_{k} \mid r_{k}-1$ we necessarily have $d_{k}=r_{k}-1$. So d_{k} is even and $\varphi\left(d_{k}\right) \leq \frac{1}{2} d_{k}$. On the other hand, if we add 1 to each of the last two terms in (*), the resulting inequalities hold. Thus $\varphi\left(d_{k}\right) \geq d_{k}-1$, which is impossible. We conclude that no such k exists, $m=1, d_{i}=d_{1}$, and $\sum \varphi\left(f_{j}\right) \leq \Sigma \varphi\left(d_{i}\right)=1$. So $n=1, f_{j}=1$, and $p+1 \mid p-1$ (as x divides y). This is absurd. Therefore $(*)$ holds and $\sum \varphi\left(d_{i}\right)=\Sigma d_{i}$. This is a contradiction.

Finally, suppose $d_{1}=1$ and $r_{1}=2$. Then $d_{i} \mid r_{i}-1$ for each $i=$ $1, \ldots, m$. If ($*$) holds, then $m=1$ and $\Sigma \varphi\left(f_{j}\right) \leq 1$. Therefore, $n=1$, $f_{1}=2$, and $p-1 \mid p+1$, a contradiction. So we suppose ($*$) to be false. Then the inequality $\Sigma\left(r_{i}-1\right) \leq \Sigma \varphi\left(f_{j}\right)$ must fail to hold. Let notation be as in the previous paragraph. Then $2 r_{i_{1}} \cdots r_{i_{k}}$ is a factor of f_{j} and $\varphi\left(f_{j}\right)$ is divisible by $\left(r_{i_{1}}-1\right) \cdots\left(r_{i_{k}}-1\right)$. So $\varphi\left(f_{J}\right) \geq\left(r_{i_{1}}-1\right)+\cdots+\left(r_{i_{k}}-1\right)$. Combining this with the other values, $\varphi\left(f_{1}\right), \ldots, \varphi\left(f_{n}\right)$, we do have
$\Sigma\left(r_{i}-1\right) \leq \Sigma \varphi\left(f_{j}\right)+1$, where the 1 corresponds to $r_{1}-1$. In view of our assumption, equality must hold. The previously used inequality, $c d \geq c+$ d, is strict unlesss $c=d=2$, and this forces $f_{j}=2 r_{\imath}$ for some r_{i}, while for $k \neq j, f_{k}=r_{i(k)}$ or $2 r_{i(k)}$ with $r_{i(k)} \in\left\{r_{2}, \ldots, r_{m}\right\}$. However, we have seen that $r_{i(k)} \mid\left(f_{k} / d_{i(k)}\right)$. So the only possibilities are $m=1$ or $m=2=d_{2}$. That is $x=p-1$ or $x=(p-1)(p+1)$. Considering the possibilities for y, we have a contradiction.

The next several lemmas concern subgroups of \bar{G} generated by \bar{T}-root subgroups.
(2.11) Let $S \subset \bar{\Sigma}, X=\left\langle\bar{U}_{\alpha} \mid \alpha \in S\right\rangle$, and $\Delta=\left\{\delta \in \bar{\Sigma} \mid \bar{U}_{\delta} \leq X\right\}$. Suppose $\Delta \cap-\Delta=\varnothing$. Then $X=\Pi_{\delta \in \Delta} \bar{U}_{\delta}$ and X is unipotent.

Proof. Let S, X, Δ be as in the statement. It will be convenient to exclude the case $\bar{\Sigma}$ of type G_{2}. This case can be handled by a direct check. For a fixed ordering on $\bar{\Sigma}$, let $\Delta^{+}=\Delta \cap \bar{\Sigma}^{+}, \Delta^{-}=\Delta \cap \bar{\Sigma}^{-}, X^{+}=$ $\left\langle\bar{U}_{\alpha} \mid \alpha \in \Delta^{+}\right\rangle$, and $X^{-}=\left\langle\bar{U}_{\alpha} \mid \alpha \in \Delta^{-}\right\rangle$. Then $X^{+} \leq \bar{U}$ and $X^{-} \leq \bar{U}^{-}$, where \bar{U}^{-}is opposite to \bar{U}. We then have $X^{+}=\Pi_{\delta \in \Delta^{+}} \bar{U}_{\delta}$ and $X^{-}=$ $\Pi_{\delta \in \Delta^{-}} \bar{U}_{\delta}$.

If $\bar{\Sigma}$ has two root lengths, let $\bar{\Sigma}_{0}$ be the subsystem of long roots. Then $\bar{G}_{0}=\left\langle\bar{U}_{\alpha} \mid \alpha \in \bar{\Sigma}_{0}\right\rangle$ is proper in \bar{G}, so by induction (on $|\bar{\Sigma}|$) we have $\bar{X}_{0}=\left\langle\bar{U}_{\alpha} \mid \alpha \in \Delta \cap \bar{\Sigma}_{0}\right\rangle$ unipotent. So, in this case, we may use a different ordering, if necessary, so that $\Delta \cap \bar{\Sigma}_{0} \subset \bar{\Sigma}^{-}$. That is, $X_{0} \leq X^{-}$.

We claim that $X=X^{+} X^{-}=X^{-} X^{+}$. It will suffice to show $X^{-} X^{+} \subseteq$ $X^{+} X^{-}$. Let $\alpha \in \Delta^{+}$and $\beta \in \Delta^{-}$. The Chevalley commutator relations give $\left[\bar{U}_{\beta}, \bar{U}_{\alpha}\right] \leq \Pi_{i, j>0} \bar{U}_{i \alpha+j \beta}$. If $\bar{U}_{i \alpha+j \beta}$ is contained in the commutator, then $i \alpha+j \beta \in \Delta$. Suppose this occurs. If $i>1$, then since $\bar{\Sigma}$ is not of type G_{2}, α is short and $i \alpha+j \beta$ long. By our convention this gives $i \alpha+j \beta \in \Delta^{-}$ and $\bar{U}_{i \alpha+j \beta} \leq X^{-}$. If $i=1$, either $U_{i \alpha+j \beta} \leq X^{-}$or $\alpha+j \beta=i \alpha+j \beta \in \Delta^{+}$, but $\operatorname{ht}(i \alpha+j \beta)<\operatorname{ht}(\alpha)$. From these remarks we conclude that for $u_{\alpha} \in \bar{U}_{\alpha}$ and $u_{\beta} \in \bar{U}_{\beta}, u_{\beta} u_{\alpha} \in u_{\alpha} u_{\beta} X^{-}$or $u_{\alpha} u_{\beta} \bar{U}_{\gamma} X^{-}$, with $\gamma \in \Delta^{+}$and $\operatorname{ht}(\alpha)>$ $\operatorname{ht}(\gamma)$. To prove the claim, let $\alpha \in \Delta^{+}$and show $X^{-} \widehat{U}_{\alpha} \subseteq X^{+} X^{-}$by induction on $\operatorname{ht}(\alpha)$. Therefore, $X=X^{+} X^{-}$.

Let τ be a field automorphism of \bar{G} with respect to $\bar{\Sigma}, \bar{T}, \bar{U}$, and such that $\bar{G}_{\tau}=G\left(q_{0}\right)$, where $q_{0}>4$. Repeat the above to show that $Y=$ $\left\langle\left(\bar{U}_{\alpha}\right)_{\tau} \mid \alpha \in \Delta\right\rangle=\Pi_{\delta \in \Delta}\left(\bar{U}_{\delta}\right)_{\tau}$. Therefore, Y is a p-subgroup of \bar{G}_{τ} normalized by the split torus $H=\bar{T}_{\tau}$. By (3.12) of [4] we embed $Y H$ in a proper parabolic subgroup P of \bar{G}_{τ} such that $Y \leq O_{p}(P)$. Embedding $Y H$ in a Borel subgroup of P, we see that in some new ordering of $\bar{\Sigma}$, each root $\delta \in \Delta$ is positive. In particular, X is unipotent, proving the result.
(2.12) Let $S \subseteq \bar{\Sigma}$ and $X=\left\langle\bar{U}_{\alpha} \mid \alpha \in S\right\rangle$. Let $\Delta=\left\{\alpha \in \bar{\Sigma} \mid \bar{U}_{\alpha} \leq X\right\}$. Set $\Delta_{1}=\{\alpha \in \Delta \mid-\alpha \notin \Delta\}$ and $\Delta_{2}=\{\alpha \in \Delta \mid-\alpha \in \Delta\}$. Then
(i) $X_{1}=\left\langle\bar{U}_{\alpha} \mid \alpha \in \Delta_{1}\right\rangle=\prod_{\alpha \in \Delta_{1}} \bar{U}_{\alpha}$ is unipotent.
(ii) $X_{2}=\left\langle\bar{U}_{\alpha} \mid \alpha \in \Delta_{2}\right\rangle$ is semisimple.
(iii) $X=X_{1} X_{2}$ with $X_{1} \unlhd X$.

Proof. (i) follows immediately from (2.11). Consider the set Δ_{2}. Let $\Delta_{2}^{+}=\Delta_{2} \cap \bar{\Sigma}^{+}$and $X_{2}^{+}=\left\langle\bar{U}_{\alpha} \mid \alpha \in \Delta_{2}^{+}\right\rangle$. Then $X_{2}^{+} \leq \bar{U}$, so X_{2}^{+}is unipotent and $X_{2}^{+}=\Pi_{\alpha \in \Delta_{2}^{+}} \bar{U}_{\alpha}$. It is easy to verify that Δ_{2} is a root system. It follows from the Bruhat decomposition that $X_{2} \bar{T}$ is a group with a (B, N)-pair and $X_{2}^{+} \bar{T}$ is a Borel subgroup of $X_{2} \bar{T}$. This implies (ii).

For (iii) it will suffice to show $\left[\bar{U}_{\alpha}, \bar{U}_{\beta}\right] \leq X_{1}$, whenever $\alpha \in \Delta_{1}$ and $\beta \in \Delta_{2}$. Suppose $Y=\left[\bar{U}_{\alpha}, \bar{U}_{\beta}\right]$ and $Y \neq 1$. If α, β are long roots, then $Y=\bar{U}_{\alpha+\beta}$ and $\bar{U}_{-\alpha}=\left[\bar{U}_{-(\alpha+\beta)}, \bar{U}_{\beta}\right]$. So if $\alpha+\beta \in \Delta_{2}$ we have $\alpha \in \Delta_{2}$, which is not the case. Now consider the general case, but exclude $\bar{\Sigma}$ of type G_{2}. Then $\bar{U}_{\alpha+\beta} \leq Y$ and the only possible difficulty is when $\left[\bar{U}_{-(\alpha+\beta)}, \bar{U}_{\beta}\right]=1$. This forces $\alpha+\beta$ and β to be short, K of characteristic 2 and α, β fundamental roots in a system of type B_{2}. But here $X \geq$ $\left\langle\bar{U}_{ \pm \beta}, \bar{U}_{ \pm(\alpha+\beta)}, \bar{U}_{\alpha}\right\rangle$ and a direct shows the latter group contains $\bar{U}_{-\alpha}$. Again we have a contradiction. Similar arguments work if $\bar{\Sigma}$ has type G_{2}, and we omit the details.
(2.13) Let $\delta_{1}, \ldots, \delta_{k} \in \bar{\Sigma}^{+}$and assume that for each $i \neq j,\left(Z \delta_{i}+Z \delta_{j}\right)$ $\cap \bar{\Sigma}$ is a root system with $\left\{\delta_{i}, \delta_{j}\right\}$ as a fundamental set of roots. Assume that the corresponding graph (with vertices $\delta_{1}, \ldots, \delta_{k}$) is a Dynkin diagram. Then $\bar{X}=\left\langle\bar{U}_{ \pm \delta_{1}}, \ldots, \bar{U}_{ \pm \delta_{k}}\right\rangle$ is a Chevalley group associated with the same Dynkin diagram. Moreover, $\left\{\delta_{1}, \ldots, \delta_{k}\right\}$ is a fundamental system for the root system of \bar{X}.

Proof. For each $1 \leq i \leq k$ let t_{i} denote the reflection associated with δ_{i}, and let $W_{0}=\left\langle t_{1}, \ldots, t_{k}\right\rangle$. The roots $\delta_{1}, \ldots, \delta_{k}$ are pairwise obtuse, so a standard argument implies that they are linearly independent. Comparing the action of W_{0} on the Z-span of $\left\{\delta_{1}, \ldots, \delta_{k}\right\}$ with the action of the appropriate Weyl group on the underlying lattice we see that $\Delta=$ $\left\{\delta_{i}^{W_{0}}: i=1, \ldots, k\right\}$ is a root system with $\delta_{1}, \ldots, \delta_{k}$ as fundamental system.

Since each t_{i} can be realized by conjugation by an element of $\left\langle U_{ \pm \alpha_{\alpha}}\right\rangle$, we have $\bar{X}=\left\langle\bar{U}_{ \pm \delta}: \delta \in \Delta\right\rangle$. We claim that Δ is a closed system of roots. We have Δ locally closed in the sense that the root subsystem of Δ spanned by $\pm \delta_{i}, \pm \delta_{j}$ is closed in $\bar{\Sigma}$ for all i, j. On the other hand, any pair of roots in Δ can be conjugated by an element of W_{0} into such a local
system. This proves the claim. At this stage the result follows from the Bruhat decomposition and the classification of reductive groups.

In view of the claim we see that Γ is a root system and $\left\{\delta_{1}, \ldots, \delta_{k}\right\}$ a fundamental set for Γ. This completes the proof.

The following lemma shows that the maximal tori of G are defined unambiguously and will be used implicitly throughout the paper.
(2.14) Let L be of Lie type over \mathbf{F}_{q}. Suppose \bar{L}_{1}, \bar{L}_{2} are semisimple algebraic groups over $\overline{\mathbf{F}}_{q}$ and τ_{1}, τ_{2} are surjective endomorphisms of \bar{L}_{1}, \bar{L}_{2}, respectively, such that $L=O^{p^{\prime}}\left(\left(\bar{L}_{i}\right)_{\tau_{i}}\right)$ for $i=1,2$. For $i=1,2$ let J_{i} denote the set of maximal tori of L defined with respect to τ_{i}-invariant maximal tori of \bar{L}_{i}. Then $J_{1}=J_{2}$.

Proof. Write $\bar{L}_{1}=\bar{L}_{i 1} \cdots \bar{L}_{i n_{1}}$, where the product is a commuting product of simple algebraic groups. Then $\left\langle\tau_{i}\right\rangle$ acts transitively on $\left\{\bar{L}_{i 1}, \ldots, \bar{L}_{i n_{i}}\right\}$ for $i=1,2$. Let $\bar{X}_{i}=\left\langle l l^{\tau_{i}} \cdots l \tau_{1}^{n_{i}-1}: l \in \bar{L}_{i 1}\right\rangle$. Then \bar{X}_{1}, \bar{X}_{2}
 algebraic groups. Moreover, $L \leq \bar{X}_{i} Z\left(\bar{L}_{i}\right)$ for $i=1,2$. On the other hand $L=O^{p^{\prime}}(L)$, so $L \leq \bar{X}_{i}$ for $i=1,2$ and we may now replace \bar{L}_{1}, \bar{L}_{2} by \bar{X}_{1}, \bar{X}_{2}.

Next argue that we may assume \bar{X}_{1}, \bar{X}_{2} are simply connected. It then follows that there is a surjective endomorphism γ from \bar{X}_{1} to \bar{X}_{2} satisfying $\tau_{1} \gamma=\gamma \tau_{2}$. Then γ induces a bijection between the set of τ_{1}-invariant maximal tori of \bar{X}_{1} and the set of τ_{2}-invariant maximal tori of \bar{X}_{2}. It follows that $\left.\gamma\right|_{L}$ is an isomorphism with $J_{1}^{\gamma}=J_{2}$. On the other hand, any isomorphism of L can be lifted to an endomorphism of \bar{L}_{1} commuting with τ_{1}. It follows that $J_{1}^{\gamma}=J_{1}$, proving the result.
(2.15) Let A be an abelian p^{\prime}-group acting on a commuting product $Y_{1} \cdots Y_{k}$, where for $1 \leq i \leq k, Y_{l}$ is a group of Lie type over a field of order $p^{e_{i}}$. Assume that $p \geq 5$. Then A normalizes a maximal torus of $Y_{1} \cdots Y_{k}$ (the product of maximal tori, one from each Y_{i}).

Proof. Argue by induction on $\left|Y_{1} \cdots Y_{k}\right||A|$. Clearly we may assume that A is transitive on $\left\{Y_{1}, \ldots, Y_{k}\right\}$ and that $Z\left(Y_{1} \cdots Y_{k}\right)=1$. If $A_{1}=N_{A}\left(Y_{1}\right)$ and $A_{1}<A$, then $A_{1}=N_{A}\left(Y_{i}\right)$ for $1 \leq i \leq k$. Inductively, there is a maximal torus T_{1} of Y_{1} with $T_{1}^{A_{1}}=T_{1}$. Then A normalizes $T=\left\langle T_{1}^{a}: a \in A\right\rangle$ and T is a maximal torus of $Y_{1} \cdots Y_{k}$. So we now assume $k=1$.

Regard $A / C_{A}\left(Y_{1}\right)$ as a subgroup of $\operatorname{Aut}\left(Y_{1}\right)$ and let $A_{0} / C_{A}\left(Y_{1}\right)=$ $A / C_{A}\left(Y_{1}\right) \cap \tilde{Y}_{1}$, where \tilde{Y}_{1} denotes the subgroup of $\operatorname{Aut}\left(Y_{1}\right)$ generated by inner and diagonal automorphisms. Assume $A_{0}>C_{A}\left(Y_{1}\right)$ and choose a subgroup B of A_{0} with $B \unlhd A$ and $\left|B / C_{A}\left(Y_{1}\right)\right|$ a prime. Then B centralizes maximal tori of Y_{1} and we let D be the subgroup of Y_{1} generated by all such maximal tori. By (2.9) we have $D=D_{1} \cdots D_{l} I$, where the D_{i} are commuting groups of Lie type over extension fields of $\mathbf{F}_{p^{e}}$ and I can be taken as any maximal torus centralizing B.

By induction we may assume $A \leq N\left(J_{1} \cdots J_{l}\right)$, where for $1 \leq i \leq l, J_{i}$ is a maximal torus of D_{i}. Write $Y_{1}=O^{p}\left(\bar{Y}_{\tau}\right)$, where \bar{Y} is the corresponding adjoint algebraic group and τ an endomorphism of \bar{Y}. Then A can be extended to a group of endomorphisms of \bar{Y} (automorphisms of the abstract group $\bar{Y})$. Hence A normalizes the group $\bar{C}=C_{\bar{Y}}(B)^{0}$. Write $\bar{C}=\bar{L}_{1} \cdots \bar{L}_{s} \bar{I}$, where the \bar{L}_{i} are commuting quasisimple algebraic groups and \bar{I} is the τ-invariant maximal torus of \bar{Y} containing I. We may assume $J_{l} \leq \bar{I}$ for $i=1, \ldots, l$. Each of the groups D_{1}, \ldots, D_{l} is the group generated by all p-elements fixed by τ in a particular orbit product of $\langle\tau\rangle$ on $\left\{\bar{L}_{1}, \ldots, \bar{L}_{s}\right\}$. Using (2.6) we see that $\bar{I}=C_{\bar{C}}\left(J_{1} \cdots J_{l}\right)^{0}$. Hence, $A \leq N(\bar{I})$ and so $A \leq N\left(\bar{I} \cap Y_{1}\right)=N(I)$. Consequently, we may now assume $A_{0}=$ $C_{A}\left(Y_{1}\right)$.

Now $A / C_{A}\left(Y_{1}\right)=\langle a\rangle \times\langle b\rangle$, where no element of $\langle a\rangle$ is in the coset of a nontrivial graph automorphism of Y_{1} and $|b|=s^{k}$ for $s=2$ or 3. If $k>0$ then $\langle b\rangle$ contains the coset of a graph automorphism (either a or b could be trivial). By Lang's theorem ((10.1) of [26]) a induces a field or graph-field automorphism of Y_{1}. It follows from the fact $p \geq 5$ that A centralizes an element c of Y_{1} with $|c|=2$ or 3 . Consequently, A normalizes $C_{Y_{1}}(c)$ and we can argue as in the preceding paragraph, replacing B by $\langle c\rangle$. This completes the proof of (2.14).
3. Basic properties. In this section we begin the discussion of T-root groups. We maintain the notation of $\S 2$ and introduce additional notation and terminology as follows. Set $G_{0}=O^{p^{\prime}}(G)$ and $T_{0}=T \cap G_{0}$. If $G_{0} \leq G_{1} \leq G$, then a group of the form $T \cap G_{1}$ is called a maximal torus of G_{1}. Let $\Delta=\left\{\bar{U}_{\alpha} \mid \alpha \in \bar{\Sigma}\right\}$, the root subgroups of \bar{G} with respect to \bar{T}. Set $\bar{U}=\left\langle\bar{U}_{\alpha} \mid \alpha \in \bar{\Sigma}^{+}\right\rangle$and $\bar{B}=\bar{U} \cdot \bar{T}$, a Borel subgroup of \bar{G} (not necessarily σ-invariant).

For $\alpha \in \bar{\Sigma}$, regard \bar{U}_{α} as a 1-dimensional K representation of \bar{T}. Let φ_{α} denote this representation (φ_{α} equals α if we regard α as a character of \bar{T}).

Since Δ is the set of minimal \bar{T}-invariant unipotent subgroups of \bar{G}, $\Delta=\Delta^{\sigma}$, so $\Delta=\Delta_{1} \cup \cdots \cup \Delta_{v}$, a union of $\langle\sigma\rangle$-orbits. Correspondingly,
we set $\bar{\Sigma}_{i}=\left\{\alpha \mid \bar{U}_{\alpha} \in \Delta_{i}\right\}$. For $i=1, \ldots, v$ we set $\bar{X}_{i}=\left\langle\Delta_{i}\right\rangle$ and $X_{i}=$ $O^{p^{\prime}}\left(\left(\bar{X}_{i}\right)_{\sigma}\right)$. The groups X_{1}, \ldots, X_{v} are the T-root subgroups of G. We note that for $i=1, \ldots, v, X_{i} \leq O^{p^{\prime}}(G)=G_{0}$. For $1 \leq i \leq v$, there is a unique $j \in\{1, \ldots, v\}$ such that $\bar{\Sigma}_{j}=-\bar{\Sigma}_{i}$. We set $\bar{X}_{j}=\bar{X}_{i}^{*}, X_{j}=X_{i}^{*}$, and $\Delta_{j}=\Delta_{i}^{*}$.

The first result is that a T-root subgroup is either a p-group or a group of Lie type defined over an extension field of \mathbf{F}_{q}.
(3.1) Fix $i=1, \ldots, v$. The group \bar{X}_{i} is either unipotent or semisimple. Correspondingly, X_{i} is either a p-group or X_{i} is a group of Lie type defined over an extension field of \mathbf{F}_{q}.

Proof. Consider the group \bar{X}_{i}. We may assume that \bar{X}_{i} is not unipotent. But $\bar{X}_{i}=\bar{X}_{i}^{0}$ and \bar{X}_{i} is \bar{T}-invariant. Let $\bar{X}_{i} \bar{T}=\bar{Q} \cdot \bar{L}$, where $\bar{Q}=$ $R_{u}\left(\bar{X}_{i}\right)$ and \bar{L} is the product of \bar{T} with those root subgroups \bar{U}_{α} such that \bar{U}_{α} and $\bar{U}_{-\alpha}$ are both contained in \bar{X}_{i} (see (2.12)). We have $\bar{L}^{\alpha} \cap \bar{Q}=1$. Also, each root subgroup of \bar{X}_{i} is contained in either \bar{L} or \bar{Q}. Since σ normalizes each of \bar{L} and \bar{Q}, we conclude that $\left\langle\Delta_{i}\right\rangle \leq \bar{L}$, hence $\bar{X}_{i}=\bar{L}$. Write $\bar{L}=\bar{L}_{1} \cdots \bar{L}_{k}$, a central product of the components of \bar{L}. For each $U_{\alpha} \in \Delta_{i}, U_{\alpha} \leq \bar{L}_{j}$ for some j. Therefore $\langle\sigma\rangle$ is transitive on $\left\{\bar{L}_{1}, \ldots, \bar{L}_{k}\right\}$ and $X_{i} / Z\left(X_{i}\right) \cong O^{p^{\prime}}\left(\left(\bar{L}_{1}\right)_{\sigma^{k}}\right) / Z\left(O^{p^{\prime}}\left(\left(L_{1}\right)_{\sigma^{k}}\right)\right)$. The argument in (2.6) of [23] shows that $X_{i} / Z\left(X_{i}\right)$ is associated with $\mathbf{F}_{q^{k}}$, completing the proof of (3.1).

Order the T-root groups so that X_{1}, \ldots, X_{t} are p-groups and X_{t+1}, \ldots, X_{v} are groups of Lie type. We note that if \bar{T} is contained in a σ-stable Borel subgroup of \bar{G}, then $t=v$ and $\left\{X_{1}, \ldots, X_{v}\right\}$ are the usual root subgroups of G. We also point out that there may be containments among the X_{i} 's. This even occurs when T is a Cartan subgroup of G. For example, in the case of $\operatorname{PSU}(n, q)$ with n odd, there is a non-abelian root subgroup E of order q^{3} and $Z(E)$ is also a root group.

The next result gives bounds on the nilpotence class of the groups X_{1}, \ldots, X_{t}. First, we require the following (temporary) notation. Let $\bar{H}=$ \bar{H}^{σ} be a maximal torus of \bar{G} with $\bar{H} \leq \bar{B}_{1}=\bar{B}_{1}^{\sigma}$, where \bar{B}_{1} is a Borel subgroup of \bar{G}. Let $\hat{\Sigma}$ be the root system of \bar{G}, with respect to \bar{H}, and $\left\{\hat{\alpha}_{1}, \ldots, \hat{\alpha}_{n}\right\}$ a fundamental set of roots. For $\alpha \in \hat{\Sigma}$, write $\hat{\alpha}=\sum n_{i} \hat{\alpha}_{i}$ and let $c(i, \hat{\alpha})=\sum n_{j}$, the sum ranging over those j with $\alpha_{j} \in \alpha_{i}^{\langle\sigma\rangle}$. Let $c=\max \{c(i, \hat{\alpha}): \hat{\alpha} \in \hat{\Sigma}, 1 \leq i \leq n\}$.
(3.2) If $1 \leq i \leq t$, then X_{i} has nilpotence class at most c.

Proof. By either (3.9) of [3] or by [4] there exist a parabolic subgroup $\bar{P}_{1} \leq \bar{G}$ such that $\bar{X}_{i} \leq R_{u}\left(\bar{P}_{1}\right)$ and $N_{\bar{G}}\left(\bar{X}_{i}\right) \leq \bar{P}_{1}$. Moreover, \bar{P}_{1} is obtained
canonically from $\bar{X}_{i}=\bar{X}_{i}^{\sigma}$, so $\bar{P}_{1}=\bar{P}_{1}^{\sigma}$. Therefore, we may assume that $\bar{B}_{1} \leq \bar{P}_{1}$.

Let $\bar{P}_{1} \leq \bar{P}_{0}$, where \bar{P}_{0} is a maximal parabolic subgroup of \bar{G}. Let $\bar{P}=\cap_{t} P_{0}^{\sigma^{\boldsymbol{\sigma}}}$. Notice that $\bar{B}_{1} \leq \bar{P}$ and $P_{0}^{\langle\sigma\rangle}$ has size 1,2 , or 3 , with the latter case possible only for $\bar{G}=D_{4}(K)$. Now $R_{u}(\bar{P}) \leq R_{u}\left(P_{1}\right)$. Indeed, $R_{u}(\bar{P})$ $=\Pi R_{u}\left(P_{0}^{\sigma^{t}}\right) . R_{u}\left(\bar{P}_{1}\right)$ is a product of root subgroups for \bar{T}. Choose \bar{P}_{0} such that some element \bar{U}_{α} of $\Delta_{\underline{L}}$ is such that α has non-zero coefficient of the fundamental root defining \bar{P}_{0}. It follows that $\bar{U}_{\alpha} \leq R_{u}(\bar{P})$, and hence $\bar{X}_{i} \leq R_{u}(\bar{P})$.

We now know that X_{i} has nilpotence class bounded by that of $R_{u}(\bar{P})$. $R_{u}(\bar{P})$ is also the product of root groups of \bar{G} with respect to the maximal torus \bar{H}. Viewing $R_{u}(\bar{P})$ in this way and using the Chevalley commutator relations, the result follows.

The table below gives bounds on the nilpotence class of the groups X_{i}, $1 \leq i \leq t$, for the various groups G. This bound is c except for the cases of $G=\operatorname{Sz}(q),{ }^{2} G_{2}(q)$, and ${ }^{2} F_{4}(q)$. In the latter cases the bounds are less than c. This is because the characteristic restrictions needed to define G force the appropriate parabolic subgroups of the above proof to have unipotent radicals of smaller nilpotence class. In these cases direct computations give the bounds. Otherwise, the number c is computed easily once the root system is given; for σ induces a (possibly trivial) graph automorphism on the root system for \bar{H}.

Table 1

$G_{0} / Z\left(G_{0}\right)$	bound on class X_{i}
$\operatorname{PSL}(n, q)$	1
$\operatorname{Psp}(n, q)$	2
$\operatorname{PSU}(n, q)$	2
$P O^{ \pm}(n, q)^{\prime}$	2
$E_{6}(q)$	3
$E_{7}(q)$	4
$E_{8}(q)$	6
$G_{2}(q)$	3
$F_{4}(q)$	4
${ }^{3} D_{4}(q)$	3
${ }^{2} E_{6}(q)$	4
$\operatorname{Sz}_{2}(q)$	2
${ }^{2} G_{2}(q)$	3
${ }^{2} F_{4}(q)$	5

It will be a consequence of later work that the above bounds are best possible. Also, we will discuss the embedding of T-root groups in G, and for the classical groups we describe the action of T-root groups on the natural module.

Our next two results concern the embedding of X_{i} in G and the embedding of \bar{X}_{i} in \bar{G}, for $i=1, \ldots, t$.
(3.3) Let $1 \neq \bar{C}$ be a unipotent group generated by a subset of $\left\{\bar{X}_{1}, \ldots, \bar{X}_{t}\right\}$, and let C be the subgroup of G generated by the corresponding subset of $\left\{X_{1}, \ldots, X_{t}\right\}$. Then C is a p-group. There is a parabolic subgroup $\bar{P}=\bar{P}^{\sigma} \geq \bar{T}$ of \bar{G}, such that $\bar{C} \leq R_{u}(\bar{P})$. The group $\bar{P}_{\sigma}=P$ is a parabolic subgroup of G satisfying $C \leq O_{p}(P)$, and T is contained in a conjugate of a Levi factor of P.

Proof. Since \bar{C} is unipotent, there is a canonical parabolic subgroup $\bar{P} \leq \bar{G}$ with $\bar{C} \leq R_{u}(\bar{P})$ (Borel-Tits, (3.9) of [3]). Then $\bar{P}=\bar{P}^{\sigma}$ and $\bar{T} \leq$ $N_{\bar{G}}(\bar{P})=\bar{P}$. To see that $P=\bar{P}_{\sigma}$ is a parabolic subgroup of G first use Lang's theorem to get a Borel subgroup \bar{J} of \bar{P} (hence of \bar{G}) stabilized by σ and then use (2.12) of [25] to conclude \bar{J}_{σ} is a Borel subgroup of G. This forces P to be a parabolic subgroup of G. Clearly $C \leq R_{u}(\bar{P})_{\sigma} \leq O_{p}(P)$. Choose $x \in \bar{P}$ such that $\bar{T} \leq \bar{J}^{x}$. Then $R_{u}\left(\bar{J}^{x}\right)$ is a product of some of the root subgroups \bar{U}_{α} for $\alpha \in \Sigma$ and the Levi factor of \bar{P} is generated by \bar{T} together with those $\bar{U}_{\alpha} \leq \bar{P}$ such that $\bar{U}_{-\alpha} \leq \bar{P}$. So σ stabilizes the Levi factor and the result follows.
(3.4) Let $i \in\{1, \ldots, t\}$, let $\bar{X}=\bar{X}_{i}$, and $X=\bar{X}_{\sigma}$. Choose $j \in\{1, \ldots, t\}$ so that $\bar{\Sigma}_{j}=-\bar{\Sigma}_{i}$, and set $X^{*}=\left(\bar{X}_{j}\right)_{\sigma}$. Then
(i) $\bar{Y}=\left\langle\bar{X}_{i}, \bar{X}_{j}\right\rangle=\bar{D}_{1} \cdots \bar{D}_{k}$, a commuting product of $\langle\sigma\rangle$-conjugate, semisimple groups, each generated by certain root subgroups of \bar{T}.
(ii) $Y=\left\langle\bar{X}_{i}, \bar{X}_{j}\right\rangle_{\sigma}=Y\left(q^{k}\right)$, a group of Lie type defined over $\mathbf{F}_{q^{k}}$.
(iii) There exists a unique $\bar{T}\langle\sigma\rangle$-stable parabolic subgroup $\overline{P_{0}}$ of \bar{Y} such that $\bar{X} \leq R_{u}\left(\bar{P}_{0}\right)$. Also, $\bar{T} \leq N_{\bar{G}}\left(\bar{P}_{0}\right)$.
(iv) \bar{P}_{0} is the intersection of a $\langle\sigma\rangle$-orbit of maximal parabolic subgroups of \bar{Y}. If σ induces a field automorphism of \bar{G}, then \bar{P}_{0} is a maximal parabolic subgroup of \bar{Y}.
(v) Suppose $q \geq 4$. Then $P_{0}=\left(\bar{P}_{0}\right)_{\sigma}$ is the unique parabolic subgroup of Y normalized by T and satisfying $X \leq O_{p}\left(P_{0}\right)$.
(vi) Suppose $q \geq 4$. Then $T \cap Y$ is a maximal torus in $Y, T \cap Y / Z(Y)$ is cyclic and there is a Levi factor of P_{0} in which $T \cap Y$ is a minisotropic torus.

Proof. Let $\bar{Y}=\left\langle\bar{X}_{i}, \bar{X}_{j}\right\rangle$. Then \bar{Y} is normalized by \bar{T}. Let Γ be the collection of all roots $\alpha \in \bar{\Sigma}$ such that $\bar{U}_{ \pm \alpha} \leq \bar{Y}$. Then $\Gamma^{\sigma}=\Gamma$ and by
(2.12) $\left\langle\bar{U}_{\alpha} \mid \alpha \in \Gamma\right\rangle$ is a semisimple subgroup of \bar{Y}. Since $\bar{\Sigma}_{\underline{L}}, \bar{\Sigma}_{j} \leq \Gamma$ we have $\bar{Y}=\left\langle\bar{U}_{\alpha} \mid \alpha \in \Gamma\right\rangle$ and \bar{Y} can be expressed $\bar{Y}=\bar{D}_{1} \cdots \bar{D}_{k}$, with each \bar{D}_{i} quasisimple and generated by certain of the root subgroups in Γ. As \bar{T} is connected, $\bar{T} \leq N_{G}\left(\bar{D}_{l}\right)$ for $i=1, \ldots, k$. Also, each $\gamma \in \bar{\Sigma}_{l}$ satisfies $\bar{U}_{\gamma} \leq \bar{D}_{l}$ for some l. As $\bar{U}_{-\gamma} \leq \bar{D}_{l}$ as well, we conclude that $\langle\sigma\rangle$ is transitive on $\left\{\bar{D}_{1}, \ldots, \bar{D}_{k}\right\}$. This gives (i). The argument in (2.6) of [23] shows that (ii) holds.

We may write $\bar{Y} \cdot \bar{T}=\bar{D}_{1} \cdots \bar{D}_{k} \bar{Z}$, where \bar{Z} is a subtorus of \bar{T} and $\bar{Z}=Z(\bar{Y} \cdot \bar{T})^{0}$. Now σ^{k} stabilizes each of $\bar{D}_{1}, \ldots, \bar{D}_{k}$ and we observe that for the purpose of proving the remaining parts of (3.4) we may replace (G, T, σ) by $\left(\bar{D}_{1} / Z\left(\bar{D}_{1}\right), \bar{T} \cap \bar{D}_{1} / Z\left(\bar{D}_{1}\right), \sigma^{k}\right)$. Therefore, we now assume that $\bar{Y}=\bar{G}$. In particular, $C_{\bar{T}}(\bar{X})=1$.

Let \bar{P} be a parabolic subgroup of \bar{G} such that $\bar{X} \leq R_{u}(\bar{P}) \leq \bar{P}=\bar{P}^{\sigma}$ $\geq \bar{T}$ (see (3.3)). Conjugating, if necessary, we may assume that $\bar{X} \leq \bar{B} \leq \bar{P}$, where \bar{B} is the Borel subgroup $\bar{T}\left\langle\bar{U}_{\alpha} \mid \alpha \in \bar{\Sigma}^{+}\right\rangle$. So $\bar{P}=\left\langle\bar{B}, \bar{U}_{ \pm \alpha_{j}} \mid \alpha_{J} \notin S\right\rangle$ and $S=\left\{\alpha_{t_{1}}, \ldots, \alpha_{i_{r}}\right\}$ is a subset of $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Now we may write $\sigma=w \gamma$, where $w \in \bar{W}=\bar{N} / \bar{T}$ and γ is a field or graph-field automorphism of \bar{G} defined with respect to $\bar{\Sigma}, \bar{B}, \bar{T}$. Then $\bar{P}^{\sigma}=\bar{P}^{w \gamma}=\bar{P}_{\text {, }}$ and so $\bar{P}^{w}=\bar{P}^{\gamma^{-1}}$. Since $\bar{B}^{\gamma^{-1}}=\bar{B}, \bar{P}^{\gamma-1}$ is also a standard parabolic subgroup for \bar{B}. Thus \bar{P}, \bar{P}^{w} are both parabolics containing \bar{B} and this forces $\bar{P}=\bar{P}^{w}$, whence $w \in \bar{P}$. Also, $\gamma \in N(\bar{P})$. We claim that the permutation of $\bar{\Sigma}$ associated with γ is transitive on S.

If G is a Suzuki or Ree group, then this is clear from $\bar{P}=\bar{P}^{\gamma}$, unless \bar{G} is of type $F_{4}(K)$ and \bar{P} a Borel subgroup. But in this case X is an ordinary root group of G, contradicting $\left\langle\bar{X}_{l}, \bar{X}_{J}\right\rangle=G$. We now exclude the Ree and Suzuki groups for purposes of establishing the claim. For $\alpha \in \bar{\Sigma}_{l}$, $\bar{U}_{\alpha} \leq R_{u}(\bar{P})$ and we let $(\alpha)_{t}$, be the coefficient of $\alpha_{i,}$ in α. Since $w \in \bar{P}$, $(\alpha)_{i_{j}}=\left(\alpha^{w}\right)_{i_{j}}$ for each $\alpha \in \Sigma_{i}$.

Write $S=S_{1} \cup \cdots \cup S_{m}$, where the union is disjoint, each S_{l} is a $\langle\gamma\rangle$-orbit, and suppose $m>1$. For $\alpha \in \bar{\Sigma}_{i}$, let $\alpha(k)=\Sigma_{\alpha_{t} \in S_{k}}(\alpha)_{i_{j}}$. Then $\alpha(k)=\beta(k)$ for each $\alpha, \beta \in \bar{\Sigma}_{i}$. Choose $\chi\left(\alpha_{j}\right)=1$ for each $\alpha_{j} \in S_{1} \cup S_{2}$, $\chi\left(\alpha_{j}\right)=\varphi$ for each $\alpha_{J} \in S_{1}$, and $\chi\left(\alpha_{j}\right)=\eta$ for each $\alpha_{J} \in S_{2}$. Consideration of the numbers $\alpha(1)$ and $\alpha(2)$, for $\alpha \in \Delta_{1}$, shows that it is possible to choose $1 \neq \chi$ such that $\chi(\alpha)=1$ for each $\alpha \in \bar{\Sigma}_{i}$. But then $h(\chi) \in$ $C_{\bar{T}}(\bar{X})=1$, a contradiction. This proves the claim.

The claim gives (iv), once (iii) is checked. So suppose \bar{P}_{1} is another $\bar{T}\langle\sigma\rangle$-stable parabolic subgroup of \bar{G} with $\bar{X} \leq R_{u}\left(\bar{P}_{1}\right)$. Then $\bar{P}_{1}=\bar{P}_{2}^{g}$ where $\bar{B} \leq \bar{P}_{2}$. So $\bar{T}, \bar{T}^{g} \leq \bar{P}_{2}^{g}$ and, conjugating, we may assume that $g \in N_{\bar{G}}(\bar{T})=\bar{N}$. So $\bar{P}_{1}=\bar{P}_{2}^{w}$ for some $w \in W$. But now consider $\bar{P} \cap \bar{P}_{2}^{w}$. This group is $\bar{T}\langle\sigma\rangle$-invariant and we apply the results in $\S 2$ of [8]. Write
$\bar{P}=\bar{P}_{J_{1}}$ and $\bar{P}_{2}=\bar{P}_{J_{2}}$ where $J_{1}, J_{2} \subseteq \Pi$, and $w=w_{2} w^{\prime} w_{1}$, where $w_{2} \in W_{J_{2}}$, $w_{1} \in W_{J_{1}}$, and $w^{\prime} \in W_{J_{2}, J_{1}}$, the distinguished set of double coset representatives. Then $\bar{P} \cap \bar{P}_{2}^{w_{2}}=\left(\bar{P}_{J_{1}} \cap \bar{P}_{J_{2}}^{w^{\prime}}\right)^{w_{1}}$, and we consider the group $P_{J_{1}} \cap$ $\underline{P}_{J_{2}}^{w^{\prime}}$. Let $K=J_{1} \cap J_{2}^{w^{\prime}}$. By (2.4) of [8], $\bar{P}_{K}=\left(\bar{P}_{J_{1}} \cap \bar{P}_{J_{2}}^{w^{\prime}}\right) R_{u}\left(\bar{P}_{J_{1}}\right)$, so $\bar{X} \leqq$ $\bar{P}^{J_{2}} \cap \bar{P}_{2}^{w}=\left(\bar{P}_{J_{1}} \cap \bar{P}_{J_{2}}^{w^{\prime}}\right)^{w_{1}} \leq \bar{P}_{K}^{w_{1}}$ and \bar{P}_{K} is a parabolic subgroup of $\bar{P}_{J_{1}}=\bar{P}$. Since $\bar{P}_{K}^{w_{1}}$ is $\bar{T}\langle\sigma\rangle$-stable we apply the above claim to conclude that $\bar{P}_{K}^{w_{1}}=\bar{P}_{J_{1}}=\bar{P}$. Thus, $w_{1} \in \bar{P}_{K}, \bar{P}_{K}=\bar{P}_{J_{1}}$, and $J_{1} \subseteq J_{2}^{w^{\prime}}$. By (2.6) of [8], $L_{J_{1}} \leq L_{J_{2}}^{w}$, where $L_{J_{1}}$ and $L_{J_{2}}^{w}$ are the standard Levi factors of $\bar{P}_{J_{1}}$ and $\bar{P}_{J_{2}}^{w}$, respectively. Reversing the roles of \bar{P} and \bar{P}_{2}^{w} we have $L_{J_{1}}=L_{J_{2}}^{w}=L_{K}$ and $J_{1}=J_{2}^{w^{\prime}}$.

Fix $\alpha_{i} \in \pi-J_{1}$. By (2.4) of [9] we see that W_{K} is transitive on the set of roots, α, such that α has α_{i} coefficient equal to 1 and α_{j} coefficient 0 for each $\alpha_{i} \neq \alpha_{j} \in \pi-J_{1}$. Using this together with the fact that $\pi-J_{1}$ is a $\langle\sigma\rangle$-orbit we have $W_{K}\langle\sigma\rangle$ transitive on those roots $\beta \in \bar{\Sigma}$ satisfying $\Sigma_{\alpha_{i} \notin J_{1}}(\beta)_{i}=1$. For the remainder of the proof, if $\beta \in \bar{\Sigma}$, let $(\beta)_{J_{1}}$ denote the integer $\Sigma_{\alpha_{i} \notin J_{1}}(\beta)_{i}$. Let $o=\left\{\beta \mid(\beta)_{J_{1}}=1\right\}$, a $W_{K}\langle\sigma\rangle$-orbit of roots.

We claim that $\bar{\Sigma}_{i} \subseteq o$. For suppose $\alpha \in \bar{\Sigma}_{i}$ and $(\alpha)_{J_{1}}=c>1$. Let Γ be the collection of all $\gamma \in \bar{\Sigma}$ with $(\gamma)_{J_{1}}$ a multiple of c. It is easily checked that Γ is a closed root system of $\bar{\Sigma}$ and this contradicts the fact that $G=\left\langle\bar{X}_{i}, \bar{X}_{j}\right\rangle$. So $\bar{\Sigma}_{i} \subseteq o$. Now, $\bar{P}_{2}^{w}=\bar{P}_{J_{2}}^{w}=\bar{P}_{J_{2}}^{w^{\prime} w_{1}}=\bar{P}_{J_{2}}^{w^{\prime}}$, since $w_{1} \in L_{K}=$ $L_{J_{2}}^{w^{\prime}}$. So, by symmetry, there is a $W_{K}\langle\sigma\rangle$-orbit o^{\prime} such that $\bar{\Sigma}_{i} \subseteq O^{\prime}$ and $\left(\pi-J_{2}\right)^{w^{\prime}} \subseteq o^{\prime}$. But then, $o=o^{\prime}$ and we have $\pi^{w^{\prime}}=J_{2}^{w^{\prime}} \cup\left(\pi-J_{2}\right)^{w^{\prime}} \subseteq$ $J_{1} \cup o \subseteq \Sigma^{+}$. Therefore, $\left(\bar{\Sigma}^{+}\right)^{w^{\prime}}=\bar{\Sigma}^{+}$and $w^{\prime}=1$. We now have $\bar{P}_{1}=\bar{P}_{2}^{w}$ $=\bar{P}_{J_{2}}^{w}=\bar{P}_{J_{2}}^{w^{\prime} w_{1}}=P_{J_{2}}^{w^{\omega_{1}}}=\bar{P}_{J_{1}}^{w_{1}}=\bar{P}_{J_{1}}=\bar{P}$. This proves (iii).

Suppose $X \leq O_{p}\left(P_{1}\right)$ and $q \geq 4$, where P_{1} is a T-stable parabolic subgroup of G. Then $P_{1}=N_{G}\left(O_{p}\left(P_{1}\right)\right)$, so by (3.9) of [3], there is a canonical parabolic subgroup \bar{P}_{1} of \bar{G} such that $P_{1} \leq \bar{P}_{1}$ and $O_{p}\left(P_{1}\right) \leq$ $R_{u}\left(\bar{P}_{1}\right)$. Then $T \leq \bar{P}_{1}$ and we claim $\bar{T} \leq \bar{P}_{1}$. To see this first note that if $h(\chi) \in T$, then $\chi^{\sigma}=\chi$ and hence given $\alpha, \beta \in \Delta_{i}, \varphi_{\alpha}=\varphi_{\beta}^{q^{k}}$ for some integer k (a slight change is required for the Suzuki and Ree groups). Therefore, $C_{T}\left(\bar{U}_{\alpha}\right)=C_{T}\left(\bar{U}_{\beta}\right)$ for each $\alpha, \beta \in \bar{\Sigma}_{i}$, and since $C_{\bar{T}}(\bar{X})=1$, we necessarily have T cyclic. Write $T=\langle t\rangle$. Then t is semisimple and is contained in a maximal torus \bar{T}_{1} of \bar{P}_{1}. Then $\bar{T}_{1} \leq C_{\vec{G}}(T)^{0}=\bar{T}$ by (2.7). So $\bar{T}=\bar{T}_{1}$ and $\bar{P}_{1}=\bar{P}_{0}$ by (iv). Therefore, $P_{1} \leq\left(\bar{P}_{1}\right)_{\sigma}=\left(\bar{P}_{0}\right)_{\sigma}=P_{0}$. If equality failed to hold, then $O_{p}\left(P_{1}\right)>O_{p}\left(P_{0}\right)$. However, $O_{p}\left(P_{1}\right) \leq R_{u}\left(\bar{P}_{1}\right)$ $=R_{u}\left(\bar{P}_{0}\right)$, so this is impossible. This proves (v) and (vi) follows from (v) and the above argument.

In $\S 4$ we will describe the T-root subgroups of the classical groups and also the groups Y and P_{0} of (3.4). One additional result of interest is the following.
(3.5) The set $\left\{\bar{\Sigma}_{1}, \ldots, \bar{\Sigma}_{t}\right\}$ can be partitioned as $\left\{\bar{\Sigma}_{i_{1}}, \ldots, \bar{\Sigma}_{i_{k}}\right\} \cup$ $\left\{\bar{\Sigma}_{j_{1}}, \ldots, \bar{\Sigma}_{j_{k}}\right\}$ in such a way that each of $\left\langle\bar{X}_{i_{1}}, \ldots, \bar{X}_{i_{k}}\right\rangle$ and $\left\langle\bar{X}_{j_{1}}, \ldots, \bar{X}_{j_{k}}\right\rangle$ is unipotent.

Proof. Let \bar{P}_{1} be the canonical parabolic subgroup of \bar{G} such that $\bar{X}_{1} \leq R_{u}\left(\bar{P}_{1}\right)$ and $N_{\bar{G}}\left(\bar{X}_{1}\right) \leq \bar{P}_{1}$ (see (3.9) of [4]). Then $\bar{P}_{1}=\bar{P}_{1}^{\sigma}$ and $\bar{T} \leq \bar{P}_{1}$. For each $\alpha \in \bar{\Sigma}$, either \bar{U}_{α} or $\bar{U}_{-\alpha}$ is a subgroup of \bar{P}_{1}. So for each $1 \leq i \leq t$, either \bar{X}_{i} or \bar{X}_{i}^{*} is a subgroup of $R_{u}\left(\bar{P}_{1}\right)$ or both of \bar{X}_{i} and \bar{X}_{i}^{*} are contained in the Levi factor, \bar{L}_{1}, of \bar{P}_{1}. Inductively, we can partition the roots in the root system for \bar{L}_{1} so that the result holds in \bar{L}_{1}. Now we obtain $\left\{\bar{\Sigma}_{l_{1}}, \ldots, \bar{\Sigma}_{i_{k}}\right\}$ by taking the $\langle\sigma$.$\rangle -orbits in one of the partitioning$ sets for the root system of \bar{L}_{1}, together with those $\bar{\Sigma}_{i}$ such that $\bar{X}_{i} \leq R_{U}\left(\bar{P}_{1}\right)$. Passing to the opposite parabolic subgroup of \bar{P}_{1}, we see that the result holds.

In the notation of (3.5), the group $\left\langle\bar{X}_{i_{1}}, \ldots, \bar{X}_{i_{k}}\right\rangle_{\sigma} T$ can be regarded as a replacement for a Borel subgroup. However, there may be several ways to obtain partitions as in (3.5).
(3.6) Assume $q \geq 4$ and that Y is a group acting on G_{0} and normalizing T_{0}. Then Y permutes the set of T-root subgroups of G.

Proof. We may assume $Z\left(G_{0}\right)=1, Y$ acts faithfully on G_{0}, and $Y=\langle y\rangle$ for some automorphism y of G_{0}. There is an endomorphism τ of \bar{G} such that $[\tau, \sigma]$ and $\left.\tau\right|_{G_{0}}=y$. So τ normalizes T_{0} and (2.6) implies that τ normalizes \bar{T}. Consequently, τ permutes the set of $\langle\sigma\rangle$-orbits of \bar{T}-root subgroups. The result follows.
4. Classical groups. In this section we determine the T-root subgroups X_{1}, \ldots, X_{t}, when G is a classical group. Choose notation as in $\S 3$ and fix $1 \leq i \leq t$. Set $\Delta=\Delta_{i}, \bar{X}=\bar{X}_{i}, X=X_{i}, X^{*}=X_{i}^{*}$. In addition, we set $\bar{Y}=\left\langle\bar{X}, \bar{X}^{*}\right\rangle, Y=\bar{Y}_{\sigma}$, and \bar{P}, P the parabolic subgroups of \bar{Y} and Y, respectively, as described in (3.4).

To make the statements and proofs less cumbersome we will assume throughout the section that G and \bar{G} are the appropriate linear groups. However, it is easy to pass from these results to those for other forms of G and \bar{G}.
(4.1) If $G_{0} \cong \operatorname{SL}(n, q)$, then there exist positive integers r, s, y such that the following hold:
(i) $(r, s)=1$.
(ii) X is elementary abelian of order $q^{(r-s) s y}$.
(iii) $\left\langle X, X^{*}\right\rangle \cong \mathrm{SL}\left(r, q^{y}\right)$.
(iv) $\left\langle\bar{X}, \bar{X}^{*}\right\rangle=\bar{D}_{1} \cdots \bar{D}_{y}$ a commuting product of copies of $\operatorname{SL}(r, K)$, permuted transitively by $\langle\sigma\rangle$ and each generated by \bar{T}-root subgroups of \bar{G}.
(v) $X=O_{p}(P)$ and P is the stabilizer of an s-space of the usual module for $\operatorname{SL}\left(r, q^{y}\right)$.
(vi) The projection of \bar{X} to \bar{D}_{1} is the unipotent radical of a parabolic subgroup of \bar{D}_{1} obtained by deleting the (s th) node of the Dynkin diagram for \bar{D}_{1} (which has type A_{r-1}).

Proof. Write $\left\langle\bar{X}, \bar{X}^{*}\right\rangle=\bar{D}_{1} \cdots \bar{D}_{y}$ with $\langle\sigma\rangle$ transitive on $\left\{\bar{D}_{1}, \ldots, \bar{D}_{y}\right\}$ (see (3.5)(i)). Let $\gamma=\sigma^{y}$, so that γ stabilizes each of $\bar{D}_{1}, \ldots, \bar{D}_{y}$. Since the root system of each \bar{D}_{J} is a subsystem of $\bar{\Sigma}$, and since $\bar{\Sigma}$ has type A_{n-1}, there is an integer r such that $\bar{D}_{J} \cong \mathrm{SL}(r, K)$, for $j=1, \ldots, t$. So (iv) holds.

We first observe that γ induces a field automorphism on $\bar{D}_{1}, \ldots, \bar{D}_{y}$. To see this write $\sigma=\tau q$ as in (2.1). Since σ is a field automorphism of \bar{G}, $\tau=w \in \bar{W}$, so $\gamma=w^{y} q^{y}$. Now if we set $W_{j}=\bar{W} \cap \bar{D}_{j}$, then $N_{\bar{W}}\left(\bar{W}_{j}\right)=$ $\bar{W}_{j} C_{\bar{W}}\left(\bar{W}_{j}\right)$. It follows that w^{y} induces an inner automorphism on \bar{D}_{j}; hence $\left(\overline{D_{j}}\right)_{\gamma} \cong \mathrm{SL}\left(r, q^{y}\right)$. At this point (iii) will follow from (v) and (2.3) of [23].

If we can verify (i) and (vi), then the remaining parts of (4.1) will follow, by projection, from the known structure of parabolic subgroups of type A_{r-1} and the connection between parabolic subgroups of \bar{D}_{1} and $\left(\bar{D}_{1}\right)_{\gamma}$. Hence we have reduced the problem to the case of $\bar{G}=\operatorname{SL}(r, K)$, $\bar{G}_{\boldsymbol{\sigma}}=\operatorname{SL}\left(r, q^{y}\right)$, and $\left\langle\bar{X}, \bar{X}^{*}\right\rangle=\bar{G}$.

By (3.4)(iii), $\bar{X} \leq R_{u}(\bar{P})$. Regard \bar{P} as the stabilizer in \bar{G} of an s-space of the usual module for $\operatorname{SL}(n, K)$ (here we are using (3.5)(iv)). Then $\bar{P} / R_{u}(\bar{P})$ is a central product of $\operatorname{SL}(s, K), \operatorname{SL}(r-s, K)$, and a 1-dimensional torus. Each of these groups is stabilized by σ. From the uniqueness of \bar{P} we conclude that T is a minisotropic torus of $P / O_{p}(P)$, so T contains the central product of cyclic groups of order $\left(q^{y s}-1\right) /\left(q^{y}-1\right)$, $\left(q^{y(r-s)}-1\right) /\left(q^{y}-1\right)$, and $q^{y}-1$ (see Carter [5]).

Let $\alpha \in \Delta_{i}$. Then T induces a cyclic group on \bar{U}_{α} and induces algebraic conjugates of φ_{α} on the other root subgroups in Δ_{l}. Since $R_{u}(\bar{P})$ is abelian, \bar{X} is the direct product of the groups $\bar{U}_{\alpha}, \alpha \in \bar{\Sigma}_{i}$ and T induces a cyclic group on \bar{X}. Then $C_{\bar{T}}(\bar{G})=Z(\bar{G})$ implies $C_{\bar{T}}(\bar{X})=Z(\bar{G})$ (as $\bar{G}=\left\langle\bar{X}, \bar{X}^{*}\right\rangle$ and $C_{\bar{T}}\left(\bar{X}^{*}\right)=C_{\bar{T}}(\bar{X})$) and so $T / Z(G)$ is cyclic. From this and the above description of T we have $(s, r-s)=1$. For if $(s, r-s)=$ $d>1$, then $Z_{a} \times Z_{a} \leq T / Z(G)$, where $a=\left(q^{j d}-1\right) /\left(q^{j}-1\right)$. This proves (i).

The group $R_{u}(\bar{P})$ is the product of $s(r-s) \bar{T}$-root subgroups of \bar{G}. Since T is a minisotropic torus of P, σ acts as $w_{1} w_{2} q$ where for $i=1,2, w_{i}$ is a Coxeter element of the corresponding component, $\mathrm{SL}(s, K)$ or $\mathrm{SL}(r-s, K)$, of the Levi factor of \bar{P}. Thus $\left|w_{1}\right|=s,\left|w_{2}\right|=r-s$ and $\left\langle w_{1}, w_{2}\right\rangle$ is transitive on the set of \bar{T}-root subgroups in $R_{u}(\bar{P})$. By (i), $\left\langle w_{1}, w_{2}\right\rangle=\left\langle w_{1} w_{2}\right\rangle$, so $\bar{X}=R_{u}(\bar{P})$ and this proves (vi). This completes the proof of (4.1).

A result quite similar to (4.1) holds when G is replaced by an arbitrary classical group, although there does exist one ambiguity (which is cleared up in $\S 12$, but under additional hypotheses).
(4.2) Suppose that G is one of the groups: $\operatorname{Sp}(n, q), \operatorname{SU}(n, q)$, or $\mathrm{SO}^{ \pm}(n, q)^{\prime}$. There exist positive integers r, s, y, such that the following hold:
(i) Either $(r, s)=1$ or $r=2 s$.
(ii) If $r \neq 2 s$, then X / X^{\prime} is elementary abelian of order $q^{y s(r-2 s)}$ ($q^{2 y s(r-2 s)}$ if Y is a unitary group).
(iii) $\left\langle\bar{X}, \bar{X}^{*}\right\rangle=\bar{D}_{1} \cdots \bar{D}_{y}$, a commuting product of copies of one of the groups $\mathrm{SL}(r, K), \mathrm{Sp}(r, K)$, or $O^{+}(r, K)^{\prime}$. Also, $\langle\sigma\rangle$ is transitive on $\left\{\bar{D}_{1}, \ldots, \bar{D}_{y}\right\}$ and each \bar{D}_{i} is generated by \bar{T}-root subgroups of \bar{G}.
(iv) If $r \neq 2 s$, the $\left\langle X, X^{*}\right\rangle \cong \operatorname{SL}\left(r, q^{y}\right), \mathrm{SU}\left(r, q^{y}\right), \mathrm{Sp}\left(r, q^{y}\right)$, or $O^{ \pm}\left(r, q^{y}\right)^{\prime}$ 。
(v) If $r \neq 2 s$, then $X=O_{p}(P)$ and P is the stabilizer of a totally isotropic (singular) s-space of the usual module for $\left\langle X, X^{*}\right\rangle$.
(vi) If $r=2 s$ and $q \geq 4$, then X is elementary abelian of order $q^{\nu s}$ ($q^{2 y s}$ if Y is a unitary group), P is the stabilizer of a totally isotropic (singular) s-space of the usual module for Y, and $X \leq O_{p}(P)$, equality only if $s=2$ and $\left\langle X, X^{*}\right\rangle$ a unitary group.

Proof. We first make reductions as in the proof of (4.1). Let $\left\langle\bar{X}, \bar{X}^{*}\right\rangle=\bar{D}_{1} \cdots \bar{D}_{y}$, a central product. From (3.5)(i) we get (iii). Then each \bar{D}_{i} is a classical group, although perhaps of a different type than that of \bar{G}. As before, the element σ^{y} stabilizes each \bar{D}_{i}, but it need not be the case that σ^{t} induces a field automorphism on each \bar{D}_{i}. Possibly σ^{t} induces a graph-field automorphism on $\overline{D_{i}}, i=1, \ldots, y$. In any case, we now project to \bar{D}_{1}, as before. That is we assume $\left\langle\bar{X}, \bar{X}^{*}\right\rangle=\bar{G}$ and G is defined over $\mathbf{F}_{q^{y}}$. If $G=\operatorname{SL}\left(r, q^{y}\right)$, then we are done by (4.1). So suppose this is not the case. Then $G=\operatorname{Sp}\left(r, q^{y}\right), \mathrm{SU}\left(r, q^{y}\right)$, or $O^{ \pm}\left(r, q^{y}\right)^{\prime}$.

Consider the group $\bar{G}=\operatorname{Sp}(r, K), \mathrm{SL}(r, K)$, or $O^{+}(r, K)^{\prime}$. Then \bar{P} is the stabilizer in \bar{G} of an s-space, V_{1}, and $(r-s)$-space, V_{2}, of the natural
module V for \bar{G}, satisfying $V_{1} \leq V_{2}$. In the symplectic and orthogonal cases V_{1} is totally singular with $V_{2}=V_{1}^{\perp}$. Let $\bar{Q}=R_{u}(\bar{P})$, so that $Q=\bar{Q}_{\sigma}=O_{p}(P)$.

First suppose that $r=2 s$. One checks that \bar{Q} is abelian and that the Levi factor of G contains $\operatorname{SL}\left(s, q^{y}\right)\left(\mathrm{SL}\left(s, q^{2 y}\right)\right.$ if G is a unitary group). It follows from (3.5)(v) and $q \geq 4$ that T contains a cyclic group of order $q^{y s}-1 / q^{y}-1\left(q^{2 y s}-1 / q^{y}+1\right.$ if G is unitary). Since $\bar{X}=\oplus_{\alpha \in \Delta} \bar{U}_{\alpha}$, $C_{T}(X) \leq C_{T}(\bar{X})=C_{T}\left(\bar{X}^{*}\right)$. So $C_{T}(X) \leq Z(\bar{G})$ and $|X| \geq q^{y s}\left(q^{\alpha y s}\right.$ in the unitary case). On the other hand, $\sigma=w \tau q^{y}$, where w is an s-cycle in the Weyl group, S_{s}, of a Levi factor of \bar{P} and τ is a graph automorphism. It is easily checked that $\tau=1$ unless G is unitary, in which case $|\tau|=2$ (for this use the fact that $G \neq O^{-}\left(r, q^{t}\right)^{\prime}$, since V_{1} is singular). Therefore $|\Delta| \leq s\left(2 s\right.$ in the unitary case) and so $|X| \leq q^{y s}$ (resp. $q^{2 y s}$). Therefore (vi) holds.

From now on assume $r \neq 2 s$. Let \bar{Z} be the subgroup of \bar{Q} that is trivial on V_{2} and on V / V_{1}. Then $\bar{Z} \unlhd \bar{Q}$. If \bar{G} is symplectic or orthogonal then \bar{Q} is the product of those root subgroups \bar{U}_{β} having positive coefficient of α_{s} (temporarily we label the Dynkin diagram starting at the stalk of the diagram of type A_{l}) and \bar{Z} is the product of those root subgroups \bar{U}_{β} such that β has α_{s}-coefficient equal to 2 . If G is unitary, \bar{P} is the intersection of two maximal parabolics (conjugate under the graph automorphism of \bar{G}) and \bar{Q} is the product of root subgroups corresponding to roots having positive coefficient of α_{s} or $\alpha_{t}=\alpha_{s}^{\tau}$. Moreover, \bar{Z} is the product of root subgroups for roots having both α_{s} and α_{t} coefficient positive.

Now $\bar{X} \leq \bar{Q}$ and since $\bar{G}=\left\langle\bar{X}, \bar{X}^{*}\right\rangle$ we cannot have $\bar{X} \leq \bar{Z}$. Another observation is that $\bar{G} \neq \mathrm{Sp}(r, K)$ with $\operatorname{char}(K)=2$. Otherwise, \bar{X} is generated by roots with α_{s}-coefficient equal to 1, these being short roots in the root system of type $C_{r / 2}$. But $\operatorname{char}(K)=2$ implies that the collection of all root subgroups for short roots generates a proper subgroup of \bar{G} having type $D_{r / 2}$. Consequently, from the description of \bar{Z} and \bar{Q} we can conclude (using the commutator relations) that $\bar{Z}=\bar{Q}^{\prime}=Z(\bar{Q})$.

We claim that $\bar{X}=\bar{Q}$. In view of the above it will suffice to show that $\bar{X} \bar{Z}=\bar{Q}$. Let Γ denote the set of root subgroups $\bar{U}_{\beta} \leq \bar{Q}$ such that $\bar{U}_{\beta} \neq \bar{Z}$. Then $\bar{Q} / \bar{Z} \cong \oplus_{\beta \in \Gamma} \bar{U}_{\beta}$. Similarly $\bar{X} \bar{Z} / \bar{Z} \cong \oplus_{\beta \in \Delta} \bar{U}_{\beta}$, so we must show $\Delta=\Gamma$. That is, we require that $\langle w \tau\rangle$ be transitive on Γ. We illustrate the method with $\bar{G}=\operatorname{Sp}(r, K)$; the other cases follow the same argument with only minor changes. The Levi factor \bar{L} of \bar{P} satisfies $\bar{L}^{\prime}=\bar{L}_{1} \times \bar{L}_{2}$ with $\bar{L}_{1} \cong \operatorname{SL}(s, K)$ and $\bar{L}_{2} \cong \operatorname{Sp}(r-2 s, K)$. Write $w=$ $w_{1} w_{2}$ with $w_{i} \in W_{i}$, the Weyl group of \bar{L}_{i}, for $i=1,2$. As \bar{T} is minisotropic
in a Levi factor of \bar{P} (with respect to $\sigma=w_{1} w_{2} q$), we necessarily have w_{1} an s-cycle in $W_{1} \cong S_{s}$. Let $j=\left|w_{2}\right|, d=(s, j), s=d s_{1}$, and $j=d j_{1}$.

Let $\Gamma_{1}, \ldots, \Gamma_{l}$ be the orbits of Γ under $\left\langle w_{1}\right\rangle$. Each orbit has the form $\Gamma_{l}=\left\{\beta_{l}, \beta_{l}+\alpha_{s-1}, \ldots, \beta_{i}+\alpha_{s-1}+\cdots+\alpha_{1}\right\}$, where β_{l} is the element of Γ_{i} having minimal height, and we order so that $\operatorname{ht}\left(\beta_{1}\right) \leq \cdots \leq \operatorname{ht}\left(\beta_{l}\right)$. Then $\beta_{1}=\alpha_{s}, \beta_{2}=\alpha_{s}+\alpha_{s+1}$, etc. and $l=r-2 s$. Let M be the $(l \times s)$ matrix with rows $\Gamma_{1}, \ldots, \Gamma_{l}$, and let C_{1}, \ldots, C_{s} denote the columns of M. The direct sum of the root subgroups in a given row or column affords the usual representation of \bar{L}_{1}, \bar{L}_{2}, respectively. For the rows this is easy. For a column C_{j} one checks that for each $\beta \in C_{j}$ there is a unique $\gamma \in C_{\text {, }}$ such that $\beta+\gamma=\delta$ is a root. Moreover, δ depends only on j. Hence, we obtain the natural module for \bar{L}_{2} by letting the root subgroups \bar{U}_{β} be singular 1 -spaces and realize the form via commutators. (If \bar{G} is an orthogonal group then root subgroups corresponding to a given column commute. However, by taking two adjacent columns we obtain a nondegenerate symplectic form, via commutation, and since \bar{L}_{2} is represented equivalently in the two column spaces we see that \bar{L}_{2} necessarily preserves an orthogonal form on each.)

Let $E=\bigoplus_{j=1}^{l} \bar{U}_{\beta}$, viewed as the natural module for \bar{L}_{2}, and let E_{0} be the subspace spanned by those $\bar{U}_{\beta,}$ such that $\Delta \cap \Gamma_{j} \neq \varnothing$. Then E_{0} is $\bar{T}\left\langle w_{2}\right\rangle$-invariant. As $\bar{T}_{2}=\bar{T} \cap \bar{L}_{2}$ is minisotropic (with respect to w_{2}), we conclude $\operatorname{rad}\left(E_{0}\right)=1$. Suppose $E_{0}<E$. Then $C_{\bar{T}_{2}}\left(E_{0}\right)$ has positive dimension, which implies $C_{T_{2}}(\bar{X})$ has positive dimension. However, $C_{T_{2}}(\bar{X})=$ $C_{T_{2}}\left(\bar{X}^{*}\right)$ and $\bar{G}=\left\langle\bar{X}, \bar{X}^{*}\right\rangle$. This is impossible, hence $E_{0}=E$ and $j=l=$ $r-2 s$.

If j_{1} is odd then $\left(\bar{T}_{2}\right)_{\sigma}$ has order divisible by $q^{d / 2}+1$, as does $\left(\bar{T}_{1}\right)_{\sigma}$. Hence $|T / Z(G)|$ is not cyclic. It follows that there exists $a \in T-Z(G)$ and $\mathscr{B} \in \Delta$ such that $a \in C\left(\bar{U}_{\mathfrak{B}}\right)$. But then $a \in C_{\bar{T}}^{-}(\bar{X})=C_{T}^{-}\left(\bar{X}^{*}\right)=$ $C_{\bar{T}}(\bar{G})=Z(\bar{G})$, a contradiction. So j_{1} is even and $w_{2}^{j / 2} \in\left\langle w_{2}^{d}\right\rangle$. On the other hand, $\left\langle w^{s}\right\rangle=\left\langle w_{2}^{d s_{1}}\right\rangle=\left\langle w_{2}^{d}\right\rangle$, hence $w_{2}^{j / 2} \in\left\langle w^{s}\right\rangle$ the latter group leaving each C_{l} invariant. The element $w_{2}^{j / 2}$ sends each $\overparen{B} \in C_{i}$ to the unique root $\gamma \in C_{i}$ with $\mathscr{B}+\gamma$ a root.

Let $\Delta_{1}, \ldots, \Delta_{d}$ be the orbits of Δ under $\left\langle w^{d}\right\rangle=\left\langle w_{1}^{d} w_{2}^{d}\right\rangle=\left\langle w_{1}^{d}, w_{2}^{d}\right\rangle$ (a group of order $s_{1} j_{1}$). Fix $\mathfrak{B} \in \Delta_{m}$ and suppose $\{\mathscr{B}\}=\Gamma_{l} \cap C_{j}$. Let Γ_{k} be the image of Γ_{i} under $w_{2}^{t / 2}$. One checks that if $\gamma \in \Delta$ and $\mathscr{B} \pm \gamma$ is a root, then $\gamma \in \Gamma_{i} \cup C_{j} \cup \Gamma_{k}$. It follows that $\gamma \in \Delta_{m}$. Setting $\bar{G}_{t}=\left\langle\bar{U}_{ \pm \beta}\right.$: $\left.\mathscr{B} \in \Delta_{i}\right\rangle$ we conclude that the groups $\bar{G}_{1}, \ldots, \bar{G}_{d}$ commute and generate \bar{G}. This forces $d=1,(s, l)=1$, and $\langle w\rangle$ transitive on Γ, as required $(|\Gamma|=s l=s j)$.

As $\bar{X}=\bar{Q}$ we have $X=\bar{X}_{\sigma}=\bar{Q}_{\sigma}=Q=O_{p}(P)$, proving (v). (iv) follows from this and (2.3) of [23]. Also $1=(s, l)=(s, r-2 s)=(s, r)$,
proving (i). Finally, one checks that $Q^{\prime}=\bar{Z}_{\sigma}$, so $X / X^{\prime}=\bar{Q}_{\sigma} / \bar{Z}_{\sigma}=$ $(\bar{Q} / \bar{Z})_{\sigma}$ which has order given in (ii). This completes the proof of (4.2).
5. The action of \mathbf{T} on root subgroups. In this section we are concerned with the action of T on the nilpotent T-root subgroups X_{1}, \ldots, X_{t}. The results are fundamental to the rest of the paper and are in the spirit of Lemma 3 of [22].

We adopt the following notation. For $1 \leq i \leq t$, let $\bar{Y}_{i}=\left\langle\bar{X}_{i}, \bar{X}_{i}^{*}\right\rangle$, $Y_{i}=\left(\bar{Y}_{i}\right)_{\sigma}, \bar{P}_{i}$ the $\bar{T}\langle\sigma\rangle$-stable parabolic subgroup of \bar{Y}_{i} satisfying $\bar{X}_{i} \leq$ $R_{u}\left(\bar{P}_{i}\right)\left(\right.$ see (3.4)), and $P_{i}=\left(\bar{P}_{i}\right)_{\sigma}$. In addition, set $\bar{V}_{i}=\bar{X}_{i} R_{u}\left(\bar{P}_{i}\right)^{\prime} / R_{u}\left(\bar{P}_{i}\right)^{\prime}$ and $V_{i}=X_{i} R_{u}\left(\bar{P}_{i}\right)^{\prime} / R_{u}\left(\bar{P}_{i}\right)^{\prime}$. Except for the cases where $\bar{\Sigma}_{i}$ has roots of different lengths (G a Suzuki or Ree group), we see from (2.1) that V_{i} can be regarded as an \mathbf{F}_{q}-module of dimension $\left|\bar{\Sigma}_{i}\right|$.
(5.1) Let $1 \leq i \leq t$.
(i) \bar{V}_{i} is $\bar{T}\langle\sigma\rangle$-isomorphic to the external direct sum of the root subgroups \bar{X}_{α} for $\alpha \in \bar{\Sigma}_{i}$. Also, $V_{i}=\left(\bar{V}_{i}\right)_{\sigma}$.
(ii) If G is not a Suzuki or Ree group, then the representation that T induces on $K \otimes_{\mathbf{F}_{q}} V_{i}$ is the direct sum of the representations $\left.\varphi_{\alpha}\right|_{T}, \alpha \in \bar{\Sigma}_{i}$.
(iii) If $q>3$, the T_{0} acts irreducibly on the elementary abelian p-group, V_{i}.

Proof. Let $\bar{\Sigma}_{i}=\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}$. The group $R_{u}\left(\bar{P}_{i}\right)^{\prime}=\bar{D}_{i}$ is the product of certain of the root subgroups for \bar{T} and the proof of (3.4)(iii) shows that $\bar{U}_{\gamma_{,}} \neq \bar{D}_{i}$ for $j=1, \ldots, k$. Therefore, $\bar{V}_{i} \cong \bar{X}_{\gamma_{1}} \times \cdots \times \bar{X}_{\gamma_{k}}$. Let $\bar{J}_{i}=\bar{X}_{i} \cap \bar{D}_{i}$. Then \bar{J}_{i} is a product of \bar{T}-root subgroups, so \bar{J}_{i} is connected and Lang's theorem implies that $\left(\bar{X}_{i} / \bar{J}_{i}\right)_{\sigma}=X_{i} \bar{J}_{i} / \bar{J}_{i}$. So (i) holds. From here we have (ii). For the Suzuki and Ree groups one can obtain (iii) from a direct check of the possible configurations. So we now exclude these cases.

Let ${ }^{\wedge}$ denote images in $R_{u}\left(\bar{P}_{i}\right) / \bar{D}_{i}$. So $\bar{V}_{i}=\hat{\bar{X}}_{\gamma_{1}} \times \cdots \times \hat{\bar{X}}_{\gamma_{k}}$. As Δ_{i} is a $\langle\sigma\rangle$-orbit, σ^{k} stabilizes each of the groups $\hat{X}_{\gamma}, j=1, \ldots, k$, and $\sigma=\tau q$, where τ is an automorphism of \bar{G}. Then τ^{k} induces scalar multiplication and we see that $\left(\hat{X}_{\gamma_{ر}}\right)_{\sigma^{k}}$ is elementary abelian of order q^{k}. By (3.5)(i), \bar{Y}_{i} is the commuting product of a $\langle\sigma\rangle$-orbit of quasisimple groups, so taking projections we may assume that \bar{Y}_{i} is quasisimple. By induction on $\operatorname{dim}(\bar{G})$ we may assume $\bar{G}=\bar{Y}_{i}$. Also, we may assume $Z(\bar{G})=1$, so $C_{\bar{T}}\left(\bar{X}_{i}\right) \leq$ $C_{\bar{T}}\left(\bar{Y}_{i}\right)=1$, and $\bar{T}_{\hat{X}}$ acts faithfully on \bar{X}_{i}. On the other hand, the representations of T on $\hat{X}_{\gamma_{1}}, \ldots, \hat{X}_{\gamma_{k}}$ are algebraic conjugates of each other. We conclude that T acts, faithfully, as a cyclic group on $\hat{\bar{X}}_{\gamma_{i}}$, for $i=1, \ldots, k$. Taking projections it is clear that it will suffice to show that (iii) holds for
the action of T_{0} on $\left(\hat{\bar{X}}_{\gamma_{1}}\right)_{\sigma^{k}}=V$. We have $|V|=q^{k},|T|=d\left|T_{0}\right|=\Phi_{n_{1}}(q)$ $\cdots \Phi_{n_{s}}(q)$, where $\Phi_{n_{i}}(x)$ is the cyclotomic polynomial of degree $\varphi\left(n_{i}\right)$ and d is the order of the center of the universal covering group of G_{0}. In particular, $d \mid q \pm 1$. We may assume \bar{G} is an adjoint group.

First suppose $T_{0}=T$. By (2.1) $\Phi_{n_{1}}(x) \cdots \Phi_{n_{s}}(x)$ is the characteristic polynomial of τ in its action on $\mathbf{R} \otimes X(\bar{T})$. So $|\tau|=l$, where $l=$ l.c.m. $\left\{n_{1}, \ldots, n_{s}\right\}$. In particular, $k \mid l$. By Zsigmondy [28], for $j=1, \ldots, s$, $\varphi_{n_{j}}(q)$ has as a factor a primitive divisor of $q^{n_{s}}-1$, unless $\varphi_{n_{j}}(q)=p+1$ $=2^{c}$ or 9 . We claim that $n_{j} \mid k$ for all j. In view of the above, this is clear unless there is a unique j with $\varphi_{n_{j}}(q)=\varphi_{2}(q)=2^{c}$ or 9 . But $\varphi_{2}(q) \mid q^{k}-1$ forces k even. So the claim holds. This implies that $l \mid k$; hence $l=k$. As T acts faithfully on V we also have T acting irreducibly on V (viewed as an \mathbf{F}_{p}-space). So (iii) holds.

For the general case we first note that an easy check gives the result if $|T|=\varphi_{n_{1}}(q)=q \pm 1$. If $n_{j} \neq 1,2$, then each primitive divisor of $q^{n_{J}}-1$ divides $\left|T_{0}\right|$. Setting $l_{0}=$ l.c.m. $\left\{n_{j} \mid n_{j} \neq 2\right\}$ we see that T_{0} cannot act on $V_{0}<V$ with $\left|V_{0}\right|<q^{I_{0}}$. So supposing T_{0} reducible on V, we have l_{0} odd, $l=2 l_{0}, V=V_{0}+V_{1}, T_{0}$ acts irreducibly on V_{0} and V_{1}, and $\left|V_{0}\right|=\left|V_{1}\right|=$ $q^{l_{0}}$. Since $\varphi_{2}(q)| | T|, d| q+1$ and any primitive divisor of $q+1$ (if such exists) divides d. If G_{0} is a unitary group, then $|T|$ is a product of terms $q^{c}-(1)^{c}$ (see Carter [6]). So l_{0} odd forces $l=2$, and since T is cyclic $|T|$ divides $q^{2}-1$, and we contradict the fact that $q>3$. From now on we have $d \leq 4$. Since T is contained in a proper parabolic subgroup of G we necessarily have $q-1| | T \mid$ and so $\left|T_{0}\right|$ is divisible by $\frac{1}{d}(q-1)(q+1)$. However, $\left|T_{0}\right|$ divides $q^{l_{0}}-1=(q-1) x$ with $(x, q+1)=1$. This forces $d=q+1=4$, a contradiction.

The next two lemmas were communicated to the author by R . Steinberg and lead to a much shorter proof of (5.5) than our original one.
(5.2) If $\alpha \in \bar{\Sigma}$ and if ω is a nonzero weight of $\bar{\Sigma}$, then $|\alpha| \leq 2|\omega|$, with equality precisely when $\bar{\Sigma}$ has type C_{n}, α is a long root, and ω is \bar{W} conjugate to $\frac{1}{2} \alpha$.

Proof. Since \bar{W} acts irreducibly on $Q \otimes X(\bar{T})$ and preserves the form, we may assume $(\omega, \alpha)>0$. Combining the fact that ω is a weight with the triangle inequality, we have

$$
1 \leq 2(\omega, \alpha) /(\alpha, \alpha) \leq 2|\omega| /|\alpha|
$$

This gives the desired inequality. If $|\alpha|=2|\omega|$, then the second inequality implies $\omega=c \alpha$ with $c>0$, while the first inequality shows that $c=\frac{1}{2}$. Finally, for $\frac{1}{2} \alpha$ to be a weight we must have α long and $\bar{\Sigma}$ of type C_{n}.
(5.3) Let $\alpha \neq \beta \in \bar{\Sigma}, q>5$, and assume $G \neq \operatorname{Sz}(8)$ or ${ }^{2} F_{4}(8)$. Then $\left.\varphi_{\alpha}\right|_{T_{0}} \neq\left.\varphi_{\beta}\right|_{T_{0}}$. This holds for $q=5$ unless $\bar{\Sigma}$ is of type $C_{n}, \beta=-\alpha$ a long root, and $\alpha^{\sigma}=5 \alpha$.

Proof. We may assume \bar{G} is simply connected. Then $X=X(\bar{T})$ can be identified with the lattice of weights of $\bar{\Sigma}$. Let $q_{1}=\sqrt{q}$ if G is a Suzuki or Ree group; otherwise set $q_{1}=q$. As in $\S 2 \sigma$ acts on X, inducing $q_{1} \tau$ on $\mathbf{R} \otimes X$, where τ is an isometry. Also the argument of (1.7) of [25] shows that $X\left(q_{1} \tau-1\right)$ is the annihilator of $T_{0}=\bar{T}_{\sigma}$. Then $\alpha-\beta=\omega\left(q_{1} \tau-1\right)$ for some $0 \neq \omega \in X$. Then

$$
\begin{align*}
\left|\omega\left(q_{1} \tau-1\right)\right| & =|\alpha-\beta| \\
& \leq|\alpha|+|\beta|(\text { triangle inequality }) \tag{1}\\
& \leq 4|\omega|(b y(5.2)) \tag{2}\\
& \leq\left(q_{1}-1\right)|\omega|\left(q_{1} \geq 5\right) \tag{3}\\
& \leq\left|\omega q_{1} \tau\right|-|\omega|(\tau \text { is an isometry }) \tag{4}\\
& \leq\left|\omega\left(q_{1} \tau-1\right)\right|(\text { triangle inequality }) . \tag{5}
\end{align*}
$$

Therefore, we have equality at each stage. From equality in (1) we have α, β dependent. Hence $\beta=-\alpha$. From (2) and (5.2) we conclude $\bar{\Sigma}$ has type C_{n} with α a long root. Equality in (3) yields $q_{1}=q=5$, while equality in (5) gives $\omega q \tau=c \omega$ with $c>0$. As τ is an isometry, $c=q$ and $\omega \tau=\omega$. The equation $\alpha-\beta=\omega\left(q_{1} \tau-1\right)$ now gives $\alpha=2 \omega$, so $\alpha^{\sigma}=5 \alpha$ and the proof of (5.3) is complete.
(5.4) Assume $G \neq \operatorname{Sz}(q),{ }^{2} F_{4}(q)$, or ${ }^{2} G_{2}(q)$ and assume $q \neq 2,3,4$, or 9. If $\alpha, \beta \in \bar{\Sigma}$ with $\left.\alpha^{p^{i}}\right|_{T_{0}}=\left.\beta\right|_{T_{0}}$ for some $1 \leq p^{i}<q$, then $\left.\alpha\right|_{T_{0}}=\left.\beta\right|_{T_{0}}$. This also holds for $q=9$, unless $p^{i}=3, G$ is of type C_{n}, and $\beta=-\alpha$, a long root.

Proof. As in (5.3) we may take \bar{G} to be simply connected and we may write $p^{i} \alpha-\beta=\omega(q \tau-1)$ for $0 \neq \omega \in X$ and τ an isometry of X. Set $q=p^{j}$, so that $j>i$. Then $\omega=\beta+p^{i}\left(p^{j-i} \omega \tau-\alpha\right)$, so write $\omega=\beta+p^{i} \delta$
with $\delta \in X$. As $j>i$ we have $\delta \neq 0$. Replacing ω by $\beta+p^{i} \delta$ in the equation $p^{\prime} \alpha-\beta=\omega(q \tau-1)$, we obtain $\alpha+\delta=\left(q \delta+p^{j-i} \beta\right) \tau$. Then $|\alpha|+|\delta| \geq\left|q \delta+p^{j-i} \beta\right| \geq q|\delta|-p^{J^{-i}}|\beta|$, which together with (5.2) yields $\left(p^{j}-1\right)|\delta| \leq 2\left(1+p^{J^{-i}}\right)|\delta|$. We conclude that $p^{j-i}\left(p^{i}-2\right) \leq 3$.

For $p \geq 5$, this is impossible. Suppose $p=3$. Here the only possibility is $q=9$ and $i=1$. Moreover, all inequalities must by equalities. Using this and (5.2) one checks that $2 \delta=\alpha=-\beta$ a long root and G is of type C_{n}. Finally, assume $p=2$. Here $i=1$ and $(q-1)|\omega|=|q \omega \tau|-|\omega| \leq$ $|\omega(q \tau-1)|=|2 \alpha-\beta| \leq 2|\alpha|+|\beta| \leq 6|\omega|$ the last equality by (5.2). Hence $q \leq 4$, completing the proof of (5.4).

Theorem (5.5). Let $1 \leq i<j \leq t$ and assume $q>5$.
(i) V_{1} and V_{J} are inequivalent irreducible $\mathbf{F}_{p}\left[T_{0}\right]$-modules unless $G=$ $\mathrm{Sz}(8),{ }^{2} F_{4}(8)$, or $q=9$ and G is of type C_{n}.
(ii) If $\left\langle X_{\imath}, X_{J}\right\rangle$ is a p-group, then V_{l} and V_{J} are inequivalent irreducible $\mathbf{F}_{p}\left[T_{0}\right]$-modules.

Proof. We may assume \bar{G} is simply connected. Write $q=p^{a}$. By (5.1)(iv) each of V_{i} and V_{j} is an irreducible $\mathbf{F}_{p}\left[T_{0}\right]$-module. For the moment exclude Suzuki and Ree groups. Then $\mathbf{F}_{q} \otimes_{\mathbf{F}_{p}} V_{t}=V_{i} \oplus V_{i}^{p} \oplus \cdots \oplus V_{l}^{p^{a-1}}$, the direct sum of the Galois conjugates of V_{l} (which is regarded as an $\mathbf{F}_{q}\left[T_{0}\right]$-module on the right side of the equation). Similarly for V_{J}. Assume that V_{i} and V_{j} are equivalent $\mathbf{F}_{p}\left[T_{0}\right]$-modules and tensor the equations with K. Then (5.1)(ii) implies that there exist $1 \leq p^{k}, p^{l}<p^{a}$ and roots $\alpha \in \bar{\Sigma}_{i}$, $\beta \in \bar{\Sigma}_{j}$ such that $\left.\alpha^{p^{k}}\right|_{T_{0}}=\left.\beta^{p^{i}}\right|_{T_{0}}$. By (5.4) and (5.3) $q=9, G$ has type C_{n} and $\beta=-\alpha$ is a long root of $\bar{\Sigma}$. So (i) holds in this situation.

Suppose $q=9$ with $\beta=-\alpha$ a long root and $\bar{\Sigma}$ of type C_{n}. Then $\left\langle\bar{X}_{i}, \bar{X}_{j}\right\rangle=\left\langle\bar{X}_{i}, \bar{X}_{i}^{*}\right\rangle=\Pi_{\gamma \in \bar{\Sigma}_{i}}\left\langle\bar{U}_{\gamma}, \bar{U}_{-\gamma}\right\rangle$. It is easy to see that $\left\langle\bar{X}_{i}, \bar{X}_{j}\right\rangle_{\sigma} \cong$ $\operatorname{SL}\left(2, q^{s}\right)$, where $s=\left|\bar{\Sigma}_{i}\right|$ and that $\left\langle X_{i}, X_{j}\right\rangle=\left\langle\bar{X}_{i}, \bar{X}_{j}\right\rangle_{\sigma}$. Therefore, we have proved (5.5) for all but the Suzuki and Ree groups.

The Suzuki and Ree groups are handled by direct calculation, which we leave to the reader. We observe that for $G=\operatorname{Sz}(q),{ }^{2} G_{2}(q), T=T_{0}$ is necessarily a Cartan subgroup of G. If $G={ }^{2} F_{4}(q)$ with T a Cartan subgroup, then as in Lemma 3 of [22] $C_{T}\left(V_{i}\right) \neq C_{T}\left(V_{J}\right)$ unless $X_{J}=X_{i}^{*}$. In this case $\left\langle X_{i}, X_{J}\right\rangle=L_{2}(q)$ or $\operatorname{Sz}(q)$ and we are reduced to the above. Assuming T not a Cartan subgroup it follows that T is necessarily the direct product of Z_{q-1} with a minisotropic torus of $L_{2}(q)$ or $\mathrm{Sz}(q)$.

We remark that the exceptions in (5.5)(i) are real. If $G=\mathrm{Sz}(8)$ and if T is a Cartan subgroup, then T has equivalent representations on $U / Z(U)$
and on $Z(V)$, where U, V are the unique Sylow 2-subgroups normalized by T. This example carries over to ${ }^{2} F_{4}(8)$. Similarly, $\operatorname{SL}(2,9)$ is an exception, which carries over to $\operatorname{Sp}(2 n, 9)$ for all $n \geq 1$.

We conclude this section with the following result.
(5.6) Assume that $q \geq 5, G \neq \operatorname{Sz}(q)$ or ${ }^{2} F_{4}(q), T$ is a Cartan subgroup of G, and that $X_{i} \neq X_{j}$ are nilpotent T-root subgroups of G. Then V_{i} and V_{j} are inequivalent $\mathbf{F}_{p}\left[T_{0}\right]$-modules unless $q=5$ or $9, G$ is of type C_{n} and X_{i}, X_{j} are opposite long root subgroups.

Proof. The proof is just as in the first paragraph of the proof of (5.5).

II. T_{0}-Invariant Subgroups

This chapter will be concerned with general results concerning $T_{0^{-}}$ invariant subgroups of G.
6. T_{0}-invariant solvable groups. In this section we consider T_{0} invariant solvable subgroups of G and show that for $q>7$ each such group is the product of a normal T-invariant p-group and part of the normalizer in G of T. Moreover, we show that each T_{0}-stable p-subgroup of G is a product of a set of T-root subgroups of G.

We maintain the notation in $\S 2$. So $T=\bar{T}_{\sigma}, G_{0}=O^{p^{\prime}}\left(\bar{G}_{\sigma}\right)$, and $T_{0}=T \cap G_{0}$. The main result of this section is the following theorem, although there are several other results that will be useful in other sections.

Theorem (6.1). Suppose $q>7$ and $T_{0} \leq S \leq G$, with S solvable. Then
(i) $S=O_{p}(S) N_{S}\left(T_{0}\right)$;
(ii) $O_{p}(S)$ is the product of T-root subgroups of G.

This theorem will follow from the other results of this section, several of which are of independent interest.
(6.2) Suppose $q>7$ and A is a T_{0}-invariant, abelian, p^{\prime}-subgroup of $\operatorname{Aut}\left(G_{0}\right)$. Then $A \leq N(T)$.

Proof. Suppose false and take a counterexample so that $|A| \cdot\left|G_{0}\right|$ is minimal. Then A is an r-group for some prime $r \neq p, A>N_{A}\left(T_{0}\right)$, (by (2.7)), and $A / N_{A}\left(T_{0}\right)$ is an irreducible $\mathbf{F}_{r}\left[T_{0}\right]$-module. Also, $Z\left(G_{0}\right)=1$.

Suppose $C_{T}(A) \neq 1$ and let $1 \neq t \in C_{T}(A)$. We consider the groups $C_{\bar{G}}(t)$ and $C_{G}(t)$. Since $\bar{T} \leq C_{\bar{G}}(t)^{0}$, we have $T \leq\left(C_{\bar{G}}(t)^{0}\right)_{\sigma}=Y \unlhd C_{G}(t)$. Let $Y_{0} \unlhd Y$ be as described in (2.9). That is $Y_{0}=E(Y) X$ and $X=Z\left(Y_{0}\right)$ $=C_{T}(E(Y))$. Then by (2.9) $Y=Y_{0} T$ with only diagonal automorphisms induced on each component of $E(Y)$. Write $E(Y)=D_{1} \cdots D_{k}$, a central product of components.

We claim that $A \leq N\left(D_{i}\right)$ for $i=1, \ldots, k$. For suppose $a \in A$ and $D_{i}^{a}=D_{j}$ for $j \neq i$. If $x \in T_{0} \cap D_{i}$ then $x^{-1} x^{a} \in A \leq C(A)$. It follows that $D_{j}^{a}=D_{i}$ and $x^{a}=\left(x^{-1}\right)^{a}\left(\bmod Z\left(D_{i} D_{j}\right)\right)$, which forces $\left(T_{0} \cap D_{i}\right) Z\left(D_{i}\right) / Z\left(D_{i}\right)$ to be an elementary abelian 2-group. So D_{i} is neither a Suzuki or Ree group. Suppose D_{i} is defined over $\mathbf{F}_{q^{b}}$ and the overlying algebraic group has Lie rank s. Then by (2.1) $T_{0} \cap D_{i}$ has rank at most s (as an abelian group). On the other hand, (2.4)(iii) shows that

$$
\begin{aligned}
\left|T_{0} \cap D_{i}\right| & \geq \frac{1}{d_{i}}\left(q^{b}-1\right)^{s} \geq \frac{q^{b}-1}{q^{b}+1}\left(q^{b}-1\right)^{s-1} \\
& >\left(1+\frac{2}{q^{b}+1}\right) 6^{s-1}>\left(\frac{5}{4}\right) 6^{s-1} \quad(\text { as } q>7) .
\end{aligned}
$$

This forces $s=1$, so $d_{i} \leq 2$, and we obtain a contradiction. This proves the claim.

For $i=1, \ldots, k$, let $K_{i}=D_{1} \cdots \hat{D}_{i} \cdots D_{k} X$ and $C_{i}=Y A / K_{i}$. Then $E\left(C_{i}\right)=D_{i} K_{i} / K_{i}$ and $Z_{i}=\left(T_{0} \cap D_{i}\right) K_{i} / K_{i}$ is a maximal torus of $E\left(C_{i}\right)$. By minimality Z_{i} is A-invariant. So if $T_{1}=\left(T_{0} \cap D_{1}\right) \cdots\left(T_{0} \cap D_{k}\right)$ we have $\left[A, T_{1}\right] \leq \cap K_{i}=X$. Therefore, A normalizes $T_{1} X$ and hence A normalizes $C_{Y}\left(T_{1} X\right)=T$ (see (2.8)(i)). This contradiction shows that $C_{T}(A)=1$.

Let $A_{1}=\left[A, T_{0}\right]$, so $A_{1} \leq G_{0}$. Suppose $A_{1}<A$. By induction $A_{1} \leq$ $N\left(T_{0}\right)$, so $\left[A_{1}, T_{0}\right] \leq A_{1} \cap T_{0} \leq C_{T}(A)=1$. By (2.8) $A_{1} \leq T_{0}$, whence $A_{1} \leq C_{T}(A)=1$. Hence $A=A_{1}$. The same argument shows $N_{A}\left(T_{0}\right)=1$. Therefore, T_{0} acts faithfully and irreducibly on A. In particular, $A T_{0}$ is a Frobenius group and $A \leq G_{0}$.

Consider the action of $A T_{0}$ on the Lie algebra, M, of \bar{G}. Viewing M as a $K\left[A T_{0}\right]$-module and using Clifford's theorem we see that $\left.M\right|_{T_{0}}$ contains the regular representation of T_{0}. So if \bar{G} has Lie rank n we have the inequality $\operatorname{dim}(M) \geq\left|T_{0}\right| \geq d^{-1}(q-1)^{n}$ (by (2.4)). Use the fact that $q-1>6$ and the known values of d to obtain a contradiction. This proves (6.2).
(6.3) Assume $q>7$ and let T_{1} be a maximal torus of G. Suppose $T_{1} \cap G_{0} \leq N_{G}\left(T_{0}\right)$. Then $T_{1}=T$. In particular, T_{0} is weakly closed in $N_{G}\left(T_{0}\right)$.

Proof. We may assume $Z\left(G_{0}\right)=1$. Suppose $T_{0} \neq T_{2}=T_{1} \cap G_{0} \leq$ $N_{G_{0}}\left(T_{0}\right)$. By (6.2) $T_{0} \leq N\left(T_{2}\right)$. Hence $\left[T_{0}, T_{2}\right] \leq T_{0} \cap T_{2} \leq Z\left(T_{0} T_{2}\right)$. If T_{0} $\cap T_{2}=1$, then $T_{2} \leq C_{G_{0}}\left(T_{0}\right)=T_{0}$ by (2.8). Similarly, $T_{0} \leq T_{2}$. So we assume $T_{0} \cap T_{2} \neq 1$.

Let $C=C_{\bar{G}}\left(T_{0} \cap T_{2}\right)^{0}$. Then $\bar{T}, \bar{T}_{1} \leq C$ and $C=\bar{D} Z$, where $\bar{T}_{1}=$ $C_{\bar{G}}\left(T_{1}\right)^{0}$ (a maximal torus), $\bar{D}=E(C)$, and $Z=Z(C) \leq \bar{T} \cap \bar{T}_{1}$. Note that $\bar{T} \neq \bar{T}_{1}$ forces $D \neq 1$. Let $D=O^{p^{\prime}}\left(\bar{D}_{\sigma}\right), T_{3}=T_{0} \cap D$, and $T_{4}=T_{2} \cap$ D. By (2.5) T_{3} and T_{4} are maximal tori of D. Since $T_{4} \leq N\left(T_{3}\right)$, we conclude, inductively, that $T_{4}=T_{3}$. But then $T_{4}=T_{3} \leq T_{0} \cap T_{2} \leq Z(C)$, which contradicts (2.8).

A useful consequence of (6.3) is the following
(6.4) Assume $q>7$ and let $T_{0} \leq \bar{P}=\bar{P}^{\sigma}$, where \bar{P} is a parabolic subgroup of \bar{G}. Then $\bar{T} \leq \bar{P}$.

Proof. Suppose $T_{0} \leq \bar{P}=\bar{P}^{\sigma}$. By (5.16) of [25] there is a σ-invariant maximal torus \bar{T}_{1} of \bar{P} such that $T_{0} \leq N\left(\bar{T}_{1}\right)$. Then $T_{0} \leq N\left(\left(\bar{T}_{1}\right)_{\sigma}\right)$ and (6.3) implies $T_{0} \leq\left(\bar{T}_{1}\right)_{\sigma}$. But then $\bar{T}_{1} \leq C_{\bar{G}}\left(T_{0}\right)^{0}=\bar{T}$. Therefore, $\bar{T}=\bar{T}_{1} \leq \bar{P}$.
(6.5) Suppose $q>7$ and $T_{0} \leq N_{G_{0}}(S)$, where S is a solvable p^{\prime}-subgroup of G. Then $S \leq N_{G_{0}}\left(T_{0}\right)$.

Proof. Let S be a minimal counterexample and S / S_{0} a chief factor of $S T_{0}$. Then $S_{0} \leq N\left(T_{0}\right)$. If $\left[T_{0}, S\right] \leq S_{0}$, then $S_{0} T_{0} \unlhd S T_{0}$. But $S_{0} T_{0} \leq$ $N\left(T_{0}\right)$, so (6.3) implies that $S \leq N\left(T_{0}\right)$. Thus, we may assume that $\left[T_{0}, S / S_{0}\right]=S / S_{0}$, and by minimality, $\left[T_{0}, S\right]=S$. In particular $S \leq G_{0}$. If $S_{0}=1$ then S is abelian and we are done by (6.2). Suppose then, that $S_{0} \neq 1$ and let S_{1} be a minimal normal subgroup of $S T_{0}$ with $S_{1} \leq S_{0}$. By (6.2) $S_{1} \leq N\left(T_{0}\right)$, so $\left[S_{1}, T_{0}, T_{0}\right]=1$. Say $\left|S_{1}\right|=r^{a}$, with r a prime. Then $O_{r^{\prime}}\left(T_{0}\right) \leq C\left(S_{1}\right)$.

We claim that $Z\left(S T_{0}\right) \neq 1$. Suppose otherwise. If $O_{r^{\prime}}\left(T_{0}\right) \notin C\left(S / S_{0}\right)$, then $\left[O_{r^{\prime}}\left(T_{0}\right), S\right.$] covers S / S_{0} and by minimality, $\left[O_{r^{\prime}}\left(T_{0}\right), S\right]=S$. Then $S \leq\left\langle O_{r^{\prime}}\left(T_{0}\right)^{S T_{0}}\right\rangle \leq C\left(S_{1}\right)$ and T_{0} acts irreducibly on S_{1}. Then $\left[S_{1}, T_{0}, T_{0}\right]$ $=1$ implies $Z\left(S T_{0}\right) \neq 1$. Therefore, $O_{r^{\prime}}\left(T_{0}\right) \leq C\left(S / S_{0}\right)$. This means that $O_{r^{\prime}}\left(T_{0}\right) S_{0} \unlhd O_{r^{\prime}}\left(T_{0}\right) S$, and since $O_{r^{\prime}}\left(T_{0}\right) \leq O_{r^{\prime}}\left(S_{0} T_{0}\right)$, we conclude that either $O_{r^{\prime}}\left(T_{0}\right)=1$ or $O_{r^{\prime}}\left(T_{0}\right) \leq O_{r^{\prime}}\left(S T_{0}\right) \neq 1$. In the latter case, let Y be minimal normal in $S T_{0}$ with Y an r^{\prime}-group contained in $O_{r^{\prime}}\left(T_{0}\right) S_{0}$. Then $\left[Y, T_{0}, T_{0}, T_{0}\right] \leq\left[S_{0}, T_{0}, T_{0}\right] \leq\left[S_{0} \cap T_{0}, T_{0}\right]=1$. Thus, $C(Y) \geq$ $\left\langle O_{r}\left(T_{0}\right)^{S T_{0}}\right\rangle$. But $T_{0} / C_{T_{0}}\left(S / S_{0}\right)$ is an r-group, and this forces $C(Y) \geq S$. As above, this yields $Z\left(S T_{0}\right) \neq 1$. Therefore, we assume that $O_{r^{\prime}}\left(T_{0}\right)=1$ and T_{0} induces a cyclic r-group on S / S_{0}.

Since $\left[S_{1}, T_{0}, T_{0}\right.$] = 1 we apply Theorem B of Hall-Higman (see p. 359 of [13]) and conclude that $T_{0} / C_{T_{0}}\left(S_{1}\right)$ has exponent 2 or 3 . In particular, $T_{0} / C_{T_{0}}\left(S / S_{0}\right) \cong Z_{2}$ or Z_{3}. Let $T_{1}=C_{T_{0}}\left(S / S_{0}\right)$. Then $T_{1} \leq$ $O_{r}\left(T_{1} S_{0}\right)$ and $T_{1} S_{0} \unlhd S T_{0}$. Since S_{1} is minimal normal in $S T_{0}$ we have $S_{1} \leq Z\left(O_{r}\left(T_{1} S_{0}\right)\right)$ and $\left[T_{1}, S_{1}\right]=1$. If $r=2$ let g be a 2-element in $S T_{0}-S_{0} T_{0}$. If $r=3$, then S / S_{0} is an elementary abelian 2-group (this follows from the proof of Theorem B of Hall-Higman) and we let $g \in S-S_{0}$. In either case $\left\langle S_{0}, T_{0}, g\right\rangle=S T_{0}$. Therefore, $T_{1} \cap T_{1}^{g} \unlhd S T_{0}$. If $T_{1} \cap T_{1}^{g} \neq 1$, then we may take $S_{1} \leq T_{1} \cap T_{1}^{g}$ and obtain $T_{0} \leq C\left(S_{1}\right)$. This would imply $S T_{0} \leq\left\langle T_{0}^{S T_{0}}\right\rangle \leq C\left(S_{1}\right)$, a contradiction. Therefore, $T_{1} \cap$ $T_{1}^{g}=1$ and $\left[T_{1}, T_{1}^{g}\right] \leq T_{1} \cap T_{1}^{g}=1$.

Let $b=\left|T_{1}^{g}\right|$. Then $b \geq r^{-1}\left|T_{0}\right| \geq(d r)^{-1}(q-1)^{n}$, where n is the Lie rank of \bar{G} (here we use (2.4)(iii) and note that the numerical restrictions rule out Suzuki and Ree groups). On the other hand, $T_{1}^{g} \leq N\left(T_{0}\right)$, while $T_{0} \cap T_{1}^{g}=1$. So by (2.7) we may regard T_{1}^{g} as an abelian r-subgroup of \bar{W}, the Weyl group of \bar{G}. We leave it to the reader to check that the assumption $q>7$ leads to a contradiction. (In this check the following inequality is useful. For A an abelian r-subgroup of S_{m+1} we have $|A| \leq r^{(m+1) / r}$. To see this let o_{1}, \ldots, o_{l} be the orbits of A with $\left|o_{i}\right|=r^{k_{i}}$. Then $m+1=\Sigma r^{k_{i}}$ and $|A| \leq \Pi r^{k_{i}}$ (as A is abelian). Since $r^{k_{t}} \geq r k_{i}$ we have $m+1 \geq \Sigma r k_{i}=r\left(\Sigma k_{i}\right)$, and the inequality follows.) This proves the claim, hence $Z\left(S T_{0}\right) \neq 1$.

Choose $1 \neq x \in Z\left(S T_{0}\right)$ and consider $S T_{0}$ as a subgroup of $C_{G}(x)$. By (2.8) $x \in C_{G_{0}}\left(T_{0}\right)=T_{0}$, and so $T \leq\left(C_{\vec{G}}(x)^{0}\right)_{\sigma}=Y$. Also, $Y=Y_{0} T$, where $Y_{0}=E(Y)$. Since $\left[S, T_{0}\right]=S$ we have $S \leq Y_{0}=D_{1} \cdots D_{k}$, where D_{1}, \ldots, D_{k} are the components of Y_{0}. Fix $i \in\{1, \ldots, k\}$ and let bars denote images in $Y_{0} T_{0}$ modulo $D_{1} \cdots \hat{D}_{i} \cdots D_{k}$. Then \bar{S} is normalized by \bar{T}_{0}, hence by $\overline{T_{0} \cap Y_{0}}$. By induction, $\bar{S} \leq N\left(\overline{T_{0} \cap Y_{0}}\right)$. Therefore, $\bar{S} \leq$ $N\left(C_{\overline{Y_{0} T_{0}}}\left(\overline{T_{0} \cap Y_{0}}\right)\right)=N\left(\bar{T}_{0}\right)$ and $\left[S, T_{0}\right] \leq D_{1} \cdots \hat{D}_{i} \cdots D_{k}$. Repeating this for each i we conclude $S=\left[S, T_{0}\right] \leq Z\left(Y_{0}\right)$, and finally $\left[S, T_{0}\right]=1$. This is a contradiction proving (6.5).

The next result completes the proof of (6.1)(i).
(6.6) Suppose $q>7$ and let $T_{0} \leq S \leq G$, with S solvable. Then $S=O_{p}(S) N_{S}\left(T_{0}\right)$.

Proof. Let S be a minimal counterexample. Suppose $L \triangleleft S$ with $T_{0} \leq L$ and let X be a Hall p^{\prime}-subgroup of L with $T_{0} \leq X$. Then $S=$ $L N_{S}(X)=L N_{S}\left(T_{0}\right)$ by (6.3) and (6.5). By minimality, $L=O_{p}(L) N_{L}\left(T_{0}\right)$,
so $S=O_{p}(L) N_{S}\left(T_{0}\right)=O_{p}(S) N_{S}\left(T_{0}\right)$. We conclude that $S=\left\langle T_{0}^{S}\right\rangle$. In particular, $S \leq G_{0}$.

Let $N O_{p}(S) / O_{p}(S)$ be minimal normal in $S / O_{p}(S)$, where N is a p^{\prime}-group. Then $S=O_{p}(S) N_{S}(N)$ and we may assume $T \leq N_{S}(N)$ (take N in a Hall p^{\prime}-group containing T_{0}). By minimality, we conclude that $S=N_{S}(N)$. Let $C=C_{S}(N)$. Suppose, $C=S$ and let $1 \neq x \in C$. Then $x \in C_{G_{0}}\left(T_{0}\right)$ implies $x \in T_{0}$, so $T \leq\left(C_{\bar{G}}(x)^{0}\right)_{\sigma}=Y$. We have $Y=Y_{0} T$, where $Y_{0}=D_{1} \cdots D_{k} Z$ as in (2.9). Since $S=\left\langle T_{0}^{S}\right\rangle$, we conclude $S \leq Y_{0} T_{0}$. Fix $1 \leq i \leq k$ and let bars denote images in Y modulo $D_{1} \cdots \hat{D}_{i} \cdots D_{k} Z$. Set $T_{1}=T_{0} \cap D_{1} \cdots D_{k} Z$ and $S_{1}=\left\langle T_{1}^{S}\right\rangle$. By minimality and (6.3), $\bar{S}_{1}=$ $\left.O_{p}\left(\bar{S}_{1}\right) N_{S_{1}}^{-(} \bar{T}_{1}\right)=O_{p}\left(\bar{S}_{1}\right)\left(\bar{T}_{1}\right)$. It follows that $S_{1}^{\prime} \leq J$, where $J Z / Z=$ $O_{p}\left(S_{1} Z / Z\right)$. Therefore, $S_{1}=O_{p}\left(S_{1}\right) T_{1} \quad$ and $\quad S=S_{1} N_{S}\left(T_{1}\right) \leq$ $O_{p}\left(S_{1}\right) N_{S}\left(C_{Y_{0}}\left(T_{1}\right)\right)$. Since $N_{S}\left(C_{Y_{0}}\left(T_{1}\right)\right)=T_{0} N_{S \cap Y_{0}}\left(T_{1}\right)=T_{0}$, we obtain $S=$ $O_{p}\left(S_{1}\right) T_{0}=O_{p}(S) T_{0}$, which we are assuming false.

In view of the above, it will suffice to show that $C=S$. So assume $C \triangleleft S$. Since $T_{0} \leq N_{G_{0}}(N)$, we have $\left[N, T_{0}, T_{0}\right]=1$, by (6.2). Therefore, $T_{0} C \neq S$. Since $S=\left\langle T_{0}^{S}\right\rangle$ we may choose $C \leq K<L<S$ with $K, L \triangleleft S$ and such that $L T_{0}=S, L / K$ is a chief factor of S and $T_{0} \cap L \leq K$. (For example, set $L / C=(S / C)^{\prime}$ and K / C any maximal normal subgroup of $L / C)$. Minimality of S implies $K T_{0}=O_{p}\left(K T_{0}\right) N_{K T_{0}}\left(T_{0}\right)=O_{p}(K) N_{K T_{0}}\left(T_{0}\right)$.

Let X be a p^{\prime}-Hall subgroup of K with $X^{T_{0}}=X$ and set $T_{1}=T_{0} \cap$ $K \leq X$. Let $Y=X \cap O_{p p^{\prime}}(K)$. Then $S=O_{p}(K) N_{S}(Y)$, so minimality of S forces $Y \unlhd S$. Since $K T_{0}=O_{p}(K) N_{K T_{0}}\left(T_{0}\right)$ we conclude that $T_{1} \unlhd K$. At this point we are in a position to use the argument in the proof of (6.5). We have seen that $O_{p^{\prime}}(Z(S))=O_{p^{\prime}}\left(Z\left(L T_{0}\right)\right)=1$. Replace the groups S, S_{0}, S_{1} of (6.5) by L, K, N, respectively. Arguing as in (6.5) we first obtain (via Hall-Higman, Theorem B) that $T_{0} C / C \cong Z_{2}$ or Z_{3}, and then argue that T_{0} is an r-group for some prime r. Finally we obtain a numerical contradiction. This completes the proof of (6.6).

To obtain (6.1)(ii) we must consider T_{0}-invariant unipotent subgroups of G_{0}. A key result is the following.
(6.7) Let $q>5$ and assume that $\left\langle\bar{X}_{i}, \bar{X}_{j}\right\rangle$ is unipotent. Then $\left[\bar{X}_{i}, \bar{X}_{j}\right]_{\sigma}$ $=\left[X_{i}, X_{j}\right]$.

Proof. Let $\bar{L}=\left[\bar{X}_{i}, \bar{X}_{j}\right]$ and set $L=\left[X_{i}, X_{j}\right]$. So $L \leq \bar{L}_{\sigma}$. As \bar{L} is \bar{T}-invariant, \bar{L} is a product of \bar{T}-root subgroups of \bar{G}, and since \bar{L} is σ-invariant these root subgroups fall into $\langle\sigma\rangle$-orbits. The first observation implies $\bar{L}=\bar{L}^{0}$. If $\bar{L}=1$, then the result is trivial, so we assume $\operatorname{dim}(\bar{L})$ >0. Set $\bar{X}=\left\langle\bar{X}_{i}, \bar{X}_{j}\right\rangle$.

Suppose there is a normal subgroup, \bar{A} of \bar{X}, such that $\bar{A}=\bar{A} \bar{A}^{\sigma}, \bar{A}$ is a product of root subgroups of \bar{T}, and $1 \neq \bar{L} \bar{A} / \bar{A}=Z(\bar{X} / \bar{A})=\bar{X}_{w} \bar{A} / \bar{A}$ for some $w \in\{1, \ldots, t\}$. We claim that $\bar{L}_{\hat{\sigma}} \overline{\hat{A}} / \bar{A}=L \bar{A} / \bar{A}$. Let ${ }^{\wedge}$ denote images in \bar{X} / \bar{A}. Then $\hat{\bar{L}}=\hat{\bar{X}}_{w}$ and $\hat{\bar{X}}_{w}$ is \bar{T}-isomorphic to $\bar{V}_{w}=$ $\bar{X}_{w} R_{u}\left(\bar{P}_{w}\right)^{\prime} / R_{u}\left(P_{w}\right)^{\prime}$. Hence $\hat{\bar{L}}_{\sigma}=\hat{X}_{w}$ (Lang's theorem) is T-isomorphic to V_{w}. By (5.1) T acts irreducibly on V_{w}, so it will suffice to show that $\hat{L} \neq 1$. For this it will suffice to check that there exist elements $a \in X_{l}$ and $b \in X_{J}$ such that $[\hat{a}, \hat{b}] \neq 1$.

Since $\hat{\bar{L}}=\hat{\bar{X}}_{w}$, it is not the case that $\left[\hat{\bar{U}}_{\delta}, \hat{\bar{U}}_{\beta}\right]=1$ for each $\delta \in \Delta_{l}$ and $\beta \in \Delta_{j}$. Therefore, choose $\delta \in \Delta_{i}$ and $\beta \in \Delta_{j}$ with $1 \neq\left[\hat{\bar{U}}_{\delta}, \hat{\bar{U}}_{\beta}\right] \leq \hat{\bar{U}}_{w}$. Interchanging δ and β, if necessary, we may assume that there is an integer $d=1,2$, or 3 such that $\delta+d \beta \in \bar{\Sigma}_{w}(d=1$ if δ, β are both long roots) and $\left[\hat{\bar{U}}_{\delta}, \hat{U}_{\beta}\right] \geq \hat{\bar{U}}_{\delta+d \beta}$. Let $\left|\Delta_{i}\right|=l$ and $\left|\Delta_{j}\right|=m$. Then $\Delta_{l}=$ $\left\{\delta_{1}, \ldots, \delta_{l}\right\}$ and $\Delta_{J}=\left\{\beta_{1}, \ldots, \beta_{m}\right\}$, where $\delta_{1}=\delta, \beta_{1}=\beta, \delta_{l}=\delta_{l-1}^{\tau}$ for $2 \leq i<l$, and $\beta_{i}=\beta_{i-1}^{\tau}$ for $2 \leq i \leq m$ (here τ is the permutation of $\bar{\Sigma}$ associated with σ).

From Lang's theorem we have $\left(\bar{X}_{i} / \bar{X}_{i}^{\prime}\right)_{\sigma}=X_{i} \bar{X}_{i}^{\prime} / \bar{X}_{l}^{\prime}$ and $\left(\bar{X}_{j} / \bar{X}_{j}^{\prime}\right)_{\sigma}=$ $X_{j} \bar{X}_{j}^{\prime} / \bar{X}_{j}^{\prime}$. Moreover, the 3-subgroup lemma shows that $1=\left[\bar{X}_{i}^{\prime}, \hat{X}_{j}\right]=$ $\left[\hat{\bar{X}}_{i}, \hat{\bar{X}}_{j}^{\prime}\right]$. Let $a \in X_{i}$ and $b \in X_{j}$. There are elements $x, y \in K$ and c_{2}, \ldots, c_{l}, $d_{2}, \ldots, d_{m} \in K^{*}$ such that $a=\bar{U}_{\delta_{1}}(x) \bar{U}_{\delta_{2}}\left(c_{2} x^{q}\right) \cdots \bar{U}_{\delta_{1}}\left(c_{l} x^{q^{\prime-1}}\right)\left(\bmod \bar{X}_{1}^{\prime}\right)$ and $b=\bar{U}_{\beta_{1}}(y) \bar{U}_{\beta_{2}}\left(d_{2} y^{q}\right) \cdots \bar{U}_{\beta_{m}}\left(d_{m} y^{q^{m-r}}\right)\left(\bmod \bar{X}_{j}^{\prime}\right)$ (slightly different for the Suzuki and Ree groups). There are q^{l} choices for x and q^{m} choices for y.

For each $\delta_{u} \in \Delta_{i}$ there exists at most one $\beta_{v} \in{\underset{\hat{U}}{j}}$ such that $\left[\bar{U}_{\delta_{u}}, \bar{U}_{\beta_{v}}\right]$ $\geq \bar{U}_{\delta+d \beta}$. The projection of $[\hat{a}, \hat{b}]$ to $\hat{\bar{U}}_{\delta+d \beta}$ is $\hat{\bar{U}}_{\delta+d \beta}(h)$, where $h \stackrel{\delta_{u}}{=}$ $\sum z c_{u} d_{v}^{d} x^{q^{u-1}} y^{d q^{v-1}}$, and the sum ranges over the pairs (u, v) for which $\left[\bar{U}_{\delta_{u}}, \vec{U}_{\beta_{v}}\right] \geq \bar{U}_{\delta+d \beta}$, and z is an integer with $(z, p)=1(z= \pm 1$ if δ, β and $\delta+\beta$ are all the same length). Fix $y \neq 0$ and for each pair (u, v) let $e_{u}=z c_{u} d_{v}^{d} y^{d q^{v-1}}$. Then $h=f(x)$, where $f(t)=\Sigma_{u} e_{u} t^{u-1}$, a non-zero polynomial of degree at most q^{l-1}. There are q^{l} choices for x, so we may choose x with $h=f(x) \neq 0$. So for suitable choice of x and y we see that [\hat{a}, \hat{b}] has nontrivial projection to $\hat{X}_{j_{k}}$. We have now proved the claim.

We now claim that if $\bar{A}=\bar{A}^{\sigma}$ is a product of root subgroups of \bar{X} with $\bar{A} \unlhd \bar{X}$, then $L \bar{A} / \bar{A}=\bar{L}_{\sigma} \bar{A} / \bar{A}$. This is proved by induction on $\operatorname{dim}(\bar{X} / \bar{A})$. If this dimension is 0 the claim is obvious. So assume the claim holds for all $\overline{A_{1}}$ with $\overline{A_{1}}$ satisfying the conditions that \bar{A} satisfies and $\operatorname{dim}\left(\bar{X} / \overline{A_{1}}\right)<$ $\operatorname{dim}(\bar{X} / \bar{A})$.

Suppose that for $i=1,2$ there exist $\bar{A}<\bar{A}_{i}=\bar{A}_{i}^{\sigma} \leq \bar{X}$ such that $\bar{A}_{i} / \bar{A} \leq Z(\bar{X} / \bar{A})$ and $\overline{A_{i}}=\bar{A} \cdot \bar{X}_{t_{i}}$ for $t_{t} \in\{1, \ldots, t\}$. Also, suppose $\bar{A}_{1} \neq$ \bar{A}_{2}. By the induction hypotheses $L \bar{A}_{i} / \bar{A}_{i}=\bar{L}_{\sigma} \bar{A}_{i} / \bar{A}_{i}$, for $i=1,2$. Consider ${\overline{A_{1}}}_{1} \bar{A}_{2} / \bar{A}$. Then $\bar{A}_{1} \bar{A}_{2} / \bar{A} \cong \bar{V}_{t_{1}} \times \bar{V}_{t_{2}}$ (a $\bar{T}\langle\sigma\rangle$-isomorphism). By (5.5)
and (5.1) T has inequivalent irreducible representations on $V_{t_{1}}$ and $V_{t_{2}}$. Moreover, for $i=1,2 V_{t_{1}}$ is T-isomorphic to $\left(\bar{A}_{i} / \bar{A}\right)_{\sigma}=X_{t_{1}} \bar{A} / \bar{A}$ (for the equality use Lang's theorem and the fact that $\bar{X}_{t_{i}} \cap \bar{A}$ is a product of \bar{T}-root subgroups, hence connected). Therefore,

$$
\begin{aligned}
L \bar{A} / \bar{A} \cap \overline{A_{1}} \overline{A_{2}} / \bar{A} & =L \bar{A} / \bar{A} \cap\left(\overline{A_{1}}\right)_{\sigma}\left(\overline{A_{2}}\right)_{\sigma} \bar{A} / \bar{A} \\
& =\left(L \bar{A} / \bar{A} \cap X_{t_{1}} \bar{A} / \bar{A}\right)\left(L \bar{A} / \bar{A} \cap X_{t_{2}} \bar{A} / \bar{A}\right)
\end{aligned}
$$

Now,

$$
\begin{gathered}
L \overline{A_{1}} / \overline{A_{1}}=\bar{L}_{\sigma} \overline{A_{1}} / \overline{A_{1}} \\
L \leq \bar{L}_{\sigma}, \quad\left|\overline{L_{\sigma}} \bar{A} / \bar{A}\right|=\left|\bar{L}_{\sigma} \overline{A_{1}} / \overline{A_{1}}\right| \cdot\left|\overline{L_{\sigma}} \bar{A} / \bar{A} \cap \overline{A_{1}} / \bar{A}\right|
\end{gathered}
$$

and $\bar{L}_{\sigma} \bar{A} / \bar{A} \cap \overline{A_{1}} / \bar{A}=1$ or $X_{t_{1}} \bar{A} / \bar{A}$. If the claim is false, we must have the latter case, but $L \bar{A} / \bar{A} \cap X_{t_{1}} \bar{A} / \bar{A}=1$. Passing modulo A_{2} we have a contradiction. We now suppose that no such groups A_{1}, \bar{A}_{2} exist.

Let $\bar{Z} / \bar{A}=Z(\bar{X} / \bar{A})$. Then $\bar{Z}^{\sigma}=\bar{Z}$ and \bar{Z} is a product of root subgroups of \bar{T}. By the above, $\bar{Z}=\bar{A} \cdot \bar{X}_{w}$ for some $w \in\{1, \ldots, t\}$. By the first claim we may assume $\bar{L} \cdot \bar{A} / \bar{A} \neq \bar{Z} / \bar{A}$. As $\operatorname{dim}(\bar{X} / \bar{Z})<\operatorname{dim}(\bar{X} / \bar{A})$ we have $L \bar{Z} / \bar{Z}=\bar{L}_{\sigma} \underline{\bar{Z}} / \underline{Z}$. Also, the usual arguments show that $(\bar{Z} / \bar{A})_{\sigma}=$ $X_{w} \bar{A} / \bar{A}$. So either $\bar{L}_{\mathrm{o}} \bar{A} / \bar{A} \cap X_{w} \bar{A} / \bar{A}=1$, and we are done by order considerations, or $X_{w} \bar{A} / \bar{A} \leq \bar{L}_{\sigma} \bar{A} / \bar{A}$. We assume the latter holds. Then $\bar{L} \geq \bar{X}_{w}$ and so $\bar{L} \bar{A}>\bar{Z}$. Let $\overline{A_{1}} \leq \bar{X} \bar{T}\langle\sigma\rangle$ be such that $\hat{\bar{Z}}<\hat{A_{1}} \leq \hat{\bar{L}}$ and $\overline{A_{1}} / \bar{Z}$ is an $\bar{X} \bar{T}\langle\underline{\sigma}\rangle$-chief factor. Since $\overline{A_{1}}$ is a product of \bar{T}-root subgroups, we must have $\bar{A}_{1}=\bar{X}_{k} \bar{Z}$ for some k. Since $\bar{X}_{k} \bar{A} / \bar{A} \neq Z(\bar{X} / \bar{A})$ either [\bar{X}_{i}, \bar{X}_{k}] or $\left[\bar{X}_{j}, \bar{X}_{k}\right.$] is not contained in \bar{A}. With no loss of generality we suppose $\left[\bar{X}_{i}, \bar{X}_{k}\right] \neq \bar{A}$. Hence $\left[\bar{X}_{i}, \bar{X}_{k}\right] \bar{A} / \bar{A}=\bar{X}_{w} \bar{A} / \bar{A}$.

Now $\operatorname{dim}\left(\left[\bar{X}_{i}, \bar{X}_{k}\right]\right)<\operatorname{dim}(\bar{L})$, so by induction $\left[\bar{X}_{i}, \bar{X}_{k}\right]_{\sigma}=\left[X_{i}, X_{k}\right]$. Moreover, $\bar{X}_{k} \leq \bar{L}$ implies that $X_{k} \bar{Z} / \bar{Z} \leq \bar{L}_{\sigma} \bar{Z} / \bar{Z}=L \bar{Z} / \bar{Z}$. Therefore,

$$
L \bar{A} / \bar{A} \geq\left[X_{i}, L\right] \bar{A} / \bar{A} \geq\left[X_{i}, X_{k}\right] \bar{A} / \bar{A}=\left[\bar{X}_{i}, \bar{X}_{k}\right]_{\sigma} \bar{A} / \bar{A}=X_{w} \bar{A} / \bar{A}
$$

At this point the equality $L \bar{Z} / \bar{Z}=\bar{L}_{\sigma} \bar{Z} / \bar{Z}$ and order considerations, imply that $L \bar{A} / \bar{A}=\bar{L}_{\sigma} \bar{A} / \bar{A}$, proving the claim. The result follows by setting $\bar{A}=1$.
(6.8) Suppose $q>5$ and $1 \leq i \leq t$. Then
(i) $X_{i}^{\prime}=X_{i} \cap R_{u}\left(\bar{P}_{i}\right)^{\prime}$.
(ii) $\bar{X}_{i}^{\prime}=\bar{X}_{i} \cap R_{u}\left(\overline{P_{i}}\right)^{\prime}$.
(iii) $V_{i} \cong X_{i} / X_{i}^{\prime}$ as $\mathbf{F}_{p}[T]$-modules.
(iv) $\bar{V}_{i} \cong \bar{X}_{i} / \bar{X}_{i}^{\prime}$ as $K[\bar{T}]$-modules.

Proof. By (6.7), $\left[X_{i}, X_{t}\right]=\left[\bar{X}_{i}, \bar{X}_{i}\right]_{\sigma}$, so it will suffice to show that $\left[\bar{X}_{i}, \bar{X}_{t}\right]=\bar{X}_{t} \cap R_{u}\left(\bar{P}_{t}\right)^{\prime}$. Let $\bar{Y}_{t}=\left[\bar{X}_{i}, \bar{X}_{t}\right]$. Then \bar{Y}_{i} is \bar{T}-invariant, hence a product of \bar{T}-root subgroups. The group $\bar{X}_{i} / \bar{Y}_{t}$ is then $K[\bar{T}]$-isomorphic to the direct product of those root subgroups of \bar{X}_{i} not contained in \bar{Y}_{i}. These root subgroups fall into orbits under $\langle\sigma\rangle$. By definition \bar{X}_{i} is generated by one such orbit. This $\bar{Y}_{t}=\bar{X}_{i} \cap R_{u}\left(\bar{P}_{t}\right)^{\prime}$, proving the result.

The next result will complete the proof of (6.1).
(6.9) Let $A=A^{T_{0}}$ be a p-subgroup of G_{0} and assume $q>7$. Then
(i) A is a product of T-root subgroups.
(ii) Let $\left\{C_{1}, \ldots, C_{k}\right\}$ be the composition factors in a fixed $A T$-composition series for A. For each i there exists a unique $n_{i} \in\{1, \ldots, t\}$ such that $C_{t} \cong V_{n_{t}}$ as $\mathbf{F}_{p}[T]$-modules.
(iii) Let n_{1}, \ldots, n_{k} be as in (ii). Then $A=X_{n_{1}} \cdots X_{n_{k}}$ and if $\bar{A}=$ $\bar{X}_{n_{1}} \cdots \bar{X}_{n_{k}}$, then \bar{A} is a subgroup of \bar{G} with $\bar{A}_{\sigma}=A$.
(iv) Let n_{1}, \ldots, n_{k} be as in (ii). Then $\left\{n_{1}, \ldots, n_{k}\right\}=\left\{j \mid X_{j} \leq A\right\}$.

Proof. Let $1 \neq A$ be a p-subgroup of G_{0} with $A=A^{T_{0}}$. By (3.9) of [4] there is a canonical parabolic subgroup \bar{P} of \bar{G} such that $A \leq \bar{Y}=R_{u}(\bar{P})$ and $N_{G}(A) \leq \bar{P}$. Then $T_{0} \leq \bar{P}$, so by (6.4) $\bar{T} \leq \bar{P}$. Also, $\bar{P}=\bar{P}^{0}$.

Let $1=\bar{Y}_{0}<\bar{Y}_{1}<\cdots<\bar{Y}_{k}=\bar{Y}$ be a $\bar{T}\langle\sigma\rangle$-composition series for \bar{Y}. Then each \bar{Y}_{i} is a product of \bar{T}-root subgroups of \bar{G}, and for $i=1, \ldots, k$, $M_{i}=\bar{Y}_{t} / \bar{Y}_{i-1}$ is $\bar{T}\langle\sigma\rangle$-isomorphic to the external direct product of the root groups in some $\langle\sigma\rangle$-orbit of roots, say $\bar{\Sigma}_{n_{i}}$. Hence, $\bar{Y}_{t}=\bar{X}_{n_{t}} \bar{Y}_{t-1}$. Recall that for $i=1, \ldots, k, \bar{V}_{n_{i}}=\bar{X}_{n_{i}} R_{u}\left(\bar{P}_{n_{i}}\right)^{\prime} / R_{u}\left(\bar{P}_{n_{i}}\right)^{\prime}$. Then $M_{i} \cong \bar{V}_{n_{i}}$. Also, Lang's theorem implies that $\left(M_{i}\right)_{\sigma}=X_{t} \bar{Y}_{t-1} / \bar{Y}_{t-1} \cong V_{n_{i}}$. By order consideration we have $Y=\bar{Y}_{\sigma}=X_{n_{1}} \cdots X_{n_{k}}$. This shows that $X_{n_{1}}, \ldots, X_{n_{k}}$ are T-root subgroups satisfying the following conditions: (i) $A \leq X_{n_{1}}$ $\cdots X_{n_{k}}=Y$; (ii) $X_{n_{1}} \cdots X_{n_{1}} \unlhd Y$ and $\bar{X}_{n_{1}} \cdots \bar{X}_{n_{t}} \unlhd \bar{Y}$ for $i=1, \ldots, k$; (iii) $\bar{X}_{n_{1}} \cdots \bar{X}_{n_{i}} / \bar{X}_{n_{1}} \cdots \bar{X}_{n_{i}-1} \cong \bar{V}_{n_{t}}$ and $X_{n_{1}} \cdots X_{n_{t}} / X_{n_{1}} \cdots X_{n_{t-1}} \cong V_{n_{t}}$ for $i=$ $1, \ldots, k$. Among all sets of T-root subgroups $\left\{X_{l_{1}}, \ldots, X_{l_{m}}\right\}$ that satisfy (i), (ii), and (iii), choose one such that $\left|X_{l_{1}} \cdots X_{l_{m}}\right|$ is minimal. We claim that $A=X_{l_{1}} \cdots X_{l_{m}}$.

Let $L={\underset{X}{l_{1}}}^{\cdots} X_{l_{m}}$ and $L_{t}=X_{l_{1}} \cdots X_{l_{i}}$ for $1 \leq i \leq m$. Similarly, set $\bar{L}=\bar{X}_{l_{1}} \cdots \bar{X}_{l_{m}}$ and $\bar{L}_{t}^{m}=\bar{X}_{l_{1}} \cdots \bar{X}_{l_{i}}$. Suppose $A<L$. Then for some $i A \cap$ $L_{l_{t}} \leq L_{l_{t-1}}$ (i.e. A avoids the $L T$ composition factor L_{t} / L_{i-1}). Choose i maximal for this. By minimality of $|L|, i<m$. Also, $A L_{t}=L$. Now, $L / L_{l-1}=A L_{l-1} / L_{t-1} \times L_{i} / L_{t-1}$ and this will be a contradiction to minimality if we can show that $A L_{l-1}$ is a product of root subgroups
satisfying the necessary conditions. To see this consider \bar{L} / \bar{L}_{i-1}. Suppose $j, k \geq i$ and consider $\left[\bar{X}_{l_{j}}, \bar{X}_{l_{k}}\right] \cap \bar{L}_{i}=\bar{I}$. The group \bar{I} either covers or avoids the $\bar{L} \cdot \bar{T}\langle\sigma\rangle$ composition factor $\bar{L}_{i} / \bar{L}_{i-1}$ and \bar{I} is a product of \bar{T}-root subgroups. So if \bar{I} covers $\bar{L}_{i} / \bar{L}_{i-1}$, then $\bar{X}_{l_{i}} \leq\left[\bar{X}_{l_{l}}, \bar{X}_{l_{k}}\right]$. Consequently, (6.7) implies that $X_{l_{i}} \leq\left[X_{l_{l}}, X_{l_{k}}\right]$. But $A L_{i}=L$ and $L_{i} / L_{i-1} \leq$ $Z\left(L / L_{i-1}\right)$. So this forces $L_{i} / L_{i-1}=X_{l_{1}} L_{i-1} / L_{i-1} \leq A^{\prime} L_{i-1} / L_{i-1}$, whereas we have assumed that A avoids L_{i} / L_{i-1}. Therefore, \bar{I} avoids $\bar{L}_{i} / \bar{L}_{i-1}$.

Letting $l_{j}=l_{k}=l_{i+1}$ we see that $\bar{L}_{i+1} / \bar{L}_{i-1}$ is abelian. Since \bar{L}_{i+1} is a product of root subgroups we have $\bar{L}_{i+1} / \bar{L}_{i-1}=\left(\bar{X}_{l_{i+1}} \bar{L}_{i-1} / \bar{L}_{i-1}\right) \times$ $\left(\bar{X}_{l_{i}} \bar{L}_{i-1} / \bar{L}_{i-1}\right)$ (consider the action of $\left.\bar{T}\langle\sigma\rangle\right)$. Letting $l_{j}=l_{i+1}$ and l_{k} vary, we see that $\bar{L}_{i-1} \bar{X}_{l_{t+1}} \unlhd \bar{L}$. Consequently, the m-tuple $\left(X_{l_{1}}, \ldots, X_{l_{i-1}}, X_{l_{i+1}}, X_{l_{i}}, \ldots, X_{l_{m}}\right.$) satisfies conditions (i), (ii), and (iii). Notice, also, that $L_{i+1} / L_{i-1}=\left(X_{l_{i+1}} L_{i-1} / L_{i-1}\right) \times\left(X_{l_{i}} L_{i-1} / L_{i-1}\right)$, and T_{0} acts irreducibly on each factor with inequivalent representations. Since A is T_{0}-invariant we conclude that $\left(A \cap L_{i+1}\right) L_{i-1} / L_{i-1}=$ $X_{l_{t+1}} L_{i-1} / L_{i-1}$. Therefore, a rearrangement of $X_{l_{1}}, \ldots, X_{l_{m}}$ also satisfies conditions (i), (ii), and (iii) with an avoided factor nearer the end of an $L T_{0}$ composition series of L. Repeating this a sufficient number of times we obtain a contradiction to the minimality of $|L|$, because at the last step we have A contained in a proper subgroup of L which has the correct form. This proves the claim and the result follows.

We complete this section with one additional result that is useful in computations.
(6.10) Let $X_{n_{1}}, \ldots, X_{n_{k}}$ be T-root subgroups. Suppose that either $q>5$ and $\left\langle\bar{X}_{n_{1}}, \ldots, \bar{X}_{n_{k}}\right\rangle$ is unipotent or $q>7$ and $\left\langle X_{n_{1}}, \ldots, X_{n_{k}}\right\rangle$ is nilpotent. Then
(a) $\left\langle\bar{X}_{n_{1}}, \ldots, \bar{X}_{n_{k}}\right\rangle_{\sigma}=\left\langle X_{n_{1}}, \ldots, X_{n_{k}}\right\rangle$.
(b) $\left[\bar{X}_{n_{1}}, \ldots, \bar{X}_{n_{k}}\right]_{\sigma}=\left[X_{n_{1}}, \ldots, X_{n_{k}}\right]$.

Proof. Suppose $q>7$ and $\left\langle X_{n_{1}}, \ldots, X_{n_{k}}\right\rangle=D$ is nilpotent. By (3.9) of [4] there is a canonical parabolic subgroup \bar{P} of \bar{G} with $D \leq R_{u}(\bar{P})$ and $N_{\bar{G}}(D) \leq \bar{P}$. Hence $T_{0} \leq \bar{P}$ and, by (6.4), $\bar{T} \leq \bar{P}$. The argument of (6.9) shows that $\bar{X}_{n_{1}} \leq R_{u}(\bar{P})$ for $1 \leq i \leq k$. Hence $\left\langle\bar{X}_{n_{1}}, \ldots, \bar{X}_{n_{k}}\right\rangle$ is unipotent. So in either case we have $\bar{X}=\left\langle\bar{X}_{n_{1}}, \ldots, \bar{X}_{n_{k}}\right\rangle$ a unipotent group.

We may assume $k>1$. Suppose (b) holds. We prove (a) by induction on the number of $\langle\sigma\rangle$-orbits of root subgroups in $\bar{X}=\left\langle\bar{X}_{n_{1}}, \ldots, \bar{X}_{n_{k}}\right\rangle$. We have $\bar{X}^{\prime}=\left\langle\left[X_{i_{1}}, \ldots, X_{i_{l}}\right]:\left\{i_{1}, \ldots, i_{l}\right\} \subseteq\left\{n_{1}, \ldots, n_{k}\right\}\right\rangle$ and since \bar{X}^{\prime} is invariant under both \bar{T} and $\langle\sigma\rangle, \bar{X}^{\prime}=\left\langle\bar{X}_{j_{1}}, \ldots, \bar{X}_{j_{s}}\right\rangle$ for some $\left\{j_{1}, \ldots, j_{s}\right\} \subseteq$ $\{1, \ldots, t\}$. Inductively, $\left(\bar{X}^{\prime}\right)_{\sigma}=\left\langle X_{j_{1}}, \ldots, X_{j_{s}}\right\rangle$. Also, $\bar{X} / \bar{X}^{\prime}$ is the product of
the groups $M_{i}=\bar{X}_{n_{i}} \bar{X}^{\prime} / \bar{X}^{\prime}$. For $i=1, \ldots, k, M_{i}$ is either trivial or $M_{i} \cong \bar{V}_{i}$, so (5.1)(i) implies that $\bar{X} / \bar{X}^{\prime}$ is the direct product of the nontrivial M_{i}. Consequently, Lang's theorem implies $\bar{X}_{\sigma}=\left\langle X_{n_{1}}, \ldots, X_{n_{k}}\right\rangle \bar{X}_{\sigma}^{\prime}=$ $\left\langle X_{n_{1}}, \ldots, X_{n_{k}}\right\rangle\left\langle X_{j_{1}}, \ldots, X_{j_{s}}\right\rangle$. We may choose j_{1}, \ldots, j_{s} such that for each j_{i}, $\bar{X}_{j_{t}} \leq\left[\bar{X}_{i_{1}}, \ldots, \bar{X}_{i_{l}}\right]$ for some $\left\{i_{1}, \ldots, i_{l}\right\} \subseteq\left\{n_{1}, \ldots, n_{k}\right\}$. So by (b), $X_{j_{t}} \leq$ $\left[X_{i_{1}}, \ldots, X_{i_{l}}\right] \leq\left\langle X_{n_{1}}, \ldots, X_{n_{l}}\right\rangle$ and (a) follows. Therefore, it will suffice to prove (b).

To prove (b) argue by induction on k. For $k=1$ the result is trivial and for $k=2$ apply (6.7). So suppose $k \geq 3$ and that the result holds for $k-1$. Set $Y=\left[X_{n_{1}}, \ldots, X_{n_{k-1}}\right], \bar{Y}=\left[\bar{X}_{n_{1}}, \ldots, \bar{X}_{n_{k-1}}\right], D=\left[Y, X_{n_{k}}\right]$, and $\bar{D}=\left[\bar{Y}, \bar{X}_{n_{k}}\right]$. Let $\Gamma=\left\{i \mid X_{i} \leq D\right\}$. Then (6.9) implies that $D=\Pi_{i \in \Gamma} X_{i}$. Also, (6.9)(iii) shows that $\bar{D}_{1}=\Pi_{i \in \Gamma} \bar{X}_{i}$ is a group with $\left(\bar{D}_{1}\right)_{\sigma}=D$.

Suppose $h \in\{1, \ldots, t\}$ and $\bar{X}_{h} \leq \bar{Y}$. By (6.7), $\left[\bar{X}_{h}, \bar{X}_{n_{k}}\right]_{\sigma}=\left[X_{h}, X_{n_{k}}\right]$ $\leq\left[Y, X_{n_{k}}\right]=D$. Then $\left[\bar{X}_{h}, \bar{X}_{n_{k}}\right] \leq \bar{D}_{1}$. If $\bar{Y}, \bar{X}_{n_{k}} \leq N_{\bar{G}}\left(D_{1}\right)$, then letting h vary we have $\bar{D}=\left[\bar{Y}, \bar{X}_{n_{k}}\right] \leq \bar{D}_{1}$, whence $\bar{D}_{\sigma} \leq\left(\bar{D}_{1}\right)_{\sigma}=D \leq \bar{D}_{\sigma}$, proving the result. So let $\bar{X}_{j} \leq Y$ or $\bar{X}_{j}=\bar{X}_{n_{k}}$. It will suffice to show that $\bar{X}_{j} \leq$ $N_{\bar{G}}\left(\bar{D}_{1}\right)$. Since $Y, X_{n_{k}} \leq N(D)$, we have $\left[X_{j}, X_{i}\right] \leq D$ for each $i \in \Gamma$. Thus, [X_{j}, X_{i}] is a product of certain of the groups X_{α}, for $\alpha \in \Gamma_{1} \subseteq \Gamma$. Then (5.5) and (6.8)(iii) imply [$\left.\bar{X}_{j}, \bar{X}_{i}\right]=\Pi_{\alpha \in \Gamma_{1}} \bar{X}_{\alpha} \leq \bar{D}_{1}$, as desired. This completes the proof.
7. Nonsolvable T_{0}-invariant subgroups. In this section we maintain the previous notation. In addition, let Y be a T_{0}-invariant subgroup of G such that $Y=Y_{1} \cdots Y_{n}$, a central product of groups of Lie type in characteristic p. For $1 \leq i \leq n$ write $Y_{i}=O^{p^{\prime}}\left(Y_{i}\right)=Y_{i}\left(p^{e_{1}}\right)$. The goal of this section and the next is to relate Y to the Lie structure of G and to the root system of \bar{G}. Throughout this section we assume $p \geq 5$ and $q>7$.

The main results of this section are as follows:
(7.1) T_{0} contains a maximal torus of Y.
(7.2) Suppose $T_{0} \leq T_{1} \leq T$ and $T_{1} \leq N(Y)$. For $1 \leq i \leq n$, let J_{i} be a Cartan subgroup of Y_{i}. Then $J=\Pi_{i=1}^{n} C_{Y T_{1}}\left(J_{i}\right)$ is a maximal torus of $G_{0} T_{1}$.

These results will be used in later sections to characterize such groups Y. The difficulty is that, at the outset, the groups Y_{i} are not known to have any connection with the existing Lie structure of G. In particular, $p^{e_{i}}$ is not known to be a power of q.

We will prove (7.1) and (7.2) together, in a series of steps. Suppose that one of (7.1) or (7.2) is false and choose a counterexample (for some
choice of T_{0}) with $|Y| \cdot\left|G_{0}\right|$ minimal. Then $Z\left(G_{0}\right)=1$. First assume that (7.1) fails for Y and set $S=N_{T_{0}}\left(Y_{1}\right)$.
(7.3) (i) T_{0} is transitive on $\left\{Y_{1}, \ldots, Y_{n}\right\}$.
(ii) $S \neq C(Y)$.

Proof. (i) is trivial from the minimality of Y, since otherwise we could replace Y by the products of the T_{0}-orbits on $\left\{Y_{1}, \ldots, Y_{n}\right\}$. For (ii), suppose $S \leq C(Y)$ and let $x \in Y_{1}-Z\left(Y_{1}\right)$ be a p^{\prime}-element. Then $A=$ $\left\langle x^{T_{0}}\right\rangle$ is abelian and T_{0}-invariant. Therefore, (6.2) implies that $\left[A, T_{0}\right] \leq A$ $\cap T_{0} \leq A \cap S \leq C(Y)$. Letting x vary we have $\left[Y, T_{0}\right] \leq C(Y)$, hence $\left[Y, T_{0}\right] \leq Z(Y)$. But this forces $\left[Y, T_{0}\right]=1$, contradicting (2.8).
(7.4) $Y=Y_{1}$.

Proof. Suppose $n>1$ and let $I_{1}<Y_{1}$ be an S-invariant abelian p^{\prime}-group. Then $I=\left\langle I_{1}^{T_{0}}\right\rangle$ is a T_{0}-invariant abelian p^{\prime}-group and as in the last result we apply (6.2) to obtain $\left[I, T_{0}\right] \leq T_{0} \cap I \leq C_{Y}\left(T_{0}\right)$. It follows that $I_{1} Z\left(Y_{1}\right) / Z\left(Y_{1}\right)$ is an elementary abelian 2-group (also $T_{0} / S \cong Z_{2}$).

By (2.14) we may take I_{1} to be a maximal torus of Y_{1}. Suppose the overlying algebraic group of Y_{1} has Lie rank l and set $q_{0}=p^{e_{1}}$. By (2.1)(iii), I_{1} has rank at most l (as an abelian group). So $\left|I_{1} / Z\left(Y_{1}\right)\right| \leq 2^{l}$. On the other hand $\left|I_{1} / Z\left(Y_{1}\right)\right|=e^{-1} f\left(q_{0}\right)$, where $e \leq l+1$. By (2.4)(iii) we have $e^{-1} f\left(q_{0}\right) \geq e^{-1}\left(q_{0}-1\right)^{l} \geq e^{-1} 4^{l}$ (since $q_{0} \geq p \geq 5$). Therefore, $2^{l} \geq e^{-1} 4^{l} \geq(l+1)^{-1} 4^{l}$, forcing $l=1$. The only possibility is $Y_{1} / Z\left(Y_{1}\right) \cong$ $\operatorname{PSL}(2,5)$. However, here one can argue that $T_{1} \cap Y_{1} \leq Z\left(Y_{1}\right)$ and that I_{1} can be chosen as a subgroup of order 3 . This is a contradiction.

By (2.14) we may choose a maximal torus I of Y with $I^{T_{0}}=I$. Let $I_{0}=I \cap T_{0}$.
(7.5) (i) $C_{I}\left(T_{0}\right)=I_{0} \geq\left[T_{0}, I\right]$.
(ii) $Z(Y) \cap T_{0}=1$.
(iii) $\left[T_{0}, I\right]$ is cyclic.

Proof. We first use (6.2) to obtain $\left[T_{0}, I\right] \leq T_{0} \cap I=I_{0}$. Also, $I_{0} \leq$ $C_{I}\left(T_{0}\right) \leq T_{0}$ by (2.8). Thus (i) holds.

Suppose $1 \neq z \in Z(Y) \cap T_{0}$ and let $E\left(C_{G}(z)\right)=X_{1} \cdots X_{s}$, a commuting product of groups of Lie type over extension fields of \mathbf{F}_{q} (see (2.9)). By (2.9)(v), $T_{0} \cap X_{i}$ is a maximal torus of X_{i} for $i=1, \ldots, s$. Since $Y=O^{p^{\prime}}(Y)$ we have $Y \leq X_{1} \cdots X_{s}$, so (2.8) implies that $Y \neq C\left(T_{0} \cap X_{i}\right)$
for some i. Therefore, $Y=\left[Y, T_{0} \cap X_{i}\right] \leq X_{i}$, so minimality of $|Y| \cdot\left|G_{0}\right|$ shows that $T_{0} \cap X_{i}$ contains a maximal torus of Y. This is a contradiction, proving (ii).

Suppose (iii) false and choose $Z_{r} \times Z_{r} \cong E \leq\left[T_{0}, I\right]$, where r is prime. Let $1 \neq e \in E$ satisfy $E\left(C_{Y}(e)\right) \neq 1$. (It is not difficult to check the existence of such an e. Consider E contained in a maximal torus \bar{I} of a suitable algebraic group. Then E acts on each \bar{I}-root subgroup, inducing a cyclic group.) Now apply (2.9). Write $E\left(C_{Y}(e)\right)=D_{1} \cdots D_{m}$, a commuting product of components. Minimality implies that (7.1) and (7.2) hold for the group $D_{1} \cdots D_{n}$. By (7.1) $T_{0} \cap D_{i}$ contains a maximal torus of D_{i} for $1 \leq i \leq m$. On the other hand, (2.5)(v) shows that $I \cap D_{i}$ contains a maximal torus of D_{i}, and $T_{0} \cap D_{i}, I \cap D_{i}$ normalize each other.

Fix $1 \leq i \leq m$ and let H_{i} be a Cartan subgroup of D_{i}. By (7.2) $A_{i}=C_{T_{t} T_{0}}\left(H_{i}\right)$ is a maximal torus of G_{0}. We claim that each H_{i}-root subgroup of D_{i} is also an A_{i}-root subgroup of G_{0}. We remark that the argument used here will be quoted in the proofs of (7.8) and (7.9). By (3.6) A_{i} permutes the H_{i}-root subgroups of D_{i} and centralizes H_{i}. So (5.6) and the assumption $p \geq 5$ implies that either A_{i} normalizes each H_{i}-root subgroup of D_{i} or there exist H_{i}-root subgroups R_{1}, R_{2} such that A_{i} normalizes $\left\langle R_{1}, R_{2}\right\rangle \cong \operatorname{SL}(2,5)$ or $\operatorname{PSL}(2,5)$. In the first case the claim follows since $A_{i} \leq C\left(H_{i} \cap\left\langle R_{1}, R_{2}\right\rangle\right)$. So suppose the latter case holds and let $\tilde{A}_{i}=C_{A_{i}}\left(\left\langle R_{1}, R_{2}\right\rangle\right)$. Then $\left|A_{i}: \tilde{A}_{i}\right| \leq 4$ and $C_{\vec{G}}\left(\tilde{A}_{i}\right)^{0}$ is not a maximal torus. Write $C_{\bar{G}}\left(\tilde{A}_{i}\right)^{0}=\bar{X} \bar{Z}$, where \bar{X} is semisimple and $\bar{Z}=$ $Z(\bar{X} \bar{Z})^{0}$. Let \bar{A}_{i} be the σ-invariant maximal torus containing A_{i}. Then $\bar{Z} \leq \bar{A}_{i}$ and $\overline{A_{i}} \cap \bar{X}$ is a maximal torus of \bar{X}. Now use (2.4) applied to \bar{X} and the fact that $q \geq 25$ (since $p=5$) to conclude $\mid A_{i} \cap \bar{X}: A_{i} \cap$ $Z(X) \mid>4$. This contradicts $\bar{X} \leq C\left(\tilde{A}_{i}\right)$ and proves the claim.

Since each A_{i}-root subgroup has Frattini quotient on \mathbf{F}_{q}-module, the above claim shows that D_{i} is defined over a field of size at least q. Thus (6.3) and (2.8) both apply to D_{i}. From (6.3) we conclude $T_{0} \cap D_{i}=I \cap D_{i}$ for each i. From (2.8) we see that if $T_{00}=\left(T_{0} \cap D_{1}\right) \cdots\left(T_{0} \cap D_{m}\right)$ and $C=C(e) \cap C\left(D_{1} \cdots D_{m}\right)$, then $S=C_{C_{Y}(e)}\left(T_{00} C / C\right)$ is an abelian subgroup of $C_{Y}(e) / C$. Since both $T_{0} C / C$ and $I C / C$ are contained in S, we conclude $\left[T_{0}, I\right] \leq C$.

Then $E \leq C$ and, in particular, E centralizes a proper p-subgroup of Y. By (2.3) of [23] this implies that Y is generated by the subgroups $D_{1} \cdots D_{m}$ as E ranges over $E^{\#}$. Hence, $\left[T_{0}, I\right] \leq C(Y) \cap I \cap T_{0} \leq Z(Y)$ $\cap T_{0}=1$, by (ii). Then (2.8) gives $I \leq T_{0}$, which we are assuming false. This proves (iii).
(7.6) Let $\left[T_{0}, I\right]=\langle x\rangle$.
(i) $x \neq 1$.
(ii) $I \leq C_{G}^{-}(x)^{0}$.

Proof. If $x=1$, then $I \leq C_{G_{0}}\left(T_{0}\right)=T_{0}$, which we are assuming false. So (i) holds. Let $\bar{C}=C_{\bar{G}}(x)^{0}$. To prove (ii) we make use of the universal covering group, \tilde{G}, of \bar{G}. Let $\pi: \tilde{G} \rightarrow \bar{G}$ be the natural surjection and regard σ as acting on \tilde{G} and commuting with π. Then $\tilde{G}_{\sigma}=G_{1}$ maps, via π, onto G_{0}. Now (Y) π^{-1} is the central product of part of $Z(\tilde{G})$ with a covering group, Y_{1}, of Y. Since Y_{1} is also a group of Lie type, $(I) \pi^{-1}$ is abelian. Choosing \tilde{x} to be a preimage of x we have $(I) \pi^{-1} \leq C_{\tilde{G}}(\tilde{x})=$ $C_{\tilde{G}}(\tilde{x})^{0}$ (see (4.4) of [25]). Therefore, $I \leq\left(C_{\tilde{G}}(\tilde{x})\right) \pi=C_{G}(x)^{0}$, proving (ii).

At this point we obtain a contradiction. Let $\bar{C}=C_{\vec{G}}(x)^{0}$ and $C=\bar{C}_{\sigma}$ $\cap G_{0}$. By (2.9) $C=E(C) T_{0}$ and by (2.5)(v) $\left(T_{0} \cap E(C)\right) Z(C) / Z(C)$ is a maximal torus of $E(C) Z(C) / Z(C)$. Moreover, $\left[I, T_{0}\right] \leq I_{0} \leq Z(C)$, so $I Z(C) / Z(C)$ centralizes $\left(T_{0} \cap E(C)\right) Z(C) / Z(C)$. It follows from (2.8) that $I \leq T_{0} Z(C)=T_{0}$, a contradiction.

At this point we know that (7.1) holds for Y (and for all smaller groups). Consequently, (7.2) must fail for Y. Recall, that $T_{0} \leq T_{1} \leq T$.
(7.7) Let $Z=Z\left(Y T_{1}\right)$
(i) $Z \leq T_{1}$.
(ii) $Y=Y_{1}$, so Y is quasisimple.
(iii) $T_{0} \cap Y$ contains a maximal torus, I, of Y.

Proof. Suppose $y t \in Z$, with $y \in Y$ and $t \in T_{1}$. Then $y \in C_{G_{0}}\left(T_{0}\right)=T_{0}$ (by (2.8)), proving (i). (iii) is immediate from (7.1).

Suppose $n>1$. By minimality of $|Y| \cdot\left|G_{0}\right|, P=C_{Y_{n} T_{1}}\left(J_{n}\right)$ is a maximal torus of $G_{0} T_{1}$. Also, P normalizes $Y_{1} \cdots Y_{n-1}$, so another application of minimality together with (2.3) shows that

$$
I=\bigcap_{i=1}^{n-1} C_{Y_{1} \cdots Y_{n-1} P}\left(J_{i}\right)
$$

is a maximal torus of $G_{0} P=G_{0} T_{1}$. Now $C_{Y T_{1}}\left(J_{n}\right)=Y_{1} \cdots Y_{n-1} P$, so $\bigcap_{i=1}^{n} C_{Y T_{1}}\left(J_{t}\right)=I$. Therefore $n=1$, proving (ii).
(7.8) $Z\left(Y T_{1}\right)=C_{Y T_{1}}(Y)=1$.

Proof. Let $Z=Z\left(Y T_{1}\right)$ and $C=C_{Y T_{1}}(Y)$. Clearly, $Z \leq C$. Also, $C T_{1}$ is a solvable p^{\prime}-group, so (6.1) implies $C \leq N\left(T_{1}\right)$. On the other hand,
$C \leq Y T_{1}$; we conclude that $\left[C, T_{1}\right] \leq C \cap T_{1} \leq Z\left(Y T_{1}\right)=Z$. If $\left[C, T_{1}\right]=$ 1 , then $C \leq C_{G_{0} T_{1}}\left(T_{1}\right)=T_{1}$ and $Z=C$. Suppose $C \neq 1$. Then we conclude $C \cap T_{1} \neq 1$.

Set $Z_{1}=C \cap T_{1}$ and $\bar{D}=E\left(C_{\bar{G}}\left(Z_{1}\right)^{0}\right)$. By (7.7) $T_{0} \cap Y$ contains a maximal torus of Y, so Y is generated by conjugates of $T_{0} \cap Y$. It follows that $Y \leq \bar{D}$. Let $D=O^{p^{\prime}}\left(\bar{D}_{\sigma}\right)$. Then $Y \leq D$ and (2.5) implies that T_{1} contains a maximal torus of each component of D. Let D_{1} be a component of D and $T_{2}=T_{1} \cap D_{1}$. Then $T_{2} \neq Z\left(D_{1}\right)$, so $T_{2} \neq Z_{1}$ and $Y=\left[Y, T_{2}\right] \leq$ D_{1}. Letting D_{1} vary, we conclude D is quasisimple.

Since $\bar{T} \bar{D}$ is connected we write $\bar{T} \bar{D}=\bar{D} \bar{Z}$, where \bar{Z} is a torus, $\bar{Z} \leq \bar{T}$, and $[\bar{Z}, \bar{D}]=1$. By induction, $J_{2}=C_{Y T_{2}}\left(J_{1}\right)$ is a maximal torus of \underline{D}. Let \bar{A} be a maximal torus of $\overline{D T}$ with $J_{2} \leq \bar{A}$. Then $\bar{Z} \leq \bar{A}$ and $\overline{A^{\sigma}}=\bar{A}$. Set $J_{3}=G_{0} T_{1} \cap \bar{A}$. By definition, \bar{A}_{σ} is a maximal torus of \bar{G}_{σ}, so J_{3} is a maximal torus of $G_{0} T_{1}$.

At this point we apply the argument of (7.5) to show that each nilpotent J_{2}-root subgroup of D is also a J_{3}-root subgroup of G_{0}. Similarly, if we use the groups Y, J_{1}, J_{2}, and D we conclude that each J_{1}-root of Y is a J_{2}-root subgroup of D, hence a J_{3}-root subgroup of G. As in the proof of (7.5) we have Y defined over a field of order at least q. Suppose $y t \in C$ with $y \in Y$ and $t \in T_{1}$. Then $y \in C_{Y}\left(T_{0} \cap Y\right)$, so by (2.8) (which now applies to Y) we have $y \in T_{0} \cap Y$. This shows that $C \leq T_{1}$, and so $Z=C=Z_{1}$.

At this point we invoke Theorem (8.1), the proof of which is independent of (7.1) and (7.2). Let $X_{i_{1}}, \ldots, X_{i_{k}}$ be the J_{1}-root subgroups contained in a fixed J_{1}-invariant Sylow p-subgroup, U, of Y. Set $\bar{Y}=$ $\left\langle\bar{X}_{i_{1}}, \ldots, \bar{X}_{i_{k}}, \bar{X}_{i_{1}}^{*}, \ldots, \bar{X}_{i_{k}}^{*}\right\rangle$. Then $Y=O^{p^{\prime}}\left(\bar{Y}_{\sigma}\right)$ (by (8.1)(iii) applied to \bar{D}. If \bar{D} has l simple factors apply (8.1) to a diagonal of \bar{O} normalized by σ^{l}, then take projections.) Also, $\bar{Y} \bar{A} \leq \bar{D} \bar{A}=\bar{D} \bar{Z}$.

As $T_{1} \leq N(Y), Y T_{1}=Y\left(Y T_{1} \cap N\left(J_{1}\right)\right) \leq Y\left(N(\bar{D}) \cap N(Y) \cap N\left(J_{2}\right)\right)$. But $N(\bar{D}) \cap N(Y) \cap N\left(J_{2}\right)$ permutes the J_{2}-root subgroups of Y, so normalizes \bar{Y}. Therefore, $T_{1} \leq Y T_{1} \leq Y N(\bar{Y})=N(\bar{Y})$.

Set $\bar{V}=C_{\bar{D}}(\bar{Y})^{0}$, a T_{1}-invariant subgroup of \bar{D}. By (2.14), T_{1} normalizes a σ-invariant maximal torus \bar{L} of \bar{V}. We have $\bar{A} \bar{Y}=\bar{Z}_{1} \bar{Y}$, where $\bar{Z}_{1}=Z(\bar{A} \bar{Y})^{0}$, and $\bar{Z}_{1}=\bar{Z}\left(\bar{Z}_{1} \cap \bar{D}\right)$. So $\bar{Z}_{1} \cap \bar{D} \leq \bar{V}$ and we see that $\bar{Z} \bar{V} \bar{Y}$ contains a maximal torus of \bar{G}. Therefore, $\bar{E}=C_{\bar{Z} L \bar{Y}}^{-}\left(T_{1} \cap Y\right)$ is a T_{1}-invariant maximal torus of \bar{G}. Now, $T_{\Omega} \leq N\left(\bar{E}_{\sigma} \cap G_{0}\right)$ and (6.3) implies that $T_{0}=\bar{E}_{\sigma} \cap G_{0}$, whence $\bar{E} \leq C_{\bar{G}}\left(T_{0}\right)=\bar{T}$. We conclude that $\bar{E}=\bar{T}$ and $\bar{T}<\bar{Y} \bar{V} \bar{Z} \leq N(\bar{Y})$.

By (2.5) $(\bar{Y} \bar{T})_{\sigma}=\bar{Y}_{\sigma} \bar{T}_{\sigma}=Y T$. Let \bar{C} be a maximal torus of $\bar{Y} \bar{T}$ with $J_{1} \leq \bar{C}$. Then $\bar{Y} \bar{T}=\bar{Y} \bar{C}$ and $Y T=(\bar{Y} \bar{T})_{\sigma}=(\bar{Y} \bar{C})_{\sigma}=Y \bar{C}_{\sigma}$. So $Y T_{1}=Y C_{1}$,
where $C_{1}=\bar{C}_{\sigma} \cap G_{0} T_{1}$. But C_{1} is a maximal torus of $G_{0} T_{1}=G_{0} C_{1}$ (see (2.3)) and $C_{Y T_{1}}\left(J_{1}\right)=C_{Y C_{1}}\left(J_{1}\right)=C_{1}\left(C_{Y}\left(J_{1}\right)\right)=C_{1} J_{1}=C_{1}$. We are assuming this to be false, so this contradiction proves (7.8).
(7.9) (i) I is minisotropic.
(ii) There does not exist a subgroup $D<Y$ such that $D^{T_{1}}=D$ and D a group of Lie type in characteristic p.
(iii) For $1 \neq t \in T_{1}, C_{Y}(t)$ does not contain a component of Lie type in characteristic p.

Proof. For (i), suppose I is contained in a proper parabolic subgroup, K, of Y. The argument of (7.5) shows that each nilpotent I-root subgroup of Y is also a T_{1}-root subgroup of G. So $O_{p}(K)$ is a product of T_{1}-root subgroups and $K^{T_{1}}=K$ (as $K=N_{Y}\left(O_{p}(K)\right)$). If K^{0} is the opposite parabolic then $T_{1} \leq N\left(K^{0}\right)$, so T_{1} normalizes $K \cap K^{0}=L$, a Levi factor of K, containing I. We may assume $J_{1} \leq L$. Let $L_{1}=L^{\prime}$, so that $L=L_{1} J_{1}$ $=L_{1} I$. If $L_{1}=1$, then $J_{1}=I \leq T_{1}$. Since J_{1}-root subgroups of Y are also T_{1}-root subgroups we have Y defined over a field with at least q elements. Then (7.8) and (2.8) imply $C_{Y T_{1}}\left(J_{1}\right)=T_{1}$, a maximal torus of $G_{0} T_{1}$. Suppose then that $L_{1} \neq 1$, and let $J_{2}=L_{1} \cap J_{1}$, a Cartan subgroup of L_{1}. Minimality implies that $R=C_{L_{1} T_{1}}\left(J_{2}\right)$ is a maximal torus of $G_{0} T_{1}$. As $J_{1} \leq C_{L_{1} J_{1}}\left(J_{2}\right)=C_{L_{1} I}\left(J_{2}\right) \leq R$, we also have $R \leq C_{Y T_{1}}\left(J_{1}\right)=J$.

Replacing T_{1} by R in the above we have J_{1}-root subgroups of Y being R-root subgroups of G_{0}. Again we conclude that the defining field for Y has at least q elements. Then (2.3), (2.8), and (7.8) yield $Y T_{1}=Y J$ and J Cartan in $Y J$. So J is abelian, and another application of (2.8) shows that $R=J$, a contradiction. Thus (i) holds.

Suppose $D^{T_{1}}=D<Y$ and D is a group of Lie type in characteristic p. Let A_{1} be a Cartan subgroup of D and $A=C_{D T_{1}}\left(A_{1}\right)$, a maximal torus of $G_{0} T_{1}$, by minimality. But now consider $Y A$. From (i) we conclude $J_{2}=C_{Y A}\left(J_{1}\right)$ is a maximal torus of $G_{0} A$. Since $Y A \leq Y T_{1}$ we also have $J_{2} \leq J$. As in the proof of (7.6) the J_{1}-root groups of Y are also J_{2}-root subgroups of G_{0}, so Y is defined over a field of at least q elements. So (2.8) applies to $Y T_{1}$ and shows that J is a maximal torus of $Y T_{1}$; in particular an abelian group. But then $J \leq C\left(J_{2}\right)$ and (2.8) forces $J=J_{2}$, a contradiction to our supposition. This proves (ii) and (iii) follows.
(7.10) Write $Y=Y\left(q_{0}\right)$ and $\left|T_{1}\right|=\frac{1}{d} \Pi \Phi_{l_{1}}\left(q_{0}\right)$.
(i) $d=1$ or d is prime.
(ii) If $Y \not \not \operatorname{PSL}\left(2, q_{0}\right)$, then $\left|T_{1}\right|$ is odd.
(iii) T_{1} is cyclic, $I=T_{1} \cap Y$, and T_{1} is a minisotropic torus of $Y T_{1}$.

Proof. Suppose $t \in T_{1}$ is an involution and write $Y=O^{p^{\prime}}\left(\bar{Y}_{\tau}\right)$, where τ is an endomorphism of the algebraic group \bar{Y}. If t extends to an involutory automorphism of \bar{Y} commuting with τ, then \bar{Y}_{t}^{0} is reductive and (7.9)(iii) implies that \bar{Y}_{t}^{0} is a torus. Let \bar{U} be the unipotent radical of a t-invariant Borel subgroup of \bar{Y}. Then t inverts \bar{U}, \bar{U} is abelian, and $Y \cong \operatorname{PSL}\left(2, q_{0}\right)$. So if $\left|T_{1}\right|$ is even and $Y \nRightarrow \operatorname{PSL}\left(2, q_{0}\right)$, then some involution $t \in T_{1}$ induces a field or graph-field automorphism of Y, against (7.9)(iii). This establishes (ii). If $Y \cong \operatorname{PSL}\left(2, q_{0}\right)$ then it easily follows that (i) and (iii) also hold. Suppose then that $Y \not \not \operatorname{PSL}\left(2, q_{0}\right)$. Thus $\left|T_{1}\right|$ is odd. (2.8) or its proof in case $q_{0}=5$ shows that elements of odd order in $Y T_{1}$ centralizing I lie in a maximal torus V of $Y T_{1}$. Hence $T_{1}=V$. (iii) follows from (7.9)(i) and the argument used to prove (7.5)(iii).

For (i) we note that for $Y \not \approx \mathrm{PSO}^{ \pm}\left(2 k, q_{0}\right), \operatorname{PSL}\left(k, q_{0}\right)$, or $\operatorname{PSU}\left(k, q_{0}\right)$, we automatically have $d=1,2$, or 3 . For the other cases the result follows from (7.9)(ii) and (7.9)(iii). Namely, (7.9)(ii) shows that T_{1} must act irreducibly on the underlying vector space so $Y \not \equiv O^{+}\left(2 k, q_{0}\right)^{\prime}$. Hence $\left|T_{1}\right|=\frac{1}{d}\left(q_{0}^{k}+1\right), \frac{1}{d}\left(q_{0}^{k}-1\right)$, or $\frac{1}{d}\left(q_{0}^{k}+1\right)$, respectively, with k odd in the unitary case. In the latter two cases (7.9)(iii) forces k to be prime and since $d \mid k$ we are done here. In the remaining case $d \mid 4$ and $d \mid q_{0}^{k}+1$. For k even, $q_{0}^{k}+1 \neq 0(\bmod 4)$, so $d=1$ or 2 . If k is odd, T_{1} contains an element $1 \neq t$ with $|t| \mid\left(q_{0}+1\right)$ and we contradict (7.9)(iii). So (i) holds.
(7.11) Let T_{2} be a maximal torus of $Y T_{1}$ and write $\left|T_{2}\right|=\frac{1}{d} \Pi \Phi_{f_{i}}\left(q_{0}\right)=$ $\frac{1}{d} \Pi \Phi_{d_{1}}(p)$. Assume that $d_{j_{1}} \neq d_{j_{2}}$ for $j_{1} \neq j_{2}$ and that $T_{2} \leq \hat{T}_{2}$ is a maximal torus of $G_{0} T_{1}$. Then $T_{2}=\hat{T}_{2}$.

Proof. Suppose $\left|\hat{T}_{2}\right|=\frac{1}{e} \Pi \Phi_{r_{i}}(q)=\frac{1}{e} \Pi \Phi_{s_{1}}(p)$. By (2.10) it will suffice to show that $d=e$ and $\Sigma \varphi\left(d_{j}\right)=\Sigma \varphi\left(s_{j}\right)$. Write $\left|T_{1}\right|=\frac{1}{d} \Pi \Phi_{e_{1}}\left(q_{0}\right)=$ $\frac{1}{e} \Pi \Phi_{c_{j}}(q)$, viewing T_{1} as a maximal torus of $Y T_{1}$ and $G_{0} T_{1}$, respectively. Set $q_{0}=p^{a}$ and $q=p^{b}$.

For m and c positive integers $\Phi_{m}\left(p^{c}\right)=\Pi \Phi_{m c_{0}}(p)$, the product ranging over those divisors c_{0} of c such that $\left(c / c_{0}, m\right)=1$. Using this and the two expressions for $\left|T_{1}\right|$ we have $\left|T_{1}\right|=\frac{1}{d} \Pi_{e_{1}} \Pi_{c_{0}} \Phi_{e_{i} c_{0}}(p)=$ $\frac{1}{e} \Pi_{j} \Pi_{a_{0}} \Phi_{c_{j} a_{0}}(p)$. Moreover, $\Sigma_{e_{i}, c_{0}} \varphi\left(e_{i} c_{0}\right)=a \cdot \operatorname{rank}(\bar{Y})=\Sigma \varphi\left(d_{j}\right)$, while $\Sigma_{c_{j}, a_{0}} \varphi\left(c_{j} a_{0}\right)=b \cdot \operatorname{rank}(\bar{G})=\Sigma \varphi\left(s_{j}\right)$. Consequently, it will suffice to show that $d=e$ and $\left\{e_{i} c_{0}\right\}=\left\{c_{j} a_{0}\right\}$.

Consider a term $\Phi_{e_{i} c_{0}}(p)$. By the primitive divisor theorem (see Zsigmondy [28]) and our assumption $p \geq 5$, either $e_{i} c_{0}=2$ and p is a Mersenne prime or there is a prime divisor r of $\Phi_{e_{i} c_{0}}(p)$ with $r \nmid p^{x}-1$ for $x<e_{i} c_{0}$. Since $d \mid q_{0} \pm 1,(d, r)=1$ if $e_{i}>2$. For such an r, there is a
pair (c_{j}, a_{0}) with $r \mid \Phi_{c_{j} a_{0}}(p)$. This forces (see the proof of (2.10)) $e_{i} c_{0} \mid c_{j} a_{0}$ and either equality holds or r divides $c_{j} a_{0} / e_{i} c_{0}$. Of course, we can reverse all this, starting with a term $\Phi_{c_{j} a_{0}}(p)$.

By (7.10)(i) d is one or prime. Suppose $G_{0} \neq \operatorname{PSL}(n, q)$ or $\operatorname{PSU}(n, q)$ with $e>3$. Then $e \leq 3$ and $e \mid p \pm 1$. Using this and the remarks of the previous paragraph, cancel off terms in the two expressions for T_{1} where the subscripts $e_{i} c_{0}$ and $c_{j} a_{0}$ coincide. Starting from the largest $e_{1} c_{0}$ and $c_{j} a_{0}$ we see that all terms cancel except those where $e_{i} c_{0}$ or $c_{j} a_{0}$ is 1 or 2 or possibly a single term $\Phi_{2 c_{0}}(p)$, where d is a primitive divisor of the term (note that T_{1} minisotropic in $Y T$, forces each $e_{i}>1$). So we are left with an expression $\frac{1}{d}(p+1)^{x}=\frac{1}{e}(p-1)^{y}(p+1)^{z}$ or $\frac{1}{d} \Phi_{2 c_{0}}(p)(p+1)^{x}$ $=\frac{1}{e}(p-1)^{y}(p+1)^{z}$. Using the fact that T_{1} is obtainable from no proper subsystem of the root system of the overlying algebraic group of Y (see (7.9)(ii)) we use the orders given in Carter [6] and extensions to cover the twisted groups, to conclude $x \leq 1$. In the first case use the facts that $\frac{e}{d} \leq$ $\frac{3}{d}, p \geq 5$, and (7.10)(ii) to conclude $e=d$ and $\left\{e_{i} c_{0}\right\}=\left\{c_{j} a_{0}\right\}$. In the second case note that $d>3$ (otherwise, obtain a contradiction using a primitive division of $\Phi_{2 c_{0}}(p)$). This forces $Y \cong \operatorname{PSL}\left(k, q_{0}\right)$ or $\operatorname{PSU}\left(k, q_{0}\right)$ and as in the proof of (7.10)(iii), $d=k$. But then $\left|T_{1}\right|=\frac{1}{d} \Phi_{d}\left(q_{0}\right)$ or $\frac{1}{d} \Phi_{2 d}\left(q_{0}\right)$ and no $e_{i}=2$. This is a contradiction. Therefore we may now assume that $G_{0} \cong \operatorname{PSL}(n, q)$ or $\operatorname{PSU}(n, q)$ and $e>3$.

If $G_{0} \cong \operatorname{PSL}(n, q)$, then $\left|T_{1}\right|=\frac{1}{e}(1 /(q-1)) \Pi\left(q^{n_{i}}-1\right)$, with $\sum n_{i}=$ n. For the unitary group, replace q by $-q$, taking absolute values, if necessary. We obtain $\left|T_{1}\right|=\frac{1}{e}(1 /(q+1)) \Pi\left(q^{n_{i}}+1\right) \Pi\left(q^{n_{i}}-1\right)$, where the first product is over the odd n_{i} 's and the second over the even n_{i} 's. Moreover, e is a divisor of $(n, q-1)$ or $(n, q+1)$, respectively. If $Y \not \equiv \operatorname{PSL}\left(2, q_{0}\right)$, then by (7.10)(ii), $\left|T_{1}\right|$ is odd, hence there are at most two terms in the product. In the unitary case, if there are two terms, then both powers of q must be odd.

Let $y \in N_{Y}\left(T_{1}\right)$ with $\left|y T_{1}\right|=r$, a prime. By (7.9)(iii) and (2.9) $C_{T_{1}}(y)$ is an r-group with order dividing that of the center of the universal covering group of Y. We also have $N_{G_{0} T}\left(T_{1}\right) / T_{1} \cong \Pi Z_{n_{i}}$, the factors acting on (by raising to powers of q or $-q$) the appropriate factor of T_{1}, centralizing the rest. By (7.10)(iii), T_{1} is cyclic. Therefore, $\left(n_{i}, n_{j}\right)=1$ for $n_{i} \neq n_{j}$. So r divides n_{i} for a unique i, centralizing a subgroup of the appropriate factor having order $\frac{1}{f}\left(q^{n_{t} / r} \pm 1\right) /(q \pm 1)$ with f a divisor of e. It follows that $n_{i}=r$. For each $n_{j} \neq n_{i}, y$ centralizes a subgroup of T_{1} of order $\frac{1}{f}\left(q^{n_{j}} \pm 1\right) /(q \pm 1)$, where $f \mid e$. Suppose there exists an $n_{j} \neq n_{i}$ with $n_{j}>2$. Then we can choose a primitive divisor, s, of $q^{n_{j}} \pm 1$, and find an element in $C_{T_{1}}(y)$ of order s. By the above, $s=r$ and s is a divisor of the
universal covering group of Y. But $s>3$, so this and (7.9)(iii) yield $Y \cong \operatorname{PSL}\left(r, q_{0}\right)$ or $\operatorname{PSU}\left(r, q_{0}\right)$. Accordingly, $\left|T_{1}\right|=\frac{1}{d}\left(q_{0}^{r} \pm 1\right) /\left(q_{0} \pm 1\right)$. Using the facts that $n_{j} \mid s-1$ and $s=r$ we have $n_{j}<n_{i}=r$. Using the earlier primitive divisor argument in the two factorizations of $\left|T_{1}\right|$ (compare largest $e_{i} c_{0}$ and $c_{j} a_{0}$) we conclude that $a r=b r$, hence $q=q_{0}$. But $r \mid q_{0} \pm 1$, so r cannot be primitive for $q^{n_{j}} \pm 1$ if $n_{j}>2$. This is a contradiction, proving that no such n_{j} exists.

If $Y \cong \operatorname{PSL}\left(2, q_{0}\right)$, then y inverts $T_{1}, r=2$, and $n \leq 3$, contradicting $e>3$. So $Y \not \equiv \operatorname{PSL}\left(2, q_{0}\right),\left|T_{1}\right|$ is odd, and by earlier remarks, there are at most two n_{i}. As $n>3, r$ is an odd prime. At this point the only possibilities are $G_{0} \cong \operatorname{PSL}(r, q), \operatorname{PSU}(r, q), \operatorname{PSL}(r+1, q)$, or $\operatorname{PSU}(r+1, q)$. We chose r to be an arbitrary prime divisor of $\left|N_{Y}\left(T_{1}\right) / T_{1}\right|$ and found that $N_{G_{0}}\left(T_{1}\right) / T_{1} \cong Z_{r}$. Checking Carter [6] we see that this forces $Y \cong \operatorname{PSL}\left(r, q_{0}\right)$ or $\operatorname{PSU}\left(r, q_{0}\right)$, thus $\left|T_{1}\right|=\frac{1}{d} \Phi_{r}\left(q_{0}\right)$ or $\frac{1}{d} \Phi_{2 r}\left(q_{0}\right)$. As above, a primitive divisor argument yields $q=q_{0}$ and $\left(G_{0}, Y\right)=(\operatorname{PSL}(r+1, q), \operatorname{PSL}(r, q))$ or $(\operatorname{PSU}(r+1, q), \operatorname{PSU}(r, q))$.

This leads to $\left|T_{1}\right|=\frac{1}{d}\left(\left(q^{r} \pm 1\right) /(q \pm 1)\right)=\frac{1}{e}\left(q^{r} \pm 1\right)$, where we always take the plus sign in the unitary case and the minus sign otherwise. Therefore, $e=d(q \pm 1)$ and this forces $d=1$ and $e=q \pm 1=(r+1$, $q \pm 1)$. In particular, Y has trivial multiplier, so the preimage, D, of J_{1} in the corresponding linear group is abelian. Order considerations show that D is a diagonalizable subgroup of the appropriate linear group, from which it follows that $J=J_{1}$ is contained in a maximal torus of $G_{0}=G_{0} T_{1}$ (a Cartan subgroup if $G_{0} \cong \operatorname{PSL}(r+1, q)$). Comparing orders we conclude that J is a maximal torus of G_{0}, contradicting the original assumption. This proves (7.11).
(7.12) Write $Y=Y\left(q_{0}\right)$ with $q_{0}=p^{a}$, and let T_{2} be a cyclic subgroup of $Y T_{1}$ with $\left|T_{2}\right|=\frac{1}{d} \Pi \Phi_{d_{i}}(p)$. Suppose that $\sum \varphi\left(d_{i}\right)=a \cdot \operatorname{rank}(\bar{Y})$ (e.g. T_{2} a maximal torus of $Y T_{1}$) and that $d_{i} \neq d_{j}$ for $i \neq j$. Then
(i) T_{2} is a maximal torus of $Y T_{1}$ and of $G_{0} T_{1}$.
(ii) $Y T_{1}=Y T_{2}$.
(iii) T_{2} is a minisotropic torus of $Y T_{1}$.
(iv) $T_{2}^{\#}$ consists of regular elements of $Y T_{1}$ (in the sense of (7.9)(iii)).

Proof. Since T_{2} is cyclic, T_{2} is contained in a maximal torus \hat{T}_{2} of $Y T_{1}$. By hypothesis and (2.10) we have $T_{2}=\hat{T}_{2}$. Now embed T_{2} in a maximal torus $\hat{\hat{T}}_{2}$ of $G_{0} T_{1}$. Then (7.11) shows $T_{2}=\hat{\hat{T}}_{2}$. This proves (i) and (ii) follows from (2.3). Also, $G_{0} T_{1}=G_{0} T_{2}$. We can now replace T_{1} by T_{2}, and obtain (iii) and (iv) from (7.9).

The remainder of the proof consists of obtaining a contradiction by constructing a certain maximal torus T_{2} of $Y T_{1}$ that contradicts (7.12).

First suppose $Y \cong \operatorname{PSL}\left(n, q_{0}\right)$. Then $Y T_{1} \leq \operatorname{PGL}\left(n, q_{0}\right)$ and $\operatorname{PGL}\left(n, q_{0}\right)$ contains an isomorphic copy of $\operatorname{GL}\left(n-1, q_{0}\right)$ stabilizing a 1-space of the usual module. So $Y T_{1}$ contains a cyclic maximal torus, T_{2}, of order $\frac{1}{d}\left(q_{0}^{n-1}-1\right)$, with T_{2} contradicting (7.12)(iii). So $Y \not \approx \operatorname{PSL}\left(n, q_{0}\right)$. We remark that (7.10)(ii) shows that $\left|T_{1}\right|$ is odd. In particular, $\left|Y T_{1}: Y\right|$ is odd, so if Y is an orthogonal or symplectic group, then $T_{1} \leq Y$.

If Y is a classical group of dimension $2 n$ in which the natural module has a singular n-space, then the above remarks show that $Y T_{1} \leq$ $\operatorname{PSp}\left(2 n, q_{0}\right), \mathrm{PSO}^{+}\left(2 n, q_{0}\right)^{\prime}$, or $\operatorname{PGU}\left(2 n, q_{0}\right)$. We may then choose T_{2} to be a maximal torus of order $\frac{1}{d}\left(q_{0}^{n}-1\right)\left(\frac{1}{d}\left(q_{0}^{2 n}-1\right)\right.$ in the unitary case $)$ with T_{2} stabilizing a singular n-space. Again we have a contradiction. If $Y \cong \mathrm{PSO}^{-}\left(2 n, q_{0}\right)^{\prime}$, then $T_{1} \leq Y$ and we consider cases. If n is odd, then $Y=Y T_{1}$ contains a cyclic subgroup, T_{2}, of order $\frac{1}{d}\left(q_{0}^{n}+1\right)$ and T_{2} contains a subgroup of order divisible by $\left(q_{0}+1\right) /\left(4, q_{0}+1\right)$ none of whose nonidentity elements is regular. This contradicts (7.12)(iv). If n is even, $o^{-}\left(2 n, q_{0}\right)$ contains $o^{+}\left(2 n-2, q_{0}\right) \times Z_{q_{0}+1}$. Here T_{2} can be taken as a cyclic group of order $\frac{1}{d}\left(q_{0}^{n-1}-1\right)\left(q_{0}+1\right)$ and contradicting (7.12)(iv). The remaining classical groups are $Y=Y T_{1} \cong \operatorname{PSO}\left(2 n+1, q_{0}\right)^{\prime}$ and $\operatorname{PSU}\left(2 n+1, q_{0}\right)$. Here, use the containments $\operatorname{GL}\left(n, q_{0}\right) \leq$ $\operatorname{PSO}\left(2 n+1, q_{0}\right)$ and $\operatorname{GL}\left(n, q_{0}^{2}\right) \leq \operatorname{PGU}\left(2 n+1, q_{0}\right)$ to get a maximal torus T_{2} of order $\frac{1}{d}\left(q_{0}^{n}-1\right)$ or $\frac{1}{d}\left(q_{0}^{2 n}-1\right)$, respectively. Again we contradict (7.12)(iv). At this stage we take Y to be an exceptional group.

If $Y \cong G_{2}\left(q_{0}\right)$, then $Y \geq \operatorname{SU}\left(3, q_{0}\right)$ and $\operatorname{SL}\left(3, q_{0}\right)$. Since $p \geq 5$ one of these has center of order 3 , and we choose a cyclic group T_{2} of order $q_{0}^{2}-q_{0}+1$ or $q_{0}^{2}+q_{0}+1$, accordingly. This violates (7.12)(iv). If $Y=$ $E_{7}\left(q_{0}\right)$, then $\left|T_{1}\right|$ odd gives $T_{1} \leq Y$. By Table (3.3) of [23] $Y \geq{ }^{3} D_{4}\left(q_{0}\right) \times$ $\operatorname{PSL}\left(2, q_{0}^{3}\right)$ and we take T_{2} as the direct product of cyclic groups of order $q_{0}^{4}-q_{0}^{2}+1$ and $\frac{1}{2}\left(q_{0}^{3}-1\right)$. Again this contradicts (7.12)(iv). If $Y=E_{8}\left(q_{0}\right)$ then Table (3.3) of [23] shows that $Y \geq \operatorname{PSL}\left(9, q_{0}\right)$ or $\operatorname{PSU}\left(9, q_{0}\right)$, according to $3 \mid q_{0}+1$ or $3 \mid q_{0}-1$. Here take T_{2} to be cyclic of order $\left(q_{0}^{9}-1\right) /\left(q_{0}-1\right)$ or $\left(q_{0}^{9}+1\right) /\left(q_{0}+1\right)$, respectively, and contradict (7.12)(iv).

Suppose $Y=F_{4}\left(q_{0}\right)$. By Carter [6], Table (3.3) of [23] and (7.9)(ii) it follows that T_{1} is the Coxeter torus of $Y T_{1}=Y$. Now $F_{4}\left(q_{0}\right)$ contains ${ }^{3} D_{4}\left(q_{0}\right)$. To see this use the argument of [23] in the verification of Table (3.3) (note that the subgroup of $F_{4}(K)$ spanned by all long root subgroups in a fixed system has type $D_{4}(K)$ and the triality graph automorphism is
induced by a Weyl group element). Now ${ }^{3} D_{4}\left(q_{0}\right)$ contains a cyclic maximal torus, T_{2}, of order $q_{0}^{4}-q_{0}^{2}+1$. By (7.12), T_{2} is a maximal torus of Y, so we may assume $T_{2}=T_{1}$. But this contradicts (7.9)(ii).

Suppose $Y \cong E_{6}\left(q_{0}\right)$. We claim that $T_{1} Y \geq{ }^{3} D_{4}\left(q_{0}\right) \times T_{3}$, where T_{3} is cyclic of order $\frac{1}{d}\left(q_{0}^{2}+q_{0}+1\right)$. Given this, we take $T_{2}=T_{4} \times T_{3}$, where T_{4} is a cyclic torus of ${ }^{3} D_{4}\left(q_{0}\right)$ of order $q_{0}^{4}-q_{0}^{2}+1$. For existence of ${ }^{3} D_{4}\left(q_{0}\right) \times T_{3}$, argue as in (3.3) of [23]. Namely, we first argue that there is an element of the Weyl group of Y mapping the diagram

where r is the negative of the root of highest height. Since the Weyl group is transitive on fundamental systems, we can either do this or map the first system to the reverse of the second. In the latter case multiply by the graph automorphism of Y to get a map as desired. However, the resulting map induces an element of order 3 on $Z \bar{\Sigma}$ so cannot involve a graph automorphism. Now, complete the construction as in [23].

Next, suppose $Y \cong{ }^{2} E_{6}\left(q_{0}\right)$. Here, we note that if \hat{W} is the Weyl group of $E_{6}(K)=\hat{Y}$, then for τ the graph automorphism, $\hat{W}\langle\tau\rangle \cong \hat{W} \times Z_{2}$, where the nonidentity central element sends all roots to their negatives. It follows from the previous case that ${ }^{2} E_{6}\left(q_{0}\right)$ contains ${ }^{3} D_{4}\left(q_{0}\right) \times T_{3}$ where T_{3} is cyclic of order $\frac{1}{d}\left(q_{0}^{2}-q_{0}+1\right)$. So we again get a maximal torus T_{2} of $Y T_{1}$ that contradicts (7.12)(iv).

The final case to consider is $Y \cong{ }^{3} D_{4}\left(q_{0}\right)$. Then Table (3.3) of [23] shows that Y contains $X \cong \operatorname{PSL}\left(3, q_{0}\right)$ or $\operatorname{PSU}\left(3, q_{0}\right)$ according to whether $3 \mid q_{0}+1$ or $3 \mid q_{0}-1$. Accordingly, $C_{Y}(X)$ is cyclic of order $q_{0}^{2}+q_{0}+1$ or $q_{0}^{2}-q_{0}+1$. Therefore, we let T_{2} be cyclic of order $\left(q_{0}^{2}-1\right)\left(q_{0}^{2} \pm q_{0}+1\right)$ resp. and contradict (7.12)(iv). We have now considered all cases and the proof of (7.1) and (7.2) is complete.
8. T_{0}-invariant groups of Lie type. In this section we continue the analysis of $\S 7$. Let Y be a T_{0}-invariant subgroup of G_{0} such that Y is a commuting product of groups of Lie type in characteristic p. Assume that $p \geq 5$ and $q>7$. In (8.1) we assume $T_{0} \cap Y$ is a Cartan subgroup of Y and show that Y is related to the root system of \bar{G}. In later sections we will apply (8.1) and the results of $\S 7$ to determine Y in the general case. Write $Y=Y_{1} \cdots Y_{k}$ a commuting product of groups of Lie type in characteristic p.

Theorem (8.1). Suppose $T_{0} \cap Y_{i}$ is a Cartan subgroup of Y_{t} for $i=$ $1, \ldots, k$, and let $U_{i} \in \operatorname{Syl}_{p}\left(Y_{i}\right)$ with U_{i} invariant under $T_{0} \cap Y_{i}$. For each $1 \leq i \leq k$, there exist T_{0}-root subgroups $X_{j_{1}}^{i}, \ldots, X_{J_{l}}^{i}$ of G such that the following hold:
(i) $U_{t}=X_{j_{1}}^{i} \cdots X_{j_{i}}^{t}$.
(ii) $Y_{t}=Y_{t}\left(q^{e_{t}}\right)$ for some $e_{t} \geq 1$.
(iii) $Y_{t}=O^{p^{\prime}}\left(\left(\bar{Y}_{i}\right)_{\sigma}\right)$, for $\bar{Y}_{t}=\left\langle\overline{X_{j_{1}}^{i}}, \ldots, \overline{X_{j_{l}}^{i}} \overline{\left(X_{j_{1}}^{i}\right)^{*}}, \ldots, \overline{\left(X_{j_{l}}^{i}\right)^{*}}\right\rangle$.
(iv) \bar{Y}_{i} is the commuting product of $a\langle\sigma\rangle$-orbit of e_{i} semisimple subgroups of \bar{G}, each generated by \bar{T}-root subgroups of \bar{G}.
(v) $\left\langle\bar{Y}_{1}, \ldots, \bar{Y}_{k}\right\rangle=\bar{Y}_{1} \cdots \bar{Y}_{k}$, a commuting product.

By way of example, say $Y \cong{ }^{2} D_{4}\left(q^{j}\right)$. Then \bar{Y} will be the commuting product of j copies of $D_{4}(K)$, the components of \bar{Y} corresponding to a subsystem of $\bar{\Sigma}$ having the structure of j orthogonal copies of D_{4}.

The proof of (8.1) will be carried out in a series of steps. Assume the hypothesis of (8.1). The idea of the proof is this. First we reduce to the case where Y has just one factor. Next we consider the case $Y \cong \operatorname{SL}\left(2, p^{e}\right)$ or $\operatorname{PSL}\left(2, p^{e}\right)$. This is the hardest case. After that we work through the various rank 2 possibilities for Y as well as the 3 -dimensional unitary group. The general case follows by induction and an application of (2.13).
(8.3) (i) Each ($T_{0} \cap Y$)-root subgroup of Y is a T-root subgroup of G.
(ii) $U_{i}=X_{j_{1}}^{i} \cdots X_{j_{l}}^{i}$ for T-root subgroups $X_{j_{1}}^{i}, \ldots, X_{J_{l}}^{i}$ of G.
(iii) $Y_{i}=Y_{i}\left(q^{e_{i}}\right)$ for some $e_{i} \geq 1$.
(iv) Let \bar{Y}_{i} be as in (8.1)(iii). Then $\left\langle\bar{Y}_{1}, \ldots, \bar{Y}_{k}\right\rangle=\bar{Y}_{1} \cdots \bar{Y}_{k}$ is a commuting product.

Proof. Since $T_{0} \leq C\left(T_{0} \cap Y_{i}\right)$ for $i=1, \ldots, k, T_{0}$ normalizes each Y_{i}. The argument in the proof of (7.8) shows that each ($T_{0} \cap Y_{i}$)-root subgroup is also a T_{0}-root subgroup of G_{0}. This proves (i) and (ii) follows from this and (6.9). For (iii) note that the defining field of Y_{i} has order equal to the minimum of the orders of the root subgroups of Y_{i}.

Fix i and a ($T_{0} \cap Y_{i}$)-root subgroup, D. Let E be the opposite ($T_{0} \cap Y_{t}$)-root subgroup of Y_{i}. We claim that $E=D^{*}$, the opposite T_{0}-root subgroup in G_{0}. By (5.5) and (6.8)(iii) it will suffice to show that the representation of T_{0} on the Frattini quotient of E is inverse to the representation on the Frattini quotient of D. To see this set $Z=Z\left(Y_{1} T_{0}\right)$. Then $\left(T_{0} \cap Y_{i}\right) Z / Z$ is a Cartan subgroup of $Y_{l} T_{0} / Z$ and (2.8) shows that T_{0} induces diagonal automorphisms on Y_{\imath}. As $T_{0} \leq C\left(T_{0} \cap Y_{i}\right)$, (2.3) shows that T_{0} / Z is a Cartan subgroup of $Y_{i} T_{0} / Z$, and the claim follows.

So for each $i, Y_{i}=\left\langle X_{j_{i}}^{i}, \ldots, X_{j_{i}}^{i},\left(X_{j_{i}}^{i}\right)^{*}, \ldots,\left(X_{j_{i}}^{i}\right)^{*}\right\rangle$, where $\left\{X_{j_{i}}^{i}, \ldots, X_{j i}^{i}\right\}$ are the T-root subgroups contained in U_{i}. To obtain (iv) we need only apply (6.10).

In view of (8.3), we now assume that $Y=Y_{1}$. Write $X_{j_{r}}=X_{j_{r}}^{1}$ for each j_{r}.
(8.4) Let $j_{m} \neq j_{n} \in\left\{j_{1}, \ldots, j_{l}\right\}$, with $X_{j_{m}}, X_{j_{n}}$ root subgroups of Y corresponding to fundamental roots.
(i) If V is the $\left(T_{0} \cap Y\right)$-root subgroup of Y opposite to $X_{j_{m}}$, then $V=X_{j_{m}}^{*}$.
(ii) ${ }^{\prime}\left[\bar{X}_{j_{m}}^{*}, \bar{X}_{j_{n}}\right]=1$.

Proof. (i) was established at the end of the proof of (8.3). It follows from (i) that $X_{j_{m}}^{*}$ is a root group of Y corresponding to the negative of a fundamental root. Since the difference of fundamental roots is never a root we conclude that $\left[X_{j_{m}}^{*}, X_{j_{n}}\right]=1$. So (ii) follows from (6.10).
(8.5) Suppose G_{0} is a classical group and $Y \cong \operatorname{SL}\left(2, q^{j}\right)$ or $\operatorname{PSL}\left(2, q^{j}\right)$. Then (8.1) holds.

Proof. Here $U=X_{i}$ for some $1 \leq i \leq t$ and by (8.4), $Y=\left\langle X_{i}, X_{i}^{*}\right\rangle$. Let $\bar{D}=\left\langle\bar{X}_{i}, \bar{X}_{i}^{*}\right\rangle$. By (3.5), \bar{D} is a reductive group and $\bar{D}=\bar{D}_{1} \cdots \bar{D}_{m}$ a commuting product of a $\langle\sigma\rangle$-orbit of reductive quasisimple groups, each generated by \bar{T}-root subgroups of \bar{G}. We must show that $m=j$ and that $\bar{D}_{1} \cong \operatorname{SL}(2, K)$ or $\operatorname{PSL}(2, K)$. Suppose $m>1$. Then $O^{p^{\prime}}\left(\bar{D}_{\sigma}\right)$ is isomorphic to $O^{p^{\prime}}\left(\left(\bar{D}_{1}\right)_{o^{m}}\right)$, modulo centers. Also, $\bar{X}_{i}=\Pi_{l}\left(\bar{X}_{i} \cap \bar{D}_{l}\right)$. Replacing G by D_{1}, σ by σ^{m}, \bar{X}_{i} by $\bar{X}_{i} \cap \bar{D}_{1}, \bar{T}$ by $\left(\bar{T} \cap D_{1}\right)_{g^{m}}$, and Y by the projection of Y to \bar{D}_{1}, we may assume that $\bar{G}=\left\langle\bar{X}_{i}, \bar{X}_{i}^{*}\right\rangle$. Then $Y<G_{0}$.

By (4.1) and (4.2) $X_{i} \leq O_{P}(P)$ for P a parabolic subgroup of G_{0} corresponding to the stabilizer of a singular l-space of the usual module, M, of the appropriate classical group. In view of (4.1) and (4.2), we may assume that $G_{0} \cong \operatorname{PSp}(2 s, q), \operatorname{PSU}(2 s, q)$ or $\mathrm{PSO}^{+}(2 s, q)^{\prime}$. In all cases $s>1$.

It will be more convenient to deal with the appropriate linear group $G_{1}=\mathrm{Sp}(2 s, q), \mathrm{SU}(2 s, q), \mathrm{SO}^{+}(2 s, q)^{\prime}$, respectively. Accordingly, we set $\bar{G}_{1}=\operatorname{Sp}(2 s, K), \mathrm{SL}(2 s, K)$, or $\operatorname{SO}(2 s, K)$. Then \bar{G}_{1} is a covering group of \bar{G} and universal except for the orthogonal group. We replace G by G_{1} and \bar{G} by \bar{G}_{1}, in order to consider module actions. We retain the other notation, viewing X_{i} and T_{0} as subgroups of G_{1}, \bar{X}_{i} and \bar{T} as subgroups of \bar{G}_{1}. Let $\bar{M}=K \otimes M$, the natural module for \bar{G}_{1}, where in the symplectic and orthogonal cases the form is extended naturally.

From (4.2)(vi) and (3.4)(vi), we see that under the action of T_{0}, M decomposes into the direct sum of the two inequivalent, irreducible, T_{0}-submodules, M_{1} and M_{2}, each of dimension s. Moreover, the stabilizer in G_{1} of M_{i} induces on M_{i} either $\mathrm{GL}(s, q)$, a subgroup of index $q+1$ in $\mathrm{GL}\left(s, q^{2}\right)$, or a subgroup of index 2 in $\mathrm{GL}(s, q)$, according to $G_{1} \cong$ $\mathrm{Sp}(2 s, q), \mathrm{SU}(2 s, q)$, or $\mathrm{SO}^{+}(2 s, q)^{\prime}$.

We claim that $Y=\left\langle X_{i}, X_{i}^{*}\right\rangle$ acts irreducibly on M. First note that $T_{0} \leq N(Y)$ and by $(5.1) C_{T_{0}}(Y)=C_{T_{0}}\left(X_{i}\right) \leq C_{\bar{T}}\left(\bar{X}_{t}\right)=C_{\bar{T}}\left(\bar{G}_{1}\right)=Z\left(\bar{G}_{1}\right)$. Therefore, $\left(T_{0} \cap Y\right) Z\left(G_{1}\right)$ has index at most 2 in T_{0}. Using primitive divisors we see that $T_{0} \cap Y$ acts irreducibly on M_{1} and on M_{2}. Also, the assumptions $p \geq 5$ and $q>5$ imply that $T_{0} \cap Y$ contains an element, t, inducing scalar action for different scalars on M_{1} and M_{2}. So if Y acts reducibly on M, then Y stabilizes either M_{1} or M_{2}. But this is inconsistent with $t \in T_{0} \cap Y \leq Y($ as $t \notin Z(Y))$, and the claim holds.

View \bar{M} as a $K\left[T_{0}\right]$-module. Since M_{1} and M_{2} are inequivalent, and irreducible as $\left(T_{0} \cap Y\right)$-spaces, \bar{M} is the direct sum of 1-dimensional $K\left[T_{0} \cap Y\right]$-modules affording distinct linear representations of $T_{0} \cap Y$. As $\bar{T} \leq C\left(T_{0}\right)$, each $K\left[T_{0} \cap Y\right]$-submodule is also a $K[\bar{T}]$-submodule of \bar{M}.

Since $\left[M, X_{i}\right.$] and $\left[M, X_{i}^{*}\right]$ are $\left(T_{0} \cap Y\right)$-invariant, it follows that $M=\left[M, X_{i}\right] \oplus\left[M, X_{i}^{*}\right]$. Write $\left.\bar{M}\right|_{Y}=V_{1} \oplus \cdots \oplus V_{r}$, with each V_{i} an absolutely irreducible $K[Y]$-module. Then, for $1 \leq k \leq r, V_{k}=$ [$\left.V_{k}, X_{i}\right] \oplus\left[V_{k}, X_{l}^{*}\right]$. It follows (see (13.1) of [26]) that V_{k} is isomorphic to the extension (to K) of an algebraic conjugate of the usual module for $\mathrm{SL}\left(2, q^{j}\right)$. By the previous paragraph, each V_{k} is \bar{T}-invariant. Therefore, V_{k} is invariant under $\langle Y, \bar{T}\rangle$. But $\left\langle X_{i}, \bar{T}\right\rangle=\bar{X}_{i} \bar{T}$ and $\left\langle X_{i}^{*}, \bar{T}\right\rangle=\bar{X}_{i}^{*} \bar{T}$. Hence, $\langle Y, \bar{T}\rangle \geq\left\langle\bar{X}_{i}, \bar{X}_{i}^{*}\right\rangle=\bar{G}_{1}$, and this shows that $r=1$ and $\bar{G}_{1} \cong \operatorname{SL}(2, K)$. But this contradicts $s>1$, proving (8.5).
(8.6) Suppose $Y \cong \operatorname{SL}\left(2, q^{j}\right)$ or $\operatorname{PSL}\left(2, q^{J}\right)$. Then (8.1) holds.

Proof. In view of (8.5) we may assume that G_{0} is an exceptional group. As in the proof of (8.5) we reduce to the case $\bar{G}=\left\langle\bar{X}_{i}, \bar{X}_{i}^{*}\right\rangle$, where $Y=\left\langle X_{i}, X_{i}^{*}\right\rangle$. Also $C_{T_{0}}\left(X_{i}\right)=C_{T_{0}}\left(X_{i}^{*}\right)=C_{T_{0}}\left(\left\langle X_{i}, X_{i}^{*}\right\rangle\right) \leq C_{T_{0}}\left(\left\langle\bar{X}_{i}, \bar{X}_{i}^{*}\right\rangle\right)$ $\leq Z(\bar{G})$, so replacing \bar{G} by $\bar{G} / Z(\bar{G})$ we may assume that $C_{T_{0}}\left(X_{i}\right)=1$. Thus $Y \cong \operatorname{PSL}\left(2, q^{j}\right)$ and T_{0} is cyclic of order $q^{j}-1$ or $\frac{1}{2}\left(q^{j}-1\right)$. An argument with primitive divisors shows that \bar{G} has Lie rank j (observe that the assumption $p \geq 5$ excludes the cases $G_{0} \cong \operatorname{Sz}(q),{ }^{2} G_{2}(q)$, or $\left.{ }^{2} F_{4}(q)\right)$.

Let P be the unique parabolic subgroup of G satisfying $T \leq P$ and $X_{i} \leq O_{p}(P)($ see $(3.5)(\mathrm{v}))$, and let $P=\bar{P}_{\sigma}$ for $\bar{P}=\bar{P}^{\sigma}$, a parabolic subgroup of \bar{G}. By (6.4) $\bar{T} \leq \bar{P}$ and we may assume $\bar{B} \leq \bar{P}$. We will consider
possibilities for P, locate T in P and \bar{T} in \bar{P}, and indicate the element of the Weyl group of \bar{P} that does the twisting. That is we present $\sigma=\tau q$ and determine the orbits of τ on root subgroups in $R_{u}(\bar{P})$. We can then determine X_{i}, \bar{X}_{i}, and $\left\langle\bar{X}_{i}, \bar{X}_{i}^{*}\right\rangle$. Order considerations show $G_{0} \not \not^{3} D_{4}(q)$.

First suppose $G_{0} \cong G_{2}(q)$. Then $\bar{P}=\left\langle\bar{B}, s_{1}\right\rangle$ or $\left\langle\bar{B}, s_{2}\right\rangle$, and we may take $\tau=s_{1}$, or s_{2}, accordingly. Since $\left|\Delta_{i}\right|=2, \bar{X}_{i}=\left\langle U_{\alpha}, U_{\beta}\right\rangle$, where $\{\alpha, \beta\}$ is one of $\left\{\alpha_{2}, \alpha_{1}+\alpha_{2}\right\},\left\{\alpha_{1}+3 \alpha_{2}, 2 \alpha_{1}+3 \alpha_{2}\right\},\left\{\alpha_{1}, \alpha_{1}+3 \alpha_{2}\right\}$, or $\left\{\alpha_{1}+\alpha_{2}, \alpha_{1}+2 \alpha_{2}\right\}$. But \bar{X}_{i} is abelian, and the commutator relations show this to be false in the first, third, and fourth cases. In the second case $\left\langle\bar{X}_{i}, \bar{X}_{i}^{*}\right\rangle=\left\langle\bar{U}_{ \pm \alpha}, \bar{U}_{ \pm \beta}\right\rangle \cong \operatorname{SL}(3, q)$ (the group generated by all long root subgroups), contradicting $\left\langle\bar{X}_{i}, \bar{X}_{i}^{*}\right\rangle=\bar{G}$. So $G=G_{2}(q)$ is not possible.

For the rest of the proof of (8.6) and for the proof of (8.8) it will be convenient to introduce the following table, which indicates possible choices for \bar{G}, \bar{P}, τ, and $\bar{\Sigma}_{i}$. In each case the containment $T_{0} \leq P$ limits the choices for \bar{P} (usually just one possibility) and we choose an appropriate representative for $\tau=w$ or $\tau=w \delta$ with $w \in W(\bar{P})$ and δ a graph automorphism (only relevant in the case $G={ }^{2} E_{6}(q)$). The choices for τ are based on the facts: T_{0} is cyclic, minisotropic in P of order divisible by $\frac{1}{2}\left(q^{2}-1\right), \tau$ has an orbit of length j on $\bar{\Sigma}_{i}$ (recall that $\left|\bar{\Sigma}_{i}\right|=j$) and $\left\langle\bar{X}_{i}, \bar{X}_{i}^{*}\right\rangle=\bar{G}$. The latter fact implies that if $\bar{\Sigma}$ has roots of different lengths, then $\bar{\Sigma}_{i}$ is an orbit of short roots. Otherwise, $\left\langle\bar{X}_{i}, \bar{X}_{i}^{*}\right\rangle$ would be contained in the proper subgroup of \bar{G} generated by all root subgroups, \bar{U}_{α}, with α long. Similarly, if $\bar{P}=\left\langle\bar{B}, s_{i} \mid i \neq i_{0}\right\rangle$ (\bar{P} has this form, even if $\left.G={ }^{2} E_{6}(q)\right)$, then each $\alpha \in \bar{\Sigma}_{i}$ must have $\alpha_{i_{0}}$-coefficient equal to 1 . These conditions eliminate many possibilities for $\bar{\Sigma}_{i}$.

Table (8.7)

G	i_{0}	τ	orbit representative of $\bar{\Sigma}_{i}$
$F_{4}(q)$	1	$\left(s_{2} s_{3}\right)\left(s_{2}^{s_{2} s_{4}}\right)$	(none possible)
	4	$\left(s_{3} s_{2}\right)\left(s_{3}^{s_{3} s_{1}}\right)$	(none possible)
${ }^{2} E_{6}(q)$	4	$s_{2} s_{1} s_{3} \delta$	(none possible)
$E_{6}(q)$	2	$s_{1} s_{4} s_{6} s_{3} s_{5}$	(none possible)
$E_{7}(q)$	2	$s_{1} s_{4} s_{6} s_{3} s_{5} s_{7}$	$\underset{1}{00000}, \underset{1}{001111}, \underset{1}{111111}$
$E_{8}(q)$	2	$s_{1} s_{4} s_{6} s_{8} s_{3} s_{5} s_{7}$	$\begin{array}{ccc} 0000000 & 1111111, & 1121000 \\ 1 & 1 & 1 \\ 0011111 & 1232111 & \\ 1 & 1 & \end{array}$

To complete the proof of (8.6) one simply checks (with a bit of calculation) that in none of the cases is \bar{X}_{i} an abelian group.
(8.8) If $Y \cong \mathrm{SU}\left(3, q^{j}\right)$ or $\operatorname{PSU}\left(3, q^{j}\right)$, then (8.1) holds.

Proof. Write $U=X_{i}$ and $Z(U)=X_{k}$, for $i, k \in\{1, \ldots, t\}$. Then $\left|\bar{\Sigma}_{i}\right|=2 j$ and $\left|\bar{\Sigma}_{k}\right|=j$. Set $\bar{P}=\left\langle\bar{X}_{i}, \bar{X}_{i}^{*}\right\rangle$ and $P=\bar{P}_{\sigma} \cap G_{0}$. First assume that G_{0} is a classical group. Then the structure of \bar{P} is given in (4.2). Using the notation of (4.2) we first note that X_{i} nonabelian implies $r \neq 2 s$. The result then follows from (4.2)(iv) and (4.2)(v). We may now assume G_{0} to be an exceptional group.

Arguing as in the proof of (8.6) we may assume $\bar{G}=\left\langle\bar{X}_{i}, \bar{X}_{i}^{*}\right\rangle$ and passing to quotient groups, if necessary, we may assume $Z(\bar{G})=Z\left(G_{0}\right)=$ 1. Also, $Z\left(Y T_{0}\right) \leq Z(\bar{G}) \cap T_{0}=1$, so $Y T_{0} \cong \operatorname{PSU}\left(3, q^{j}\right)$ or $\operatorname{PGU}\left(3, q^{j}\right)$, and T_{0} is cyclic of order $q^{2 j}-1$ or $\frac{1}{3}\left(q^{2 j}-1\right)$. As in (8.6) we conclude that \bar{G} has Lie rank $2 j$. This immediately rules out the case $G_{0} \cong E_{7}(q)$ and ${ }^{3} D_{4}(q)$ is ruled out by order considerations (namely, $\left|T_{0}\right|$ divides $|P|)$.

Suppose $G \cong G_{2}(q)$. Then $Y \cong \operatorname{PSU}(3, q)$. The remarks preceding Table (8.7) show that $\bar{\Sigma}_{i}=\left\{\beta_{1}, \beta_{2}\right\}$ for short roots $\beta_{1}, \beta_{2} \in \bar{\Sigma}$ and (6.7) shows that $\left[\bar{X}_{i}, \bar{X}_{i}\right]=\left[\bar{U}_{\beta_{1}}, \bar{U}_{\beta_{2}}\right]=\bar{U}_{\gamma}$ for $\gamma \in \bar{\Sigma}$. The only possibility is $\bar{P}=N_{G}\left(\bar{U}_{\gamma}\right)$, with γ a long root. We may take $\tau=s q$, where $s \in N_{G_{0}}\left(T_{0}\right)$ and s is in the derived group of the Levi factor of \bar{P}. Then $s \in C\left(\left\langle\bar{U}_{\gamma}, \bar{U}_{\gamma}^{*}\right\rangle\right)$, which gives $s \in C_{G_{0}}\left(\left\langle X_{k}, X_{k}^{*}\right\rangle\right)$. Hence $C_{G_{0}}(s) \geq \operatorname{SL}(2, q)$. On the other hand, s normalizes $\left\langle X_{i}, X_{i}^{*}\right\rangle=Y$, since s normalizes T_{0}, X_{i}, and X_{i}^{*}. So s induces a graph automorphism of $Y \cong \operatorname{PSU}(3, q)$, forcing $C_{Y}(s)^{\prime} \cong$ $\operatorname{PSL}(2, q)$. This is a contradiction. Therefore $G_{0} \neq G_{2}(q)$.

The remaining cases are $G_{0} \cong F_{4}(q),{ }^{2} E_{6}(q), E_{6}(q)$, and $E_{8}(q)$, where we refer to Table (8.7).. The first three are ruled out immediately. Suppose $G_{0} \cong E_{8}(q)$. Here $\left|\Sigma_{k}\right|=j=4$, so $\left[\bar{X}_{i}, \bar{X}_{i}\right]$ is the product of $4 \bar{T}$-root subgroups of \bar{G}. However, for each of the possible orbits listed in (8.7) a direct check with the commutator relations shows that [\bar{X}_{i}, \bar{X}_{i}] is the product of more than $4 \bar{T}$-root subgroups. This proves (8.8).

We have now proved (8.1) when Y has Lie rank 1 (noting that $p \geq 5$ excludes Suzuki groups and Ree groups). Next, we establish (8.1) for groups of Lie rank 2 . We will use the following notation. For O a representation of the abelian group A and $n \in Z, O^{n}$ is the representation given by $O^{n}(a)=O\left(a^{n}\right)$.
(8.9) Suppose $Y \cong \operatorname{SL}\left(3, q^{j}\right)$ or $\operatorname{PSL}\left(3, q^{j}\right)$. Then (8.1) holds.

Proof. Write $U=X_{i} X_{k} X_{l}$ with $X_{l}=\left[X_{i}, X_{k}\right]$, and regard these subgroups as irreducible $\mathbf{F}_{p}\left[T_{0}\right]$-modules. Set $q=p^{a}$. There are linear \mathbf{F}_{q}-representations $\varphi_{i}, \varphi_{k}, \varphi_{l}$ of T_{0} such that $\mathbf{F}_{q^{\prime}} \otimes_{\mathbf{F}_{p}} X_{i}=\varphi_{i}^{p} \oplus \cdots \oplus \varphi_{i}^{p^{a}}$. Similarly for X_{k}, X_{l}. We have $\left\langle X_{i}, X_{i}^{*}\right\rangle \cong\left\langle X_{k}, X_{k}^{*}\right\rangle \cong\left\langle X_{l}, X_{l}^{*}\right\rangle \cong \mathrm{SL}\left(2, q^{j}\right)$, so by (8.6) each of $\left\langle\bar{X}_{i}, \bar{X}_{i}^{*}\right\rangle,\left\langle\bar{X}_{k}, \bar{X}_{k}^{*}\right\rangle$, and $\left\langle\bar{X}_{l}, \bar{X}_{l}^{*}\right\rangle$ is the commuting product of a $\langle\sigma\rangle$-orbit of j copies of $\operatorname{SL}(2, K)$, each generated by a \bar{T}-root subgroup of \bar{G} and its opposite. Write $\bar{X}_{i}=\bar{U}_{\beta_{1}} \times \cdots \times \bar{U}_{\beta}, \bar{X}_{k}=$ $\bar{U}_{\gamma_{1}} \times \cdots \times \bar{U}_{\gamma_{i}}$, and $\bar{X}_{l}=\bar{U}_{\delta_{1}} \times \cdots \times \bar{U}_{\delta_{i}}$. By (6.7) we have $\left[\bar{X}_{i}, \bar{X}_{k}\right]=\bar{X}_{l}$.

Let $Z=Z\left(Y T_{0}\right)$ and let $z=y t \in Z$, with $y \in Y$ and $t \in T_{0}$. Then $y \in C_{Y}\left(Y \cap T_{0}\right)=Y \cap T_{0}$ by (2.8). So $Z \leq T_{0}$. Passing to $Y T_{0} / Z$ and applying (2.7), we conclude that $N_{Y}\left(Y \cap T_{0}\right) \leq N_{Y}\left(T_{0}\right) \leq N_{\bar{G}}(\bar{T})$. Since $N_{Y}\left(Y \cap T_{0}\right)$ is transitive on the ($\left.T_{0} \cap Y\right)$-root subgroups of Y, we see that $\bar{\Sigma}_{i}, \bar{\Sigma}_{k}$, and $\bar{\Sigma}_{l}$ are conjugate under $N_{\bar{G}}(\bar{T})$. In particular, the roots in $\bar{\Sigma}_{i} \cup \bar{\Sigma}_{k} \cup \bar{\Sigma}_{l}$ are all of the same length. Consequently, we may choose notation so that $\left[\bar{U}_{\beta,}, \bar{U}_{\gamma,}\right]=\bar{U}_{\delta_{1}}$.

Let φ, ψ, θ be the K-representations of \bar{T} afforded by $\bar{U}_{\beta}, \bar{U}_{\gamma,}, \bar{U}_{\delta,}$, respectively restricted to T_{0}. The commutator relations show that $\varphi \psi=\theta$. It follows from (5.1) that we may assume $\varphi=\varphi_{i}^{K}, \psi=\varphi_{k}^{K}, \theta=\varphi_{l}^{K}$. We claim that $\left[\bar{U}_{\beta_{1}}, \bar{U}_{\gamma_{r}}\right]=1$, for $r>1$. Otherwise, $\left[\bar{U}_{\beta_{1}}, \bar{U}_{\gamma_{r}}\right]=\bar{U}_{\delta_{s}}$ for $\delta_{s}=\beta_{1}$ $+\gamma_{r}$. Then $\theta^{q^{s-1}}=\varphi \psi^{q^{r-1}}$ and since $\varphi \psi=\theta$ we obtain $\varphi^{u}=\psi^{0}$, for $u=q^{s-1}-1$ and $v=q^{r-1}-q^{s-1}$. This implies $\left(\varphi_{i}^{u}\right)^{K}=\left(\varphi_{k}^{v}\right)^{K}$. Let T_{1} $=T_{0} \cap\left\langle X_{i}, X_{i}^{*}\right\rangle$, a Cartan subgroup of $\left\langle X_{i}, X_{i}^{*}\right\rangle \cong \operatorname{SL}\left(2, q^{j}\right)$. If $\tilde{\varphi}_{i}$ and $\tilde{\varphi}_{k}$ denote $\varphi_{i} \mid T_{1}$ and $\left.\varphi_{k}\right|_{T_{1}}$, respectively, then computation within Y yields $\tilde{\varphi}_{i}=\left(\tilde{\varphi}_{k}^{-2}\right)^{p^{c}}$ for some $0 \leq c<a j$. Therefore, $\left(\tilde{\varphi}_{k}^{v}\right)^{K}=\left(\tilde{\varphi}_{k}^{-2 p^{c} u}\right)^{K}$ and so $\tilde{\varphi}_{k}^{v+2 p^{c} u}=1$. But this contradicts $\left|\tilde{\varphi}_{k}\right|=q^{j}-1$, proving the claim.

Transforming the commutator relation of the previous paragraph by powers of σ and using (8.4)(ii) we obtain the following commutator relations:
(i) $\left[\bar{U}_{\beta}, \bar{U}_{\gamma_{r}}\right]=\bar{U}_{\delta,}$, for $1 \leq r \leq j$.
(ii) $\left[\bar{U}_{ \pm \beta_{r}}, \bar{U}_{ \pm \gamma_{s}}\right]=1$, for $r \neq s$ in $\{1, \ldots, j\}$.

For $1 \leq r \leq j$ let $\bar{D}_{r}=\left\langle\bar{U}_{ \pm \beta_{r}}, \bar{U}_{ \pm r_{r}}\right\rangle$. Then $\bar{D}_{r} \cong \mathrm{SL}(3, K)$ or $\operatorname{PSL}(3, K)$, and the above relations give $\left[\begin{array}{|l}\bar{D}_{r}\end{array},{\overline{D_{s}}}_{s}\right]=1$ for $r \neq s$. Since $\left\langle\bar{X}_{i}, \bar{X}_{i}^{*}\right\rangle=$ $\bar{D}_{1} \cdots \bar{D}_{j}$, the proof of (8.9) is complete.
(8.10) Suppose Y is a non-trivial image of $\operatorname{Sp}\left(4, q^{j}\right)$ or $G_{2}\left(q^{j}\right)$. Then (8.1) holds.

Proof. The arguments are similar to those in (8.9), although slightly more complicated. We consider only the (more difficult) case of $G_{2}\left(q^{j}\right)$.

Let α, β be fundamental long and short roots of the root system of Y, so that the complete set of positive roots is $\{\alpha, \beta, \alpha+\beta, \alpha+2 \beta, \alpha+3 \beta$, $2 \alpha+3 \beta\}$. Say X_{i} and X_{k} are the $\left(T_{0} \cap Y\right)$-root subgroups of Y corresponding to α and β, respectively. Let X_{r}, X_{s}, X_{t}, and X_{w} correspond to the compound roots $\alpha+\beta, \alpha+2 \beta, \alpha+3 \beta, 2 \alpha+3 \beta$, respectively. Then $\left[X_{i}, X_{k}\right]=X_{r} X_{s} X_{t} X_{w}$, so (6.7) implies that $\left[\bar{X}_{i}, \bar{X}_{k}\right]=\bar{X}_{r} \bar{X}_{s} \bar{X}_{t} \bar{X}_{w}$.

Write $\Delta_{i}=\left\{\bar{U}_{\beta_{1}}, \ldots, \bar{U}_{\beta_{j}}\right\}$, where $\bar{U}_{\beta_{2}}=\bar{U}_{\beta_{1}}^{\sigma}, \ldots, \bar{U}_{\beta_{j}}=\bar{U}_{\beta_{j-1}}^{\sigma}$. Similarly, write $\Delta_{k}=\left\{\bar{U}_{\gamma_{1}}, \ldots, \widetilde{U}_{\gamma_{j}}\right\}$. Set $q=p^{a}$ and regard each of $X_{i}, X_{k}, X_{r}, X_{s}, X_{t}$, and X_{w} as aj-dimensional $\mathbf{F}_{p}\left[T_{0}\right]$-modules. As in (8.9) we choose linear $\mathbf{F}_{q^{j}}\left[T_{0}\right]$ representations $o_{i}, o_{k}, o_{r}, o_{s}, o_{t}, o_{w}$ so that $\mathbf{F}_{q^{\prime}} \otimes_{\mathbf{F}_{p}} X_{l}=$ $o_{l}^{p} \oplus \cdots \oplus o_{l}^{p^{a j}}$ for $l \in\{i, k, r, s, t, w\}$. We may assume that o_{i}^{K}, o_{k}^{K} are the K-representations that T_{0} induces on $\bar{U}_{\beta_{1}}, \bar{U}_{\gamma_{1}}$, respectively, and we may assume $\left[\bar{U}_{\beta_{1}}, \bar{U}_{\gamma_{1}}\right] \neq 1$.

From the commutator relations for $G_{2}\left(q^{j}\right)$ it follows that there exist $\alpha, \beta, \gamma, \delta, \varepsilon, \eta, \mu, \nu \in\{1, \ldots, a j\}$ and that $o_{r}=o_{i}^{p^{\alpha}} o_{k}^{p^{\beta}}, o_{s}=o_{i}^{p^{\gamma}} o_{k}^{2 p^{\delta}}, o_{t}=$ $o_{i}^{p^{\varepsilon}} o_{k}^{3 p^{\eta}}$, and $o_{w}=o_{i}^{2 p^{\mu}} o_{k}^{3 p^{\nu}}$.

Suppose $\left[\bar{U}_{\beta^{\prime}}, \bar{U}_{\gamma_{l}}\right] \neq 1$ for $1 \leq l \leq j$. Then $o_{i}^{K}\left(o_{k}^{q^{t-1}}\right)^{K}=\left(\left(o_{i}^{p^{\alpha}} o_{k}^{p^{\beta}}\right)^{q^{m}}\right)^{K}$, $\left(\left(o_{i}^{p^{\gamma}} o_{k}^{2 p^{\delta}}\right)^{q^{m}}\right)^{K},\left(\left(o_{i}^{p^{p}} o_{k}^{3 p^{\eta}}\right)^{q^{m}}\right)^{K}$, or $\left(\left(o_{i}^{2 p^{\mu}} o_{k}^{3 p^{\nu}}\right)^{q^{m}}\right)^{K}$, for some $0 \leq m \leq j-1$. There are elements $t, v \in T_{0} \cap Y$ such that $o_{i}(t)=o_{k}(v)=1$ (i.e., $t \in$ $\left.C\left(X_{i}\right), v \in C\left(X_{k}\right)\right)$ and $\left|o_{i}(v)\right|=\left|o_{k}(t)\right|=q^{j}-1$. If $l=1$, evaluate at t and v and conclude that the first possibility must hold and $\alpha=\beta$. Now suppose $l>1$. Evaluating at t we again see that the first possibility must occur and we obtain the congruence $q^{l-1} \equiv p^{\alpha} q^{m}\left(\bmod p^{a j}-1\right)$. Evaluating at v we have $1 \equiv p^{\alpha} q^{m}\left(\bmod p^{a j}-1\right)$, contradicting the other congruence. Therefore, $\left[\bar{U}_{\beta_{1}}, \bar{U}_{\gamma_{1}}\right]=1$ for each $l>1$, and transforming by powers of σ we have $\left\langle\bar{X}_{i}, \bar{X}_{k}\right\rangle$ a central product of the groups $\left\langle\bar{U}_{\beta_{1}}, \bar{U}_{\gamma_{1}}\right\rangle, \ldots,\left\langle\bar{U}_{\beta_{j}}, \bar{U}_{\gamma_{j}}\right\rangle$. By (8.4)(ii), $\left[\bar{U}_{\beta_{g}}, \bar{U}_{-\gamma_{h}}\right]=1$ for $1 \leq g, h \leq j$, and by (8.6) $\left[\bar{U}_{\beta_{g}}, \vec{U}_{-\beta_{h}}\right]=1\left[\bar{U}_{\gamma_{g}}, \bar{U}_{-\gamma_{h}}\right]$ if $1 \leq g \neq h \leq j$. So letting $\bar{D}_{g}=$ $\left\langle\bar{U}_{ \pm \beta_{g}}, \bar{U}_{ \pm \gamma_{g}}\right\rangle$ for $1 \leq g \leq j$, we have $\left\langle\bar{X}_{i}, \bar{X}_{i}^{*}, \bar{X}_{j}, \bar{X}_{j}^{*}\right\rangle$ equal to the central product of the semisimple groups $\bar{D}_{1}, \ldots, \overline{D_{j}}$.

The group \bar{D}_{1} has as its root system a rank 2 subsystem of $\bar{\Sigma}$. On the other hand, $\left\langle\bar{X}_{i}, \bar{X}_{h}\right\rangle=\left\langle\bar{U}_{\beta_{1}}, \bar{U}_{\gamma_{1}}\right\rangle \times \cdots \times\left\langle\bar{U}_{\beta_{j}}, \bar{U}_{\gamma_{j}}\right\rangle$ and $\left\langle X_{i}, X_{h}\right\rangle$ has nilpotence class 5. This forces \bar{D}_{1} to be of type $G_{2}(K)$ (it also forces $j=1$, since G_{2} is not a sub-root system of any other indecomposable system). Since $\left\{\bar{D}_{1}, \ldots, \bar{D}_{j}\right\}$ is an orbit under $\langle\sigma\rangle$, we have proved (8.10).
(8.11) Suppose Y is a non-trivial image of $\operatorname{SU}\left(4, q^{j}\right),{ }^{3} D_{4}\left(q^{j}\right)$, or $\operatorname{SU}\left(5, q^{j}\right)$. Then (8.1) holds.

Proof. We will discuss the most difficult case where Y is an image of $\operatorname{SU}\left(5, q^{j}\right)$. Here U is the product of four root subgroups, $X_{i}, X_{k}, X_{l}, X_{m}$,
where X_{i} and X_{k} are fundamental, $\left\langle X_{i}, X_{i}^{*}\right\rangle \cong \operatorname{SL}\left(2, q^{2 j}\right),\left\langle X_{k}, X_{k}^{*}\right\rangle \cong$ $\mathrm{SU}\left(3, q^{j}\right), X_{l}$ is a conjugate of X_{i}, and X_{m} a conjugate of X_{k}. In addition, each of X_{k}^{\prime} and X_{m}^{\prime} is a $\left(T_{0} \cap Y\right)$-root subgroup. Say $X_{k}^{\prime}=X_{r}$ and $X_{m}^{\prime}=X_{s}$. Then each of $X_{i}, X_{k}, X_{l}, X_{m}, X_{r}$, and X_{s} is a T-root subgroup of G.

View X_{i} and X_{k} / X_{k}^{\prime} as $2 a j$-dimensional $\mathbf{F}_{p}\left[T_{0}\right]$-modules, where $q=p^{a}$. There are linear $\mathbf{F}_{q^{2 j}}$-representations φ and ψ of T_{0} such that $\mathbf{F}_{q^{2}} \otimes X_{i}=$ $\varphi^{p} \oplus \cdots \oplus \varphi^{p^{2 a j}}$ and $\mathbf{F}_{q^{2}} \otimes\left(X_{\underline{k}} / X_{k}^{\prime}\right)=\psi^{p} \oplus \cdots \oplus \psi^{p^{2 a j}}$. Let $\Delta_{i}=$ $\left\{\bar{U}_{\beta_{1}}, \ldots, \bar{U}_{\beta_{2}}\right\}$ and $\Delta_{k}=\left\{\bar{U}_{\gamma_{1}}, \ldots, \bar{U}_{\gamma_{2}}\right\}$. We may assume that φ^{K}, ψ^{K} are the K-representations of T_{0} induced on $\bar{U}_{\beta_{1}}, \bar{U}_{\gamma_{1}}$, respectively. We have [$\left.X_{i}, X_{k}\right]=X_{l} X_{m}$ (computation in Y) and so (6.10) implies $\left[\bar{X}_{i}, \bar{X}_{k}\right]=$ $\bar{X}_{l} \bar{X}_{m}$. We relabel if necessary so that $\left[\bar{U}_{\beta_{1}}, \bar{U}_{\gamma_{1}}\right] \neq 1$ and for $1 \leq l \leq j$, $\bar{U}_{\beta_{l}}=U_{\beta_{1}}^{\sigma^{I-1}}$ and $\bar{U}_{\gamma_{l}}=\bar{U}_{\gamma_{1}}^{\sigma^{I-1}}$.

Let δ, ω be linear $\mathbf{F}_{q^{2}, \text {-representations of }} T_{0}$ such that $\mathbf{F}_{q^{2}} \otimes X_{l}$, $\mathbf{F}_{q^{2}} \otimes\left(X_{m} / X_{m}^{\prime}\right)$ are the sums of the Galois conjugates of δ, ω respectively. Computations in Y imply that there exists α such that we may take $\omega=\varphi \psi^{p^{\alpha}}$. From the relation $\left[X_{i}, X_{l}\right]=X_{m}^{\prime}$ we see that for some β, γ we must have $\delta \varphi^{p^{\beta}}=\left(\omega^{1+q^{j}}\right)^{p^{\gamma}}=\left(\varphi \psi^{p^{\alpha}}\right)^{\left(1+p^{\prime}\right) p^{\gamma}}$.

Suppose $\left[\bar{U}_{\beta_{1}}, \bar{U}_{\gamma_{l}}\right] \neq 1$. Then by the above $\varphi \psi^{q^{1-1}}$ is a Galois conjugate of one of $\delta, \omega, \omega^{1+q^{\prime}}$. By the previous paragraph each of $\delta, \omega, \omega^{1+q^{\prime}}$ can be expressed in terms of φ and ψ. Make this substitution and consider the resulting relation between powers of φ and ψ. There exist elements t_{1}, t_{2} of T_{0} such that

$$
\varphi\left(t_{1}\right)=\psi\left(t_{2}\right)=1 \quad \text { and } \quad\left|\varphi\left(t_{2}\right)\right|=\left|\psi\left(t_{1}\right)\right|=\left(q^{2}-1\right) /(5, q+1)
$$

Substituting t_{1}, t_{2} into the above relations we see that such a relation can hold only if the obvious equalities hold between powers of φ and powers of ψ. First substitute $l=1$ and obtain $\varphi \psi=\omega$ and $\alpha=0$. Now let $l>1$ and obtain a contradiction. Consequently $\left[\bar{U}_{\beta_{1}}, \bar{U}_{\gamma_{l}}\right]=1$ for $l>1$, and transforming by powers of σ, we conclude $\left[\bar{U}_{\beta_{u}}, \bar{U}_{\gamma_{v}}\right]=1$ for any $u \neq v$. From (6.10) and the fact $\left[X_{i}, X_{k}\right] \neq 1$, we conclude that $\left[\bar{X}_{i}, \bar{X}_{k}\right] \neq 1$. Therefore, $\left[\bar{U}_{\beta_{v}}, \bar{U}_{\gamma_{v}}\right] \neq 1$, for $1 \leq v \leq 2 j$.

Consider the group $\bar{D}_{1}=\left\langle\bar{U}_{ \pm \beta_{1}}, \bar{U}_{ \pm \gamma_{1}}, \bar{U}_{ \pm \gamma_{l+1}}, \bar{U}_{ \pm \beta_{l+1}}\right\rangle$. The argument of (8.9) shows that $\left\langle\bar{U}_{ \pm \gamma_{1}}, \bar{U}_{ \pm \gamma_{j+1}}\right\rangle \cong \operatorname{SL}(3, K)$, with $\left\{\gamma_{1}, \gamma_{j+1}\right\}$ a fundamental system. By (8.6), $\left[\bar{U}_{ \pm \beta_{1}}, \bar{U}_{ \pm \beta_{j+1}}\right]=1$, and by (8.4)(ii) $\left[\bar{U}_{\beta_{u}}, \bar{U}_{-\gamma_{v}}\right]=$ $\left[\bar{U}_{-\beta_{u}}, \bar{U}_{\gamma_{v}}\right]=1$ for $1 \leq u, v \leq 2 j$.

We claim that β_{1} and γ_{1} are roots of the same length. Otherwise, the commutator relations applied to $\left[\bar{X}_{i}, \bar{X}_{k}\right]=\bar{X}_{l} \bar{X}_{m}$ shows that either $\left(\varphi \psi^{2}\right)^{K}$ or $\left(\varphi^{2} \psi\right)^{K}$ is a component of one of the representations $\mathbf{F}_{q^{\prime}} \otimes\left(X_{m} / X_{m}^{\prime}\right)$,
$\mathbf{F}_{q^{\prime}} \otimes X_{m}^{\prime}$, or $\mathbf{F}_{q^{\prime}} \otimes X_{l}$. The previous computations show that this is impossible, proving the claim. There are three classes of $\left(T_{0} \cap Y\right)$-root subgroups of Y (under $N_{Y}\left(T_{0} \cap Y\right)$), with representatives, X_{i}, X_{k}, X_{r}. Since $\left\langle\bar{U}_{ \pm \gamma_{1}}, \bar{U}_{ \pm \gamma_{t}+1}\right\rangle \cong \operatorname{SL}(3, K)$ we conclude that the roots in $\bar{\Sigma}_{i} \cup \bar{\Sigma}_{k} \cup \bar{\Sigma}_{l} \cup$ $\bar{\Sigma}_{\underline{m}} \cup \bar{\Sigma}_{r} \cup \Sigma_{s}$ are all long roots. Hence $\left\langle\bar{U}_{ \pm \beta_{1}}, \bar{U}_{ \pm \gamma_{1}}\right\rangle \cong \operatorname{SL}(3, K) \cong$ $\left\langle\bar{U}_{ \pm \gamma_{j+1}}, \bar{U}_{ \pm \beta_{j+1}}\right\rangle$. We can now apply (2.13) and conclude that \bar{D}_{1} is an image of $A_{4}(K)$ with fundamental set $\left\{\beta_{1}, \gamma_{1}, \gamma_{j+1}, \beta_{j+1}\right\}$.

Let $\bar{D}_{i}=\bar{D}_{1}^{\sigma^{\prime-1}}$, for $1 \leq i \leq j$. Using the aforementioned commutator information together with (8.6) and (8.8) we have $\left\langle\bar{D}_{1}, \ldots, \bar{D}_{j}\right\rangle=$ $D_{1} \cdots D_{J}$, a central product. Thus, (8.1) holds, completing the proof of (8.9).
(8.12) If Y has Lie rank at least 3 , then (8.1) holds.

Proof. Let $\beta_{1}, \ldots, \beta_{n}$ be a fundamental system for the root system of Y, with $U_{\beta_{1}}, \ldots, U_{\beta_{n}}$ the corresponding ($T_{0} \cap Y$)-root subgroups, corresponding to the labeling of the Dynkin diagram of Y (see §1). For $i=1, \ldots, n$, let $U_{\beta_{t}}=X_{l_{i}}$. Then $\left[X_{l_{1}}, X_{l_{n}}\right]=1$, while $\left[X_{l_{n-1}}, X_{l_{n}}\right] \neq 1$.

Fix $1 \leq i \leq n$ and write $\Delta_{l_{1}}=\left\{\bar{U}_{\beta_{l, 1}}, \ldots, \bar{U}_{\beta_{l, k},}\right\}$, where $k_{i}=j$ or $2 j$. Arrange notation so that $\bar{U}_{\beta_{l, k}}^{\sigma} \stackrel{1}{=} \bar{U}_{\beta_{l, k+1}}$, for each $1 \leq k<k_{i}$. Set $\bar{Z}=$ $\left\langle\bar{X}_{l_{1}}, \ldots, \bar{X}_{l_{n-1}}, \bar{X}_{l_{1}}^{*}, \ldots, \bar{X}_{l_{n-1}}^{*}\right\rangle$. Inductively, we know that $\bar{Z}=\bar{Z}_{1} \cdots \bar{Z}_{J}$, a commuting product of a $\langle\sigma\rangle$-orbit of Chevalley groups and $O^{p^{\prime}}\left(\bar{Z}_{\sigma}\right)=$ $\left\langle U_{ \pm \beta_{1}}, \ldots, U_{ \pm \beta_{n-1}}\right\rangle$.

First suppose that Y is an untwisted group. Then $k_{i}=j$ for $1 \leq i \leq n$ and we may reorder, if necessary, so that $\bar{Z}_{1}=\left\langle\bar{U}_{ \pm \beta_{1,1}}, \ldots, \bar{U}_{ \pm \beta_{n-1,1}}\right\rangle$. By (8.9) there exists a unique k such that $\bar{U}_{\beta_{n-1,1}}$ does not commute with $\bar{U}_{\beta_{n, k}}$, and we may reorder Δ_{n}, if necessary, so that $k=1$. Set $\bar{D}_{1}=\left\langle\bar{Z}_{1}, \bar{U}_{ \pm \beta_{n, 1}}\right\rangle$. For $i<n-1,\left[U_{\beta_{1}}, U_{\beta_{n}}\right]=1$, so by (6.10) $\left[\bar{X}_{l,}, \bar{X}_{l_{n}}\right]=1$, hence $\left[\bar{U}_{\beta_{l, 1}}, \bar{U}_{\beta_{n, 1}}\right]$ $=1$. This together with (8.4)(ii) yields $\left[\bar{U}_{ \pm \beta_{l, 1}}, \bar{U}_{ \pm \beta_{n, 1}}\right]=1$ for each $i<n$ - 1. By (8.9), $\left\langle\bar{U}_{ \pm \beta_{n-1,1},}, \bar{U}_{ \pm \beta_{n, 1}}\right\rangle \cong \operatorname{SL}(3, K)$, so we can apply (2.13) and conclude that \bar{D}_{1} has the same Dynkin diagram as does Y. Moreover, (8.6), (8.4), and induction show that $\bar{D}_{1} \cdots \bar{D}_{j}$ is a commuting product. The result follows.

Now suppose Y is a twisted group. The argument is essentially the same as above, although slightly more complicated. We have $\bar{Z}=\bar{Z}_{1} \cdots \bar{Z}_{J}$ and $Z=O^{p^{\prime}}\left(\bar{Z}_{\sigma}\right)=\left\langle U_{ \pm \beta_{1}}, \ldots, U_{ \pm \beta_{n-1}}\right\rangle$. To illustrate the charges we consider the case $Y \cong{ }^{2} E_{6}\left(q^{j}\right)$, leaving the remaining cases to the reader. Here, $n=4, \quad Z \cong O^{-}\left(8, q^{j}\right)^{\prime}$ and so $\bar{Z}_{1} \cong \cdots \cong \bar{Z}_{j} \cong D_{4}(K)$. Each ($T_{0} \cap Y$)-root group of Y is abelian, so $\bar{X}_{l_{1}}, \ldots, \bar{X}_{l_{4}}$ are each the direct
product of the root subgroups in $\Delta_{1}, \ldots, \Delta_{4}$, respectively. Moreover, $\left|\Delta_{1}\right|=\left|\Delta_{2}\right|=j$, while $\left|\Delta_{3}\right|=\left|\Delta_{4}\right|=2 j$.

Labeling roots as before, we may assume $\bar{Z}_{1}=\left\langle\bar{U}_{ \pm \beta_{3,1},} \bar{U}_{ \pm \beta_{2,1}}\right.$, $\left.\bar{U}_{\beta_{1,1},}, \bar{U}_{ \pm \beta_{3, j+1}}\right\rangle$. Here, $\boldsymbol{\sigma}^{j}$ interchanges the groups $\left\langle\bar{U}_{ \pm \beta_{3,1}}\right\rangle,\left\langle\bar{U}_{ \pm \beta_{3, j+1}}\right\rangle$, stabilizes the other two groups, and induces a graph automorphism on the Dynkin diagram of \bar{Z}_{1}. Now, $\bar{X}_{l_{4}}=\bar{U}_{\beta_{4,1}} \times \cdots \times \bar{U}_{\beta_{4,2}}$, and by induction we have the structure of $\left\langle\bar{X}_{l_{2}}, \bar{X}_{l_{3}}, \bar{X}_{l_{4}}, \bar{X}_{l_{2}}^{*}, \bar{X}_{l_{3}}^{*}, \bar{X}_{l_{4}}^{*}\right\rangle$. We may choose our notation so that $\left[\bar{U}_{\beta_{4}, 1}, \bar{U}_{\beta_{3,1}}\right] \neq 1$. Set $\bar{D}_{1}=\left\langle\bar{U}_{ \pm \beta_{4,4},} \underline{Z}_{1}, \bar{U}_{ \pm \beta_{4, j+1}}\right\rangle$ and argue, using (2.13) and commutator information, that $\bar{D}_{1} \cong E_{6}(K)$. The argument is then completed by setting $\bar{D}_{i}=\bar{D}_{1}^{\sigma^{\prime-1}}$ for $1 \leq i \leq j-1$ and observing that $\left\langle\bar{D}_{1}, \ldots, \bar{D}_{j}\right\rangle=\bar{D}_{1} \cdots \bar{D}_{j}$, a central product. This completes the proof of (8.10).

Theorem (8.1) follows from (8.6)-(8.12).
9. A technical result. In this section we apply the results of $\S 7$ and $\S 8$ and establish a technical result that will be useful in $\S 10$. Continue the assumptions $p \geq 5$ and $q>7$.

We introduce the following notation which will be used throughout the rest of the paper. If Y is a T_{0}-invariant subgroup of G, set $Y\left(T_{0}\right)=$ $\left\langle X_{i} \mid X_{i} \leq Y\right\rangle$ and $\bar{Y}\left(T_{0}\right)=\left\langle\bar{X}_{i} \mid X_{i} \leq Y\right\rangle$.

Throughout the section we let $Y \leq G$ with $Y^{T_{0}}=Y$ and $Y / O_{p}(Y)$ a central product of groups of Lie type in characteristic p. Let T_{1} be a p^{\prime}-Hall subgroup of a Sylow p-normalizer of Y. Then $T_{1} O_{p}(Y) / O_{p}(Y)$ is a Cartan subgroup of $Y / O_{p}(Y)$. This forces $C_{Y T_{0}}\left(T_{1}\right)$ to be solvable and we choose a p^{\prime}-Hall subgroup, T_{2}, of $C_{Y T_{0}}\left(T_{1}\right)$. Then $T_{2} \geq T_{1}$. We call T_{2} a Cartan subgroup of $Y T_{0}$.
(9.1) (i) T_{2} is a maximal torus of G_{0};
(ii) $Y=Y\left(T_{2}\right)=O^{p^{\prime}}\left(\bar{Y}\left(T_{2}\right)\right)_{\sigma}$ and $Y T_{0}=Y T_{2}$;
(iii) $\bar{Y}\left(T_{2}\right)=\bar{Y}\left(T_{0}\right)$ and $\bar{Y}\left(T_{2}\right) \bar{T}_{2}=\bar{Y}\left(T_{2}\right) \bar{T}$, where $\bar{T}_{2}=C_{G}\left(T_{2}\right)^{0}$ (the maximal torus of \bar{G} containing T_{2});
(iv) T_{2} can be chosen so that there is a T_{2}-invariant subgroup $J \leq Y$ and Y is the semidirect product $Y=O_{p}(Y) J$ and $J T_{2}=J T_{0}$;
(v) T_{2} is a p^{\prime}-Hall subgroup of a Sylow p-normalizer of $Y T_{0}$.

We remark that a missing item in (9.1) is the assertion $Y=Y\left(T_{0}\right)$. At this stage we do not even have $G_{0}=G_{0}\left(T_{0}\right)$; that is we have yet to establish the fact that G_{0} is generated by its T_{0}-root subgroups.

The rest of this section concerns the proof of (9.1). We first show that (i) holds, noting that this is just (7.2) in case $O_{p}(Y)=1$. So suppose $O_{p}(Y) \neq 1$ and let \bar{P} be the canonical parabolic subgroup of \bar{G} with $O_{p}(Y) \leq R_{u}(\bar{P})$ and $N_{\bar{G}}\left(O_{p}(Y)\right) \leq \bar{P}$. Then \bar{P} is σ-invariant and (6.4) shows $\bar{T} \leq \bar{P}$. Let \bar{L} be the Levi factor of \bar{P}, with respect to the maximal torus \bar{T}. Set $J=\bar{L} \cap Y R_{u}(\bar{P})$. Then $J \leq O^{p^{\prime}}\left(\bar{L}_{\sigma}\right)=L$ and J is a $T_{0^{-}}$ invariant commuting product of groups of Lie type in characteristic p. Now let \hat{T}_{1} be a Cartan subgroup of J and $\hat{T}_{2}=C_{J T_{0}}\left(\hat{T}_{1}\right)$. By (7.2), \hat{T}_{2} is a maximal torus of G_{0}. But $J R_{u}(\bar{P})_{\sigma}=Y R_{u}(\bar{P})_{\sigma}$ implies that \hat{T}_{2} and T_{2} are conjugate by an element in $R_{u}(\bar{P})_{\sigma}$. Hence (i) holds.

Let $\bar{T}_{2}=C_{\bar{G}}\left(T_{2}\right)^{0}$, a maximal torus. We claim $Y=Y\left(T_{2}\right)=$ $O^{p^{\prime}}\left(\left(\bar{Y}\left(T_{2}\right)\right)_{\sigma}\right)$. Let V_{1} and V_{2} be Sylow p-subgroups of Y normalized by T_{1} and such that $Y=\left\langle V_{1}, V_{2}\right\rangle$. The argument of (7.5) applied either to $Y T_{0}$ or to $Y T_{0} R_{u}(\bar{P})_{\sigma} / R_{u}(\bar{P})_{\sigma}$ (according to whether or not $O_{p}(Y)=1$) shows that $T_{2} \leq N\left(V_{1}\right) \cap N\left(V_{2}\right)$. By (6.9), V_{1} and V_{2} are each products of T_{2}-root subgroups of G_{0} and $V_{i}=\bar{V}_{i}\left(T_{2}\right)_{\sigma}$, for $i=1,2$. As $Y=\left\langle V_{1}, V_{2}\right\rangle$ we have $Y=\underline{Y}\left(T_{2}\right)$. If $O_{p}(Y)=1$, let $\bar{K}=\bar{G}$, and if $O_{p}(Y) \neq 1$ let \bar{P} be as above and \bar{K} the Levi factor of \bar{P} containing \bar{T}_{2}. So $\bar{K}=\bar{K}^{\sigma}$.

If $O_{p}(Y) \neq 1$, embed each \underline{V}_{i} in the unipotent radical of a $\langle\sigma\rangle T_{2^{-}}$ invariant parabolic subgroup of \bar{P} and use (5.1) and (5.5) to conclude that $\bar{V}_{i}\left(T_{2}\right) \leq \bar{P}$, for $i=1,2$. Moreover, in this situation, each \bar{T}_{2}-root subgroup of \bar{P} is contained either in $R_{u}(\bar{P})$ or in \bar{K}. It follows that $\bar{V}_{i}\left(T_{2}\right)$ $=\overline{O_{p}(Y)}\left(T_{2}\right)\left(\bar{V}_{i}\left(T_{2}\right) \cap \bar{K}\right)$ for $i=1,2$. By (6.10) $\overline{O_{p}(Y)}\left(T_{2}\right)$ is normalized by $\bar{V}_{i}\left(T_{2}\right) \cap \bar{K}$ for $i=1,2$. Therefore, $\bar{Y}\left(T_{2}\right)=\overline{O_{p}(Y)}\left(T_{2}\right)\left(\bar{Y}\left(T_{2}\right) \cap \bar{K}\right)$, and this also holds if $O_{p}(Y)=1$. Since $V_{i}=O_{p}(Y)\left(V_{i} \cap \bar{K}\right)$, for $i=1,2$, $Y \cap \bar{K}$ complements $O_{p}(Y)$. Hence, (8.1)(iii) shows that $Y\left(T_{2}\right)=$ $O^{p^{\prime}}\left(\bar{Y}\left(T_{2}\right)_{\sigma}\right)$. This proves the claim.

Set $\bar{J}=\bar{Y}\left(T_{2}\right) \cap \bar{K}, J=O^{p^{\prime}}\left(\bar{J}_{\sigma}\right)$, and $X=Y T_{0}$. Then $Y=Y\left(T_{2}\right)=$ $O_{p}(Y) J$, a semidirect product. The Frattini argument gives $X=Y N_{X}\left(T_{2}\right)$ $=O_{p}(Y) J N_{X}\left(T_{2}\right)$. Now, $J=J\left(T_{2}\right)$ is the group generated by all T_{2}-root subgroups of Y whose opposite root group is also in Y. Since $N_{X}\left(T_{2}\right) \leq$ $N\left(\bar{T}_{2}\right)$, we conclude that $N_{X}\left(T_{2}\right)$ normalizes both J and $\bar{J}=\bar{J}\left(T_{2}\right)$. Thus, $J N_{X}\left(T_{2}\right)$ is a group and normalizes $\bar{J} \bar{T}_{2}$. As $J N_{X}\left(T_{2}\right)$ complements $O_{p}(Y)$, we may replace T_{0} by a Y-conjugate that lies in $J N_{X}\left(T_{2}\right)$. In particular, T_{0} normalizes a maxial torus, $\bar{T}_{3}=\bar{T}_{3}^{\sigma}$, of $\bar{J} \bar{T}_{2}$. Then $T_{0} \leq N\left(G_{0} \cap\left(\bar{T}_{3}\right)_{\sigma}\right)$, so (6.3) implies $T_{0}=G_{0} \cap\left(T_{3}\right)_{\underline{\sigma}}$. But then (2.8) implies $\bar{T}_{3} \leq C_{\bar{G}}\left(T_{0}\right)^{0}=\bar{T}$. Hence, $\bar{T}=\bar{T}_{3}$ and $\bar{J} \bar{T}_{2}=\bar{J} \bar{T}$. Then (2.5) implies $J T_{2}=J T_{0}$. Now $Y=$ $Y\left(T_{2}\right)=O^{p^{\prime}}\left(\bar{Y}\left(T_{2}\right)_{\sigma}\right)=O_{p}(Y) J$, therefore $Y T_{2}=Y T_{0}$, completing (ii).

From the above, $Y=O_{p}(Y) J$, a semidirect product, and $J T_{0}=J T_{2}$. This proves (iv). From $\bar{Y}\left(T_{2}\right)=\overline{O_{p}(Y)}\left(T_{2}\right) \bar{J}$ and the fact that $\bar{J} \bar{T}_{2}=\bar{J} \bar{T}$,
we conclude $\bar{Y}\left(T_{2}\right) \bar{T}_{2}=\bar{Y}\left(T_{2}\right) \bar{T}$. We next prove $\bar{Y}\left(T_{2}\right)=\bar{Y}\left(T_{0}\right)$. Let \bar{D} $=\overline{O_{p}(Y)}\left(T_{2}\right)$, so that $\bar{D}_{\sigma}=O_{p}(Y)$, by (6.9). Earlier arguments imply $\bar{D} \unlhd \bar{Y}\left(T_{2}\right)$, so $\bar{D} \unlhd \bar{Y}\left(T_{2}\right) \bar{T}_{2}=\bar{Y}\left(T_{2}\right) \bar{T}$. Thus, $\bar{T}\langle\sigma\rangle$ normalizes \bar{D}, and since $\bar{D}_{\sigma}=O_{p}(Y)$ we again apply (6.9) to conclude $\bar{D}=\overline{O_{p}(Y)}\left(T_{0}\right)$. So it will suffice to show $\bar{J}=\bar{J}\left(T_{2}\right)=\bar{J}\left(T_{0}\right)$. We have $\bar{J} \bar{T}_{2}=\bar{J} \bar{T}$, so each component of \bar{J} is \bar{T}-stable and generated by certain \bar{T}-root subgroups of \bar{G}. If $\alpha \in \bar{\Sigma}_{l}$ and if the \bar{T}-root subgroup \bar{U}_{α} is contained in \bar{J}, then $\bar{X}_{l} \leq \bar{J}$. Hence $X_{l} \leq O^{p^{\prime}}\left(\bar{J}_{\sigma}\right)=J$. This shows $\bar{J} \leq \bar{J}\left(T_{0}\right)$.

For the other containment, suppose $X_{i} \leq J$. If X_{t} is a p-group, then \bar{J} contains a $\bar{T}\langle\sigma\rangle$-invariant parabolic subgroup \bar{P} with $X_{i} \leq R_{u}(\bar{P})$. Then $R_{u}(\bar{P})$ is the product of certain $\bar{X}_{l}, 1 \leq l \leq t$, and (6.9) implies $\bar{X}_{i} \leq R_{u}(\bar{P})$. Hence $\bar{X}_{i} \leq \bar{J}$.

Now suppose X_{i} is of Lie type and defined over $\mathbf{F}_{q^{k}}$. Let \bar{C} be a σ-invariant maximal torus of $\bar{X}_{l} \bar{T}$ contained in a σ-stable Borel subgroup of $\bar{X}_{i} \bar{T}$ (see (2.9) of [25]). Set $C=G_{0} \cap \bar{C}_{g}$. Then $C \cap X_{i}$ is a Cartan subgroup of X_{i}, while C is a maximal torus of G_{0}. Moreover, $X_{i} T_{0}=X_{i} C$ by (2.5). Therefore, $C \leq X_{i} T_{0} \leq J T_{0}$ and replacing T_{0} by C in the above we conclude $\bar{C} \leq \bar{J} \bar{T}_{2}=\bar{J} \bar{T}$. Each C-root subgroup of X_{i} is a p-group, so the argument of the last paragraph gives $\bar{X}_{i} \leq \bar{J}$. Therefore, $\bar{J}\left(T_{0}\right) \leq \bar{J}$, and (iii) holds.

It remains to prove (v). We have seen that $T_{2} \leq N\left(V_{1}\right)$, so (v) follows from this and (ii). This completes the proof of (9.1).

III. The main theorems

10. Classification. In this section and the next we complete our analysis of subgroups of G invariant under a maximal torus. We show that any such subgroup arises from a subset of $\overline{\boldsymbol{\Sigma}}$. However, to carry out the proof, we must invoke the classification of finite simple groups. Let \mathscr{K} denote the list of simple groups; the alternating groups, groups of Lie type, and the 26 sporadic groups (see (11.1)). At one point we will need the fact that any T_{0}-invariant simple section of G is isomorphic to a group in \mathscr{K}. Very little information about groups in \mathscr{K} is actually required for the proofs of the main results, but the author sees no way to avoid an application of the classification theorem.

The fundamental result is (10.1) below, while (10.2) provides extra information, which follows fairly easily from (10.1) and previous results. To state (10.2) we require the following terminology and notation. For a subset $\Delta \subseteq \bar{\Sigma}$ let $\bar{D}=\left\langle\bar{U}_{\alpha} \mid \alpha \in \Delta\right\rangle$ and $\hat{\Delta}=\left\{\beta \in \bar{\Sigma} \mid \bar{U}_{\beta} \leq \bar{D}\right\}$. We say Δ is closed if $\Delta=\hat{\Delta}$, in which case we write $\bar{D}=\bar{G}(\Delta, \bar{T})$. If Δ is a closed, $\langle\sigma\rangle$-invariant, subset of $\bar{\Sigma}$, we set $G(\Delta, \bar{T})=O^{p^{\prime}}\left(\bar{G}(\Delta, \bar{T})_{\sigma}\right)$.

Throughout this section and the next we make the standing hypothesis that $p>3$ and $q>11$.

Theorem (10.1). Let Y be a T_{0}-invariant subgroup of G.
(i) $Y\left(T_{0}\right) \unlhd Y$ and $\left\langle T_{0}^{Y}\right\rangle=Y\left(T_{0}\right) T_{0}$.
(ii) $Y\left(T_{0}\right) \equiv O^{p^{\prime}}\left(\bar{Y}\left(T_{0}\right)_{\sigma}\right)$.

Theorem (10.2). Let $T_{0} \leq Y \leq G$. Then

(i) $O_{p}(Y) \unlhd Y\left(T_{0}\right)$ and $Y\left(T_{0}\right) / O_{p}(Y)=E\left(Y / O_{p}(Y)\right)$.
(ii) $Y\left(T_{0}\right)$ is the semidirect product of $O_{p}(Y)$ and a T_{0}-invariant subgroup $J=J\left(T_{0}\right)$, and J is a central product of groups of Lie type over extension fields of \mathbf{F}_{q}. Also, $O_{p}(Y)$ is a product of T-root subgroups of G.
(iii) If T_{1} is any maximal torus of G_{0} with $T_{1} \leq Y$, then $Y\left(T_{0}\right)=Y\left(T_{1}\right)$, $\bar{Y}\left(T_{0}\right)=\bar{Y}\left(T_{1}\right)$, and $Y\left(T_{0}\right) T_{0}=Y\left(T_{1}\right) T_{1}$.
(iv) There is a maximal torus T_{1} of G_{0} such that $T_{1} \leq Y$ and $Y=$ $Y\left(T_{1}\right) N_{Y}\left(T_{1}\right)$.
(v) There is a unique $\langle\sigma\rangle$-invariant, closed, subset Δ of $\bar{\Sigma}$, such that $\bar{Y}\left(T_{0}\right)=\bar{G}(\Delta, \bar{T})$ and $Y\left(T_{0}\right)=G(\Delta, \bar{T})$.

We will first show how to derive (10.2) from (10.1). So suppose $T_{0} \leq Y$ and that the hypotheses and conclusions of (10.1) are satisfied. Set $\Delta=\left\{\alpha \mid \bar{U}_{\alpha} \leq \bar{Y}\left(T_{0}\right)\right\}$. Clearly Δ is $\langle\sigma\rangle$-invariant, closed, and $\bar{Y}\left(T_{0}\right)=$ $\bar{G}(\Delta, \bar{T})$. Hence, $Y\left(T_{0}\right)=G(\Delta, \bar{T})$. This gives (v).

By (2.5) $\bar{Y}\left(T_{0}\right)=R_{u}\left(\bar{Y}\left(T_{0}\right)\right) \bar{L}$, where $\bar{L}=\bar{L}^{\sigma}$ is \bar{T}-invariant and \bar{L} is semi-simple. Then $\left(R_{u}\left(\bar{Y}\left(T_{0}\right)\right)\right)_{\sigma}=O_{p}\left(Y\left(T_{0}\right)\right), J=O^{p^{\prime}}\left(\bar{L}_{\sigma}\right)$ is a central product of groups of Lie type over extension fields of \mathbf{F}_{q}, and $Y\left(T_{0}\right)=$ $O_{p}\left(Y\left(T_{0}\right)\right) O^{p^{\prime}}\left(\bar{L}_{\sigma}\right)$. By (6.1) $O_{p}(Y) \leq Y\left(T_{0}\right)$, so $O_{p}\left(Y\left(T_{0}\right)\right)=O_{p}(Y)$ and (ii) holds.

Since $q>11, J=E(J)$ and so (10.1)(i) implies $Y\left(T_{0}\right) / O_{p}(Y) \unlhd$ $E\left(Y / O_{p}(Y)\right)$. Suppose equality fails to hold and let $X / O_{p}(Y)=$ $C\left(Y\left(T_{0}\right) / O_{p}(Y)\right) \cap E\left(Y / O_{p}(Y)\right)$. Then $\left[X, T_{0}\right] \leq X$, while (10.1)(i) implies $\left[X, T_{0}\right] \leq Y\left(T_{0}\right) T_{0}$. This forces $\left[X, T_{0}\right] \leq O_{p}(Y)$, whence $O_{p}(Y) T_{0} \unlhd I$, where $I=X T_{0}$. The Frattini argument implies $I=$ $O_{p}(Y) N_{I}\left(T_{0}\right)$. Now, $T_{0} O_{p}(Y) / O_{p}(Y) \leq Z\left(I / O_{p}(Y)\right)$ and $T_{0} \cap O_{p}(Y)=1$. Therefore, $N_{I}\left(T_{0}\right) \leq C_{I}\left(T_{0}\right)=T_{0}$ by (2.8). But then $I=O_{p}(Y) T_{0}$, a contradiction. This proves (i).

Let T_{1} be a maximal torus of G_{0} with $T_{1} \leq Y$. Replacing T_{0} by T_{1} in the above we have $Y\left(T_{1}\right) / O_{p}(Y)=E\left(Y / O_{p}(Y)\right)$, so $Y\left(T_{1}\right)=Y\left(T_{0}\right)$. Let T_{3} be a Cartan subgroup of J and $T_{2}=C_{J T_{0}}\left(T_{3}\right)$. By (9.1) T_{2} is a maximal torus of G_{0} with $\bar{L}=\bar{J}\left(T_{2}\right)=\bar{J}\left(T_{0}\right)$. Also, the proof of (9.1) showed $\bar{J}\left(T_{2}\right) \bar{T}_{2}=\bar{J}\left(T_{0}\right) \bar{T}$, where $\bar{T}_{2}=C_{\bar{G}}\left(T_{2}\right)^{0}$, a maximal torus of \bar{G}. By (9.1)
and (2.5)(iv), $J T_{2}=G_{0} \cap\left(\bar{J}\left(T_{2}\right) \bar{T}_{2}\right)_{\sigma}=G_{0} \cap\left(\bar{J}\left(T_{0}\right) \bar{T}\right)_{\sigma}=J T_{0}$. Since \bar{T}_{2} $\leq \bar{J}\left(T_{0}\right) \bar{T} \leq \bar{Y}\left(T_{0}\right) \bar{T}$, we have $\bar{T}_{2} \leq N\left(R_{u}\left(\bar{Y}\left(T_{0}\right)\right)\right)$. From (6.9) and the fact $R_{u}\left(\bar{Y}\left(T_{0}\right)\right)_{\underline{\sigma}}=O_{p}(Y)$ we conclude $R_{u}\left(\bar{Y}\left(T_{0}\right)\right)=\overline{O_{p}(Y)}\left(T_{2}\right)$, and this proves $\bar{Y}\left(T_{0}\right)=\bar{Y}\left(T_{2}\right)$.

The results of the last paragraph yield $Y\left(T_{0}\right) T_{0}=Y\left(T_{2}\right) T_{2}$. Since T_{3} is a Cartan subgroup of J we have $Y=Y\left(T_{2}\right) N_{Y}\left(T_{3}\right)$. Now $N_{Y}\left(T_{3}\right)$ normalizes $C\left(T_{3}\right) \cap Y\left(T_{2}\right) T_{2}$ and this group is solvable with T_{2} as a Hall p^{\prime}-subgroup. So the Frattini argument yields $Y=Y\left(T_{2}\right) N_{Y}\left(T_{2}\right)$. Notice that this gives (iv). In addition, the factorization shows $Y \leq N_{G}\left(\bar{Y}\left(T_{2}\right) \bar{T}_{2}\right)$ (since $Y\left(T_{2}\right) \leq \bar{Y}\left(T_{2}\right)$). In particular, $T_{1} \leq N\left(\bar{Y}\left(T_{2}\right) \bar{T}_{2}\right)$ so by (5.16) of [25] T_{1} normalizes a maximal torus \bar{T}_{4} of $\bar{Y}\left(T_{2}\right) \bar{T}_{2}$. By (6.3) we have $T_{1}=\left(\bar{T}_{4}\right)_{\sigma}$ $\cap G_{0}$, so (2.8) implies \bar{T}_{4} is the unique maximal torus of \bar{G} containing T_{1}. Therefore, $\bar{Y}\left(T_{2}\right) \bar{T}_{2}=\bar{Y}\left(T_{2}\right) \bar{T}_{4}$ so (2.5) implies $Y\left(T_{2}\right) T_{2}=Y\left(T_{2}\right) T_{1}$. By the above, $Y\left(T_{2}\right) T_{2}=Y\left(T_{0}\right) T_{0}$ and $Y\left(T_{0}\right)=Y\left(T_{2}\right)=Y\left(T_{1}\right)$. Hence, $Y\left(T_{1}\right) T_{1}$ $=Y\left(T_{0}\right) T_{0}$. Replacing T_{1} by a $Y\left(T_{2}\right)$-conjugate we may assume $J T_{2}=J T_{1}$. Now replace T_{0} by T_{1} in the previous argument to get $\bar{Y}\left(T_{2}\right)=\bar{Y}\left(T_{1}\right)$. Hence $\bar{Y}\left(T_{1}\right)=\bar{Y}\left(T_{0}\right)$ and this establishes (iii), completing the proof of (10.2).

The rest of $\S 10$ and all of $\S 11$ concerns the proof of (10.1). Toward this end suppose the result false and let G_{0} be a counterexample of least order for which (10.1) fails for some pair $\left(T_{0}, Y\right)$. Then $Z\left(G_{0}\right)=1$. We may assume $T_{0} \leq Y$ (otherwise replace Y by $Y T_{0}$), and among all such groups Y choose one with $|Y|$ minimal. In other words, if T_{1} is a maximal torus of G_{0} and $T_{1} \leq Y_{1}$ where $\left|Y_{1}\right|<|Y|$, then (10.1) holds for the pair $\left(T_{1}, Y_{1}\right)$.

For X a finite group, let $E(X)_{p}$ denote the product of all components of X that are of Lie type in characteristic p.
(10.3) Suppose X is a proper, T_{0}-invariant, subgroup of G_{0} and $X / O_{p}(X)=E\left(X / O_{p}(X)\right)_{p}$. Then (10.1) holds for the group $X T_{0}$.

Proof. Let T_{2} be a p^{\prime}-Hall subgroup of a Sylow normalizer of $X T_{0}$. By (9.1)(i) T_{2} is a maximal torus of G_{0}. By (9.1)(iii) $\bar{X}\left(T_{0}\right)=\bar{X}\left(T_{2}\right)$ and by (9.1)(ii) $X=O^{p^{\prime}}\left(\bar{X}\left(T_{2}\right)_{\sigma}\right)=O^{p^{\prime}}\left(\bar{X}\left(T_{0}\right)_{\sigma}\right)$. Since $\left[X_{i}, T_{0}\right]=X_{i}$ for any T root subgroup of G we have $\left\langle T_{0}^{X}\right\rangle=X T_{0}$. Therefore it remains to show $X=X\left(T_{0}\right)$.

By (9.1)(iv) we have $X=O_{p}(X) J$, a semidirect product, where J is T_{0}-invariant, $J T_{0}=J T_{2}$ and $J=E(J)_{p}$. By (6.1) $O_{p}(X)$ is a product of T_{0}-root subgroups, so we may assume $X=J$. By (7.1), T_{0} contains a
maximal torus of each component of X, so we may also assume X to be quasisimple. Then (8.1) shows that X is defined over $\mathbf{F}_{q^{j}}$ for some j and $\bar{X}\left(T_{2}\right)$ is the commuting product of a $\langle\sigma\rangle$-orbit of j semi-simple groups, say $\bar{X}\left(T_{2}\right)=\bar{D}_{1} \cdots \bar{D}_{j}$. Let $X_{0}=O^{p^{\prime}}\left(\left(\bar{D}_{1}\right)_{\sigma^{\prime}}\right)$, a group of Lie type over $\mathbf{F}_{q^{\prime}}$ having $A=X_{0} \cap\left(\bar{T} \cap \bar{D}_{1}\right)_{\sigma^{j}}$ as maximal torus. From the minimality of $\left|G_{0}\right|$, (10.1) holds within X_{0} and applying the result to the A-invariant subgroup X_{0} of X_{0} we have $X_{0}=X_{0}(A)$. So X_{0} is generated by its A-root subgroups (corresponding to $\left\langle\sigma^{j}\right\rangle$-orbits of ($\bar{T} \cap \bar{D}_{1}$)-root subgroups of \bar{D}_{1}). Using the fact that the map $x_{0} \rightarrow x_{0} x_{0}^{\sigma} \cdots x_{0}^{\sigma^{j-1}}$ is a surjection from X_{0} to X and mapping A-root subgroups of X_{0} to T_{0}-root subgroups of X we have $X=X\left(T_{0}\right)$, as required.
(10.4) (i) $Y \neq G_{0}$.
(ii) If $O_{p}(Y)=1$, then $E(Y)_{p}=1$.

Proof. Suppose $Y \geq G_{0}$. Then (10.1) holds if $Y\left(T_{0}\right)=G_{0}$. So $Y\left(T_{0}\right)<$ G_{0}, and we set $Y_{1}=Y\left(T_{0}\right) T_{0}<Y$. Minimality implies that (10.1) holds for Y_{1}. However, $\bar{Y}_{1}\left(T_{0}\right)=\bar{G}$ and $Y_{1}\left(T_{0}\right)=Y\left(T_{0}\right) \neq O^{p^{\prime}}\left(\bar{G}_{\sigma}\right)$. This is a contradiction, proving (i).

For (ii), suppose that $O_{p}(Y)=1$ and $X=E(Y)_{p} \neq 1$. By (i), $X<G_{0}$. If X_{i} is any T_{0}-root subgroup of G, then $\left[X_{i}, T_{0}\right]=X_{i}$ (use (7.1), (5.5), and (6.8)), hence $X_{i} \leq\left\langle T_{0}^{X_{i}}\right\rangle$. So if we can show $\left\langle T_{0}^{Y}\right\rangle \leq X T_{0}$, then (7.1) implies $\left\langle T_{0}^{Y}\right\rangle=X T_{0}=\left\langle T_{0}^{X}\right\rangle$, and (10.3) shows that (10.1) holds for $X T_{0}$, and hence for Y. Since we are assuming this to be false, it will suffice to show $\left\langle T_{0}^{Y}\right\rangle \leq X T_{0}$.

Let T_{1} be a Cartan subgroup of X and let $D=C_{Y}(X)$. The Frattini argument shows $Y=X N_{Y}\left(T_{1}\right)$ and, of course $D \leq C_{Y}\left(T_{1}\right) \unlhd N_{Y}\left(T_{1}\right)$. By (7.2), $T_{2}=C_{X T_{0}}\left(T_{1}\right)$ is a maximal torus of G_{0}. By minimality of $|Y|$, (10.1) holds for the group $N_{Y}\left(T_{1}\right)$, which contains the torus T_{2}. Also, (10.1) holds for the groups $D T_{2}$ and $C_{Y}\left(T_{1}\right)$, each of which contains T_{2}. So applying (10.1) to $D T_{2}$ we have one of $O_{p}(D) \neq 1, E(D)_{p} \neq 1$, or $T_{2} \unlhd D T_{2}$. As $D \unlhd Y$, the first two situations are out. Hence $T_{2} \unlhd D T_{2}$. Considering $\operatorname{Aut}(X)$, we see that $C_{Y}\left(T_{1}\right) / D$ is a solvable p^{\prime}-group. Therefore, applying (10.1) to $C_{Y}\left(T_{1}\right)$ we conclude $T_{2} \unlhd C_{Y}\left(T_{1}\right)$. From (6.3) we have $T_{2} \unlhd N_{Y}\left(T_{1}\right)$, and this proves $X T_{2} \unlhd N X_{Y}\left(T_{1}\right)=Y$. Now, (9.1) shows $X T_{2}=X T_{0}$, so $\left\langle T_{0}^{Y}\right\rangle \leq X T_{0}$, as required.
$(10.5) O_{p}(Y)=1$.
Proof. Suppose $T_{0} \leq Y \leq G$ and $O_{p}(Y) \neq 1$. By (3.9) of [4] there is a canonical parabolic subgroup $P<G_{0} Y$ with $O_{p}(Y) \leq O_{p}(P)$ and
$N_{G}\left(O_{p}(Y)\right) \leq P$. In particular $T_{0} \leq P$. By (6.4) $P=G_{0} Y \cap \bar{P}_{\sigma}$, for \bar{P} a σ-invariant parabolic subgroup of \bar{G} containing \bar{T}. Write $P=V L(T \cap P)$, where $V=O_{p}(P)$ and L is the derived group of the Levi factor, $L(T \cap P)$, of P. If $L=1$, then $Y=O_{p}(Y)(T \cap Y)$ and (10.1) follows from (6.9). Since Y is a counterexample to (10.1) we have $L \neq 1$.

Set $T_{00}=T_{0} \cap L$, a maximal torus of L. One checks that the T_{00}-root subgroups of L are just the T-root subgroups of G that are contained in L. Let ${ }^{\sim}$ denote images in $L V / V$ and set $Y_{1}=Y \cap V L$. Then $\tilde{Y}_{1}\left(\tilde{T}_{00}\right) \unlhd \tilde{Y}_{1}$ and $\left\langle\tilde{T}_{00}^{\tilde{Y}_{1}}\right\rangle=\tilde{Y}_{1}\left(\tilde{T}_{00}\right) \tilde{T}_{00}$ (by minimality of $\left.\left|G_{0}\right|\right)$. Set $A / V=\tilde{Y}_{1}\left(\tilde{T}_{00}\right)$ and $X=Y \cap A$. Then $X \unlhd Y_{1}$ and $X / O_{p}(X)=E\left(X / O_{p}(X)\right)_{p}$. Also, $X T_{00} \unlhd Y_{1}$.

Let T_{2} be a p^{\prime}-Hall subgroup of a Sylow p-normalizer of $X T_{0}$. By (9.1)(i) T_{2} is a maximal torus of G_{0}, and (9.1)(ii) implies $X T_{0}=X T_{2}$.

We claim $X T_{0} \unlhd Y$. First note that $O_{p}(X)=O_{p}(Y)=O_{p}\left(Y_{1}\right)$, then argue as in the proof of (10.2) that $X / O_{p}(Y)=E\left(Y_{1} / O_{p}(Y)\right)$. This shows $X \unlhd Y$. Let V_{1} be a Sylow p-subgroup of X with $T_{2} \leq N_{Y}\left(V_{1}\right)=D$. Suppose $D<Y$. Minimality of $|Y|$ implies $D\left(T_{2}\right) \unlhd D$ and $\left\langle T_{2}^{D}\right\rangle=$ $D\left(T_{2}\right) T_{2} \unlhd D$. As Y / Y_{1} is an abelian p^{\prime}-group, $D\left(T_{2}\right) \leq Y_{1}$. Also, $Y=$ $X N_{Y}\left(V_{1}\right)=X D$ implies $X D\left(T_{2}\right) T_{2} \unlhd Y$. Now $D\left(T_{2}\right) \leq L V$ and $D\left(T_{2}\right)^{\tilde{j}}$ is generated by $\left(T_{2} \cap L\right) \tilde{\text {-root subgroups of }}$ L. Hence $\left[D\left(T_{2}\right)^{\tilde{L}},\left(T_{2} \cap L\right)\right]=$ $D\left(T_{2}\right)$. On the other hand, $X\left(T_{2} \cap L\right)=X T_{00} \unlhd Y_{1}$. Therefore, $D\left(T_{2}\right) \leq X$ and so $X T_{0}=X T_{2}=X D\left(T_{2}\right) T_{2} \unlhd Y$, as required. Suppose then that $D=$ Y; that is $X=V$.

Let $y \in Y$. Then $V_{1} T_{00}$ and $V_{1} T_{00}^{y}$ are normal in Y_{1}, and so $\left\langle V_{1} T_{00}, V_{1} T_{00}^{y}\right\rangle=V_{1} F$, where F is a p^{\prime}-group normalizing T_{00}. Also, F is generated by T_{00} and $T_{00}^{y v}$ for some $v \in V_{1}$. Applying (6.3) to the maximal torus T_{00} of L, we conclude $F=T_{00}$. As y was arbitrary, $V_{1} T_{00} \unlhd Y$. So $Y=V_{1} N_{Y}\left(T_{00}\right)$ which shows $V_{1} C_{Y}\left(T_{00}\right) \unlhd Y$. But (2.8) implies $C_{Y}\left(T_{00}\right) \leq$ $V_{1}(T \cap Y)$, and $\quad V_{1}(T \cap Y) \unlhd Y$. Since $X T_{0}=V_{1} T_{0}=V_{1}(T \cap Y) \cap$ $G_{0} \unlhd Y$, the claim is proved.

By the claim $X T_{2}=X T_{0} \unlhd Y$, so $Y=X N_{Y}\left(T_{2}\right)$. By (10.3) $X=X\left(T_{0}\right)$ and by (6.1) $X=X\left(T_{2}\right)$. If E is a T_{2}-root subgroup of G or a T_{0}-root subgroup of G, then $\left[E, T_{2}\right]=E$ or $\left[E, T_{0}\right]=E$, respectively. Hence $X=Y\left(T_{2}\right)=Y\left(T_{0}\right)$. These remarks and (10.3) show that (10.1) holds, which we have assumed false. The proof of (10.5) is now complete.
(10.6) Suppose $F^{*}(Y)=\operatorname{Fit}(Y)$. Then
(i) $F^{*}(Y)$ is a p^{\prime}-group;
(ii) If $Y_{1} \unlhd Y$ and $Y_{1} T_{0}<Y$, then $Y_{1} \leq N\left(T_{0}\right)$.
(iii) T_{0} normalizes no non-trivial p-subgroup of Y.
(iv) $Y=\left\langle T_{0}^{Y}\right\rangle$.

Proof. (i) is immediate from (10.5). Suppose $Y_{1} \unlhd Y$ and $Y_{1} T_{0}<Y$. Minimality of $|Y|$ implies that (10.1) holds for $Y_{1} T_{0}$. Therefore, either $O_{p}\left(Y_{1}\right) \neq 1, E\left(Y_{1}\right)_{p} \neq 1$, or $Y_{1} \leq N\left(T_{0}\right)$. By (i) the first possibility is out, and our hypothesis rules out the second possibility. Therefore $Y_{1} \leq N\left(T_{0}\right)$, establishing (ii).

For (iii), suppose T_{0} normalizes the non-identity p-subgroup, D, of Y. Then $R=F^{*}(Y) D T_{0}$ is solvable. By (6.1), $R=O_{p}(R) N_{R}\left(T_{0}\right)$. Since $C_{Y}\left(F^{*}(Y)\right) \leq F^{*}(Y)=O_{p^{\prime}}\left(F^{*}(Y)\right)$, we have $O_{p}(R)=1$ and $D \leq N\left(T_{0}\right)$. But then $\left[D, T_{0}\right]=1$, against (2.8). This gives (iii).

Finally, let $Y_{1}=\left\langle T_{0}^{Y}\right\rangle$ and suppose $Y_{1}<Y$. Then $Y_{1} \leq N\left(T_{0}\right)$ by (ii). Therefore, $T_{0} \leq \operatorname{Fit}\left(Y_{1}\right) \leq \operatorname{Fit}(Y)$. By (6.1) $T_{0} \unlhd \operatorname{Fit}(Y)$, and (6.3) implies $T_{0} \unlhd Y$. However, with $T_{0} \unlhd Y$, (10.1) is a triviality, whereas we are assuming it false. This is a contradiction. So $Y_{1}=Y$ and (iv) holds.
(10.7) Suppose $F^{*}(Y)=\operatorname{Fit}(Y)$. Then $F^{*}(Y)=O_{r}(Y)$ for some prime $r \neq p$.

Proof. Suppose $X=F^{*}(Y)=\operatorname{Fit}(Y)$ and $X=O_{p_{1}}(X) \times \cdots \times$ $O_{p_{1}}(X)$, where p_{1}, \ldots, p_{l} are distinct prime divisors of $|X|$ and $l>1$. By (6.1) $X \leq N\left(T_{0}\right)$, so $\left[X, T_{0}\right] \leq T_{0} \cap X$. If $T_{0} \cap O_{p_{1}}(X)=1$ for some i, then $\left[T_{0}, O_{p_{i}}(X)\right] \leq T_{0} \cap O_{p_{i}}(X)=1$ and $O_{p_{i}}(X) \leq C_{G}\left(T_{0}\right)=T$ (by (2.8)). But (10.6)(iv) shows $Y \leq G_{0}$, whence $O_{p_{i}}(X) \leq T \cap G_{0}=T_{0}$, a contradiction. Therefore, $T_{0} \cap O_{p_{1}}(X) \neq 1$ for $i=1, \ldots, l$. Suppose $T_{0} \leq X$. Then for $y \in Y, T_{0}^{y} \leq X \leq N\left(T_{0}\right)$, so $T_{0}^{y}=T_{0}$ by (6.3). Hence $T_{0} \unlhd Y$ and (10.6)(iv) gives the contradiction $Y=T_{0}$. Therefore, $1<T \cap X<T$. Also, X is a p^{\prime}-group by (10.6)(i).

For $i=1, \ldots, l$ the groups $O_{p_{i}^{\prime}}\left(T_{0}\right)$ and $O_{p_{i}}(X)$ normalize each other. Hence, they commute. Set $Y_{i}=\left\langle O_{p_{i}^{\prime}}\left(T_{0}\right)^{Y}\right\rangle$. Then $Y_{i} \unlhd Y$ and $Y_{i} \leq$ $C\left(O_{p_{t}}(X)\right)$. Suppose that for some $1 \leq i \leq l$ we have $Y_{i} T_{0}<Y$. By (10.6)(ii) $Y_{i} \leq N\left(T_{0}\right)$, hence $O_{p_{i}^{\prime}}\left(T_{0}\right) \leq \operatorname{Fit}\left(Y_{i}\right) \leq \operatorname{Fit}(Y)=X$. Let $C_{i}=C_{Y}\left(O_{p_{i}^{\prime}}(X)\right)$. Then $O_{p_{i}}(X) \leq C_{i} \unlhd Y$ and $T_{0} \leq Y_{i} C_{i}$. By (10.6)(iv), $Y=Y_{i} C_{i}$ and since $Y_{i} \leq N\left(T_{0}\right)$ and $Y=\left\langle T_{0}^{Y}\right\rangle$ we have $Y=C_{i} T_{0}=C_{i}\left(O_{p_{i}^{\prime}}\left(T_{0}\right)\right)$. Since both C_{i} and $O_{p_{i}^{\prime}}\left(T_{0}\right)$ centralize $Z=O_{p_{i}^{\prime}}\left(T_{0}\right)$ we conclude $Z \leq Z(Y)$.

Since $O_{p_{i}^{\prime}}\left(T_{0}\right) \neq 1$ we choose $1 \neq z \in Z$ and consider the group $C_{G_{0}}(z) \geq Y$. Let D_{1}, \ldots, D_{k} be the components of $C_{G}(z)$. Then $D_{1} \cdots$ $D_{k} T_{0} \unlhd C_{G_{0}}(z)$ with quotient group isomorphic to a subgroup of the center of the universal covering group of G_{0} (see (2.9)). Since $Y=\left\langle T_{0}^{Y}\right\rangle$, $Y \leq D_{1} \cdots D_{k} T_{0}$ and we have $Y=T_{0} \hat{Y}$, where $\hat{Y}=Y \cap D_{1} \cdots D_{k}$. If $1 \leq j \leq k$, let $\hat{Y}_{j}=\left\{d_{j} \in D_{j} \mid d_{j} g \in \hat{Y}\right.$ for some $\left.g \in D_{1} \cdots \hat{D}_{j} \cdots D_{k}\right\}$. Then \hat{Y}_{j} is a group and essentially the projection of \hat{Y} to D_{j} (note that the projection is not defined since the product may not be direct). Then
$\hat{Y} \leq \hat{Y}_{1} \cdots \hat{Y}_{k}$ and $T_{0} \cap D_{j} \leq \hat{Y}_{j}$ for $1 \leq j \leq k$. Also, $T_{0} \cap D_{j}$ is a maximal torus of D_{j}, for $1 \leq j \leq k$. Minimality of $\left|G_{0}\right|$ implies that (10.1) holds for each of the containments $T_{0} \cap D_{j} \leq \hat{Y}_{j} \leq D_{j}$.

We conclude that for $1 \leq j \leq k$ one of the following hold: $O_{p}\left(\hat{Y}_{j}\right) \neq 1$, $E\left(\hat{Y}_{j}\right)_{p} \neq 1$, or $T_{0} \cap D_{j} \unlhd \hat{Y}_{j}$. Since $O_{p}(Y)=1=E(Y)_{p}$, we necessarily have $T_{0} \cap D_{j} \unlhd \hat{Y}_{j}$ for $1 \leq j \leq k$, hence $I=\left(T_{0} \cap D_{1}\right) \cdots\left(T_{0} \cap D_{k}\right) \unlhd \hat{Y}$. By (2.8) $T_{0}=D_{1} \cdots D_{k} T_{0} \cap C(I)$, so $\hat{Y} \leq N\left(T_{0}\right)$. We then have $T_{0} \unlhd Y$ $=\left\langle T_{0}^{Y}\right\rangle$, so $T_{0}=Y$, a contradiction. We have proved that $Y_{i} T_{0}=Y$ for $1 \leq i \leq l$. In particular, Y / Y_{i} is abelian for $1 \leq i \leq l$. Set $\tilde{Y}=\cap_{i=1}^{l} Y_{i}$. Then Y / \tilde{Y} is abelian, so $Y=\left\langle T_{0}^{Y}\right\rangle=\tilde{Y} T_{0}$. However, $\tilde{Y} \leq C_{Y}(X)$ (as $\left.Y_{i} \leq C\left(O_{p_{i}}(X)\right)\right)$. Therefore, $\tilde{Y} \leq X, \quad Y=X T_{0} \leq N\left(T_{0}\right)$, and as $Y=$ $\left\langle T_{0}{ }^{Y}\right\rangle=T_{0}$, this is a final contradiction.
$(10.8) F^{*}(Y) \neq \operatorname{Fit}(Y)$.
Proof. By way of contradiction, suppose $F^{*}(Y)=\operatorname{Fit}(Y)$. By (10.7), $X=\operatorname{Fit}(Y)=O_{r}(Y)$ for some prime r and $r \neq p$ by (10.6). As in the first paragraph of the proof of (10.7) we have $1<T_{0} \cap X<T_{0}$. Also, $X \leq$ $N\left(T_{0}\right)$, so $O_{r^{\prime}}\left(T_{0}\right) \leq C_{Y}(X) \leq X$, and we conclude that T_{0} is an r-group.

Fix $y \in Y$ with $T_{0}^{y} \neq T_{0}$ and set $\tilde{Y}=O_{r}(Y)\left\langle T_{0}, T_{0}^{y}\right\rangle$. If $\tilde{Y}<Y$, then minimality of $|Y|$ shows that (10.1) holds for \tilde{Y}. However, $C_{Y}(X) \leq X$ implies that $E(\tilde{Y})_{p}=O_{p}(\tilde{Y})=1$. Therefore, $T_{0} \unlhd \tilde{Y}$. But (6.3) implies T_{0} is weakly closed in its normalizer, whence $T_{0}^{y}=T_{0}$, a contradiction. Therefore, $Y=\tilde{Y}=O_{r}(Y)\left\langle T_{0}, T_{0}^{y}\right\rangle$.

Let $A=T_{0} \cap X, B=T_{0}^{y} \cap X$, and $V=\langle A, B\rangle$. Both of A, B are normal in X. If $A \cap B \neq 1$, then $\left\langle T_{0}, T_{0}^{y}\right\rangle \leq C(A \cap B)$ so we can choose $1 \neq z \in A \cap B \cap Z(Y)$. Then $Y \leq C_{G}(z)$ and the argument of (10.7) gives a contradiction. Therefore, $A \cap B=1$. This shows that $V=$ $\langle A, B\rangle=A \times B$. Also, $\left[V, T_{0}\right] \leq\left[X, T_{0}\right] \leq X \cap T_{0}=A \leq V$, so $T_{0} \leq$ $N_{Y}(V)$ and similarly $T_{0}^{y} \leq N_{Y}(V)$. Hence $V \unlhd Y$.

If $t \in T_{0}$, then $[X, t, t] \leq[A, t]=1$. Therefore, t^{r} centralizes each Y-chief factor contained within X. But the intersection of the centralizers of such chief factors is an r-group and hence X. Therefore, $t^{r} \in X$ and $T_{0}^{r} \leq X \cap T_{0}=A$. If $\left(T_{0}^{y}\right)^{r}$ contains an element, j, of order r^{2}, then for $t \in T_{0}$ we have $\left[t^{r}, j\right] \in[A, B]=1$. As $V T_{0}$ has nilpotence class 2 we conclude $1=\left[t^{r}, j\right]=[t, j]^{r}=\left[t, j^{r}\right]$. That is, $j^{r} \in C_{Y}\left(T_{0}\right)=T_{0}$, contradicting $A \cap B=1$. Therefore, T_{0}^{y}, and hence T_{0}, has exponent at most r^{2}.

Say \bar{G} has Lie rank n, so that $\left|T_{0}\right|=\frac{1}{d} f(q)$, where $f(t)=\Pi \Phi_{d_{1}}(t)$ and $\sum \varphi\left(d_{i}\right)=n$. By (2.4)(iii) $\left|T_{0}\right| \geq \frac{1}{d}(q-1)^{n} \geq \frac{1}{d}(12)^{n}$. As an abelian group
T_{0} has rank at most n (see (2.3)). Therefore, $\left|T_{0}\right| \leq\left(r^{2}\right)^{n}$ and $d \geq\left(12 / r^{2}\right)^{n}$. As $d \leq n+1$, we have $r>2$. Also, X / A is isomorphic to a subgroup of \bar{W}, so $n \geq 2$. If $r=3$, then the inequality forces $q=13$ and consideration of primitive divisors leads to a contradiction. Therefore, $r \geq 5$.

Suppose \bar{G} is an exceptional group. Then $r \| \bar{W} \mid$ implies \bar{W} is of type E_{6}, E_{7}, or E_{8}. If $r=5$, then $|\bar{W}|_{r}=r, r, r^{2}$, respectively, while if $r=7$, $|\bar{W}|_{r}=1, r, r$, respectively. In any case, $r \leq 7$. If $|\bar{W}|_{r}=r$, then $X / A \cong$ Z_{r}, so $X=V \cong Z_{r} \times Z_{r}$ and $Y / X \cong \operatorname{SL}(2, r)$. But then $\left|T_{0}\right|=r^{2}$, against $\left|T_{0}\right| \geq \frac{1}{d}(q-1)^{n}$. Therefore, $r=5, \bar{W}$ is of type E_{8}, and $|X / A|$ divides r^{2}. If $|A|=r^{2}$, then $|B|=r^{2}$ and $X=A \times B$ is elementary of order r^{4}. So $Y / X \leq \operatorname{SL}(4, r),\left|T_{0}\right| \leq r^{2} \cdot r^{4}=5^{6}$, again contradicting $\left|T_{0}\right| \geq$ $\frac{1}{d}(q-1)^{n} \geq(12)^{8}$. If $|A|=r$, then $|X| \leq r^{3}$ and one argues $\left|T_{0}\right| \leq r^{4}$, impossible. So \bar{G} is not an exceptional group.

Therefore, G_{0} is a classical group $\left({ }^{3} D_{4}(q)\right.$ is out as $r \| W \mid$ and $\left.r \geq 5\right)$ and we let M be the natural module for the appropriate covering group, \hat{G}_{0}, of G_{0}. Let \hat{T}_{0} be the preimage of T_{0} and \hat{B} a Sylow r-subgroup of the preimage of B. Write $M=M_{1} \oplus \cdots \oplus M_{l}$, a decomposition into irreducible \hat{T}_{0}-irreducible submodules. If $\hat{G}_{0} \neq \mathrm{SL}(m, q)$ then M has a non-degenerate bilinear form and we can arrange M_{1}, \ldots, M_{l} so that for some $k \leq l$, M_{1}, \ldots, M_{k} are non-degenerate, while each of M_{k+1}, \ldots, M_{l} is totally singular. Moreover, $M=M_{1} \perp \cdots \perp M_{k} \perp\left(M_{k+1} \oplus M_{k+2}\right) \perp \cdots \perp$ ($M_{l-1} \oplus M_{l}$), with \hat{T}_{0} inducing contragredient representations (contragredient followed by a field automorphism, in the unitary case) on the pairs $\left\{M_{k+1}, M_{k+2}\right\}, \ldots,\left\{M_{l-1}, M_{l}\right\}$. Set $N_{1}=M_{k+1} \oplus M_{k+2}, \ldots, N_{j}=$ $M_{l-1} \oplus M_{l}$, where $j=\frac{1}{2}(l-k)$. We now have $M=M_{1} \perp \cdots \perp M_{k} \perp$ $N_{1} \perp \cdots \perp N_{j}$, and for $\hat{G}_{0}=\mathrm{SL}(m, q), M=M_{1} \oplus \cdots \oplus M_{k}$, considering $j=0$.

We claim that T_{0} is not cyclic. Otherwise, $A \cong Z_{r}$ and $T_{0} \cong Z_{r^{2}}$. Then Aut $\left(T_{0}\right)$ has Sylow r-subgroups of order r, which implies $X / A \cong Z_{r}$. Thus, $X=V \cong Z_{r} \times Z_{r}$ and $Y / X \cong \mathrm{SL}(2, r)$. But then Y splits over V, forcing $T_{0} \cong Z_{r} \times Z_{r}$, a contradiction. This proves the claim, which implies $l>1$ and $G_{0} \neq \operatorname{PSL}(2, q)$.

Next we show that $k+j=2$. If $k+j=1$, then \hat{T}_{0} is cyclic, contradicting the preceding paragraph. So $k+j \geq 2$. If $k+j \geq 3$, then letting \hat{T} be the maximal torus in $\mathrm{GL}(m, q), \mathrm{Sp}(m, q), \mathrm{SO}^{ \pm}(m, q)$, or $\mathrm{GU}(m, q)$ containing \hat{T}_{0}, we have the Sylow 2 -subgroup of \hat{T} of rank at least 3. Thus, the Sylow 2-subgroup of \hat{T}_{0} has rank at least 2, which forces $\left|T_{0}\right|$ to be even. However, T_{0} is an r-group and $r \geq 5$. So $k+j=2$, as desired. Accordingly, write $M=M^{\prime} \oplus M^{\prime \prime}$, where each of M^{\prime} and $M^{\prime \prime}$ has the form M_{i} or N_{i}.

The representations of \hat{T}_{0} on M^{\prime} and $M^{\prime \prime}$ have different kernels (otherwise \hat{T}_{0} would be cyclic) and each of M^{\prime} and $M^{\prime \prime}$ is either irreducible or the sum of two inequivalent \hat{T}_{0}-submodules. So M is the sum of at most 4 pairwise inequivalent, irreducible, \hat{T}_{0}-submodules, and since $B \leq N\left(T_{0}\right)$ and $r \geq 5, B$ necessarily stabilizes each of these irreducibles.

Let $I \leq M$ be an irreducible \hat{T}_{0}-submodule of M such that $\left[\left.\hat{T}_{0}\right|_{I},\left.\hat{B}\right|_{I}\right]$ $\neq 1$. Say $\operatorname{dim}(I)=d$. Then $\left.\hat{T}_{0}\right|_{I}$ can be regarded as a subgroup of the multiplicative group of the field $\mathbf{F}_{q^{d}}\left(\mathbf{F}_{\left(q^{2}\right)^{d}}\right.$ in the unitary case) and \hat{B} induces field automorphisms on $\left.\hat{T}\right|_{I}$. Therefore, $r \mid d$. On the other hand, $\Phi_{d}(q)$ divides the order of $\left.\hat{T}_{0}\right|_{I}$, so let s be a primitive divisor of $\Phi_{d}(q)$. As $d>2$, we have $s\left|\left|T_{0}\right|\right.$, whence $s=r$. However, d is the order of q, modulo s, so $d \mid s-1$. We now have $r \mid d$ and $d \mid r-1$, which is absurd. This contradiction proves (10.8).
(10.9) If $T_{0} \leq X$ and (10.1) holds for X, then $E(X)=E(X)_{p}$.

Proof. As (10.1) holds for $X,\left\langle T_{0}^{X}\right\rangle=X\left(T_{0}\right) T_{0}$. Let J be the product of those components of X not contained in $E(X)_{p}$. Then $\left[T_{0}, J\right] \leq J \cap$ $X\left(T_{0}\right) T_{0} \leq Z(J)$. The 3-subgroup lemma then shows $\left[T_{0}, J\right]=1$. But this gives $J \leq C_{G_{0}}\left(T_{0}\right)=T_{0}$, a contradiction.
(10.10) (i) $F^{*}(Y)=E(Y)$;
(ii) $Z(E(Y))=1$; and
(iii) $E(Y)_{p}=1$.

Proof. By (10.5) $O_{p}(Y)=1$, so (10.4) shows $E(Y)_{p}=1$. Also, (10.8) implies $F^{*}(Y) \neq \operatorname{Fit}(Y)$, so $X=E(Y) \neq 1$ and is a product of components, none of which is of Lie type in characteristic p. If $X T_{0}<Y$, then minimality of $|Y|$ and (10.9) gives a contradiction. Therefore $Y=X T_{0}$.

To prove the result it will suffice to show $\operatorname{Fit}(Y)=1$. By (6.1) we have $T_{0} \unlhd \operatorname{Fit}(Y) T_{0}$ (recall $\left.O_{p}(Y)=1\right)$, hence $\left[T_{0}, \operatorname{Fit}(Y)\right] \leq T_{0} \cap \operatorname{Fit}(Y)$ $=A$. If $A=1$, then $\operatorname{Fit}(Y) \leq C_{G_{0}}\left(T_{0}\right) \cap \operatorname{Fit}(Y)=T_{0} \cap \operatorname{Fit}(Y)=A=1$, as required. Suppose $A \neq 1$. Then $A \leq \operatorname{Fit}(Y) \leq C(X)$ and so $A \leq Z(Y)$. Fix $1 \neq a \in A$ and consider the embedding $Y \leq C_{G_{0}}(a)$.

Since T_{0} centralizes no component of $Y, X=\left[T_{0}, Y\right]$ and this implies $X \leq D_{1} \cdots D_{k}$, where D_{1}, \ldots, D_{k} are the components of $C_{G_{0}}(a)$ (see (2.9)). By (7.1), $T_{0} \cap D_{1}$ is a maximal torus of D_{1}, and we may reorder, if necessary, so that $Y_{1}=\left[T_{0} \cap D_{1}, Y\right] \neq 1$. Argue in D_{1} with the subgroup $Y_{1}\left(T_{0} \cap D_{1}\right)$, using minimality of $\left|G_{0}\right|$ and (10.9) to obtain a contradiction.
(10.11) Let $X=F^{*}(Y)$. Then $Y=X T_{0} \leq \operatorname{Aut}(X)$ and either X is simple or X is the commuting product of two T_{0}-conjugate simple groups.

Proof. Let X_{1} be a component of Y and $\left\{X_{1}, \ldots, X_{k}\right\}$ the orbit of X_{1} under T_{0}. By (10.10)(iii), $E(Y)_{p}=1$, so minimality of $|Y|$ and (10.9) imply $Y=X_{1} \cdots X_{k} T_{0}$. By (10.10)(ii), each of X_{1}, \ldots, X_{k} is a simple group. Suppose $k>1$.

Let $T_{2}=N_{T_{0}}\left(X_{1}\right)$, so that $T_{2} \leq N\left(X_{i}\right)$ for $i=1, \ldots, k$. Let r be a prime divisor of k and let t be an r-element of T_{0} with $\left|t T_{2}\right|=r$. If $t^{r}=1$, consider the group $C_{X}(t) T_{0}$ and obtain a contradiction (using minimality of $|Y|)$. Hence, $t^{r} \neq 1$. From order consideration we have $r \| X_{1} \mid$, so it follows that r divides $|A|$, where $A=C_{X}\left(t^{r}\right)$. Write $A=A_{1} \cdots A_{k}$ with $A_{i}=A \cap X_{i}, i=1, \ldots, k$.

Apply (10.1) to the group $A T_{0}$. Let $C / O_{p}(A)=A\left(T_{0}\right) / O_{p}(A)$. Then $C T_{0} \unlhd A T_{0}$ and $C=C_{1} \cdots C_{k}$, where $C_{i}=C \cap X_{i}$, for $i=1, \ldots, k$. If $C>O_{p}(A)$, then by (9.1) T_{0} contains a maxial torus of C. However, $T_{0} \cap C_{1} \leq T_{0} \cap X_{1}=1$ (otherwise $T_{0} \leq N\left(X_{1}\right)$). Therefore, $C=O_{p}(A)$ and $O_{p}(A) T_{0} \unlhd A T_{0}$. Let $1 \neq a_{1} \in A_{1}$ with $\left|a_{1}\right|=r$. For $g \in T_{0}-T_{2}$, $a_{1}^{-1} a_{1}^{g} \in X_{1} X_{1}^{g} \cap O_{p}(A) T_{0}$. So, modulo $O_{p}(A)$ this element centralizes T_{0}, and it follows that $X=X_{1} X_{1}^{g}$. This proves (10.11).

At this stage in the proof of (10.1) we consider the possibilities for $X=E(Y)$. This is where the classification of finite simple groups becomes relevant. Write $X=X_{1}$ or $X_{1} \times X_{2}$.
(10.12) $X_{1} \not \neq A_{m}$, for $m \geq 5$.

Proof. Suppose $X_{1} \cong A_{m}$. First we rule out the case $X=X_{1} \times X_{2}$. Otherwise, let $t \in T_{0}-N\left(X_{1}\right)$ with t a 2-element. Then $X_{1}^{t}=X_{2}$ and $j=t^{2} \in N\left(X_{1}\right)$. So j acts as an element of S_{m} on each of X_{1} and X_{2} and we set $A_{i}=C_{X_{i}}(j)$, for $i=1,2$. Then $A_{2}=A_{1}^{t}$. The structure of A_{i} is determined from the cycle decomposition of j. From (10.1) we conclude $T_{0} \unlhd A_{1} A_{2} T_{0}$. So for $1 \neq a_{1} \in A_{1}, a_{1}^{-1} a_{1}^{t} \in\left[A_{1} A_{2}, T_{0}\right] \leq T_{0} \leq C(t)$. This forces $\left|a_{1}\right|=2$; hence A_{1} is elementary abelian. From the known structure of A_{1}, we conclude $m \leq 5$ and $\left|T_{0}\right| \leq 8$. But $X_{1} \times X_{2} \leq G_{0}$ forces $n \geq 2$, and we obtain a contradiction from (2.4). Therefore, $X=X_{1}$.

Let $\Omega=\{1, \ldots, m\}$. Since $Y \leq \operatorname{Aut}(X)$ and since the order restrictions on $\left|T_{0}\right|$ force $m>6$, we have $Y \cong A_{m}$ or S_{m}, and T_{0} acts on Ω. We claim T_{0} is transitive on Ω. Otherwise, we can write $\Omega=\Omega_{1} \cup \Omega_{2}$, a disjoint union of T_{0}-invariant subsets. By minimality of $|Y|$ and (10.9) we
have $\left|\Omega_{i}\right| \leq 4$ for $i=1,2$, hence $|\Omega| \leq 8$. By considering subgroups of $L_{2}(q)$ we see that $n \geq 2$, and so order restrictions (see (2.4)) lead to a contradiction. Therefore, T_{0} is transitive on Ω, and as T_{0} is abelian, T_{0} is regular. In particular, $\left|T_{0}\right|=m$. If m is not a prime, write $\Omega=\Omega_{1}$ $\cup \cdots \cup \Omega_{l}$, a disjoint union, corresponding to a system of imprimitivity for T_{0} on Ω. Then T_{0} stabilizes a subgroup V isomorphic to $A_{\Omega_{1}} \times \cdots \times A_{\Omega_{i}}$. If $\left|\Omega_{1}\right|>4$, then the minimality of $|Y|$ and (10.9) (applied to $V T_{0}$) gives a contradiction. Suppose $\left|\Omega_{1}\right| \leq 4$. Then $V T_{0}$ is solvable, and since $p \geq 5$, we conclude from (6.1) that $l=2$ and V is an elementary abelian 2-group. That is, $\left|\Omega_{1}\right|=2$ and $m=4$, a contradiction. Therefore, m is prime. Also, $T_{0} \cong Z_{m}, T_{0} \leq X=F^{*}(Y)$, and $N_{Y}\left(T_{0}\right) / T_{0}$ is cyclic of order $\frac{1}{2}(m-1)$. We use this information in order to get a numerical contradiction.

Suppose G_{0} is a classical group. Let \hat{G}_{0} be the appropriate linear group acting on the natural module M, and let \hat{T}_{0} be the preimage in \hat{G}_{0} of T_{0}. With notation as in the proof of (10.8) we have $M=M_{1} \oplus \cdots \oplus M_{k}$ if $\hat{G}_{0} \cong \mathrm{SL}(n, q)$, while $M=M_{1} \perp \cdots \perp M_{k} \perp N_{1} \perp \cdots \perp N_{j}$, otherwise. Here \hat{T}_{0} stabilizes each of the subspaces, acts irreducibly on each M_{i}, while each N_{i} decomposes into two \hat{T}_{0}-invariant totally singular subspaces. If \hat{G} denotes the full linear group $\left(\mathrm{GL}(n, q), \mathrm{GU}(n, q), \mathrm{Sp}(n, q)\right.$, or $\left.\mathrm{SO}^{ \pm}(n, q)\right)$ and \hat{T} the maximal torus of \hat{G} containing \hat{T}_{0}, then $\hat{T}=\hat{T}_{1} \times \cdots \times \hat{T}_{k}$ if $\hat{G}_{0} \cong \operatorname{SL}(n, q)$, or $\hat{T}=\hat{T}_{11} \times \cdots \times \hat{T}_{1 k} \times \hat{T}_{21} \times \cdots \times \hat{T}_{2 j}$ otherwise, where the appropriate subgroups act on the corresponding M_{i} or N_{j}, and are trivial on all other parts of the decomposition.

Now, T_{0} has prime order. If G_{0} is a symplectic or even dimensional orthogonal group, say $\operatorname{dim}(M)=2 n$, then $|\hat{T}| /\left|T_{0}\right|$ divides 4 , and since $q \geq 13$ we conclude that $k+j=1$. It follows that $N_{G_{0}}\left(T_{0}\right) / T_{0}$ has order at most $2 n$. If $\hat{G}_{0} \cong O(2 n+1, q)^{\prime}$, we get the same conclusion, although here one of M_{i} 's has dimension 1 and \hat{T} induces Z_{2} on this factor. Suppose $\hat{G}_{0} \cong \operatorname{SL}(n, q)$. Then \hat{T}_{1} is cyclic of order $q^{m_{t}}-1$, where $m_{i}=$ $\operatorname{dim}\left(M_{i}\right)$. This forces $k \leq 2$ and if $k=2$, then one of M_{1} and M_{2} has dimension 1. So here $N_{G_{0}}\left(T_{0}\right) / T_{0}$ has order n or $2 n-1$. Similarly, if $\hat{G}_{0} \cong \operatorname{SU}(n, q)$ we have $N_{G_{0}}\left(T_{0}\right) / T_{0}$ of order at most $2 n$. Thus, in all cases, $\left|N_{G_{0}}\left(T_{0}\right) / T_{0}\right| \leq 2 r$, where r is the Lie rank of \bar{G}. This gives the inequality, $2 r \geq \frac{1}{2}(m-1)$, or $4 r+1 \geq m$. Also, $m \geq \frac{1}{d}(q-1)^{r} \geq \frac{1}{d}(12)^{r}$ (by (2.4)) and $d \leq r+1$. Hence, $(4 r+1)(r+1) \geq 12^{r}$, a contradiction. This shows that G_{0} is not a classical group.

Let G_{0} be an exceptional group and \bar{G} of Lie rank r. Then $\frac{1}{2}(m-1)$ divides $|\bar{W}|$, while $m \geq \frac{1}{d}(q-1)^{r} \geq \frac{1}{d} 12^{r}$. Considering the possibilities for $|\bar{W}|$ we obtain a contradiction.
(10.13) X_{1} is not a group of Lie type in any characteristic.

Proof. Suppose that X_{1} is of Lie type and defined over $\mathbf{F}_{q_{0}}$, where $q_{0}=r^{a}$ and r is prime. By (10.10)(iii), $r \neq p$. Minimality of $|Y|$ and (10.9) shows that T_{0} stabilizes no subgroup $J<X$ with $E(J)_{r} \neq 1$.

Suppose r divides $\left|T_{0} \cap X\right|$. We first claim that T_{0} is an r-group. From (3.9) of [4] it follows that there is a canonical parabolic subgroup, D of X, with $O_{r}\left(T_{0} \cap X\right) \leq O_{r}(D)$. Then $T_{0} \leq N(D)$ and minimality of $|Y|$ implies that (10.1) holds for $D T_{0}$. Since $O_{p}\left(D T_{0}\right) \leq O_{p}(D)=1$ and since $E\left(D T_{0}\right)_{p} \leq E(D)_{p}=1$, we must have $T_{0} \unlhd D T_{0}$. In particular, $\left[O_{r^{\prime}}\left(T_{0}\right), O_{r}(D)\right] \leq O_{r^{\prime}}\left(T_{0}\right) \cap O_{r}(D)=1$. Then $\left[D, O_{r^{\prime}}\left(T_{0}\right)\right] \leq D \cap$ $C\left(O_{r}(D)\right) \cap O_{r^{\prime}}\left(T_{0}\right)=1$. In particular, $O_{r^{\prime}}\left(T_{0}\right)$ centralizes a Borel subgroup of X, and checking $\operatorname{Aut}(X)$ we see that $O_{r^{\prime}}\left(T_{0}\right)=1$. This proves the claim.

Let $U \in \operatorname{Syl}_{r}(X)$ with $T_{0} \leq N(U)$. Then $N_{Y}(U) T_{0}$ is solvable and, as above, $T_{0} \unlhd N_{Y}(U) T_{0}$. Suppose $X=X_{1} \times X_{2}$. Then $r=2$. Let $t \in T_{0}-$ $N\left(X_{1}\right)$ and $a_{1} \in N_{X_{1}}\left(U \cap X_{1}\right)$. Then $a_{1}^{-1} a_{1}^{t}=\left[a_{1}, t\right] \in T_{0}=O_{2}\left(T_{0}\right)$, from which it follows that $q_{0}=2$. Also, $a_{1}^{-1} a_{1}^{t} \in T_{0}$ and T_{0} abelian implies $U \cap X_{1}$ is abelian. But then, $X_{1} \cong \mathrm{SL}(2,2)$, a contradiction. Therefore, X is simple. Since $T_{0} \unlhd N_{Y}(U) T_{0},\left[N_{Y}(U), T_{0}, T_{0}\right]=1$, and consideration of $T_{0}=O_{r}\left(T_{0}\right) \leq \operatorname{Aut}(X)$ yields $T_{0} \leq U$. Let D_{1} be any proper parabolic subgroup of X with $U \leq D_{1}$. Then minimality of $|Y|$ yields $T_{0} \unlhd D_{1}$. If $X \nRightarrow \operatorname{PSL}\left(2, q_{0}\right)$, then letting D_{1} vary, we conclude $T_{0} \unlhd X$, a contradiction. Therefore, $X \cong \operatorname{PSL}\left(2, q_{0}\right)$, and $N_{Y}(U) \leq N\left(T_{0}\right)$ forces $\left|T_{0}\right|=q_{0}$. Also, $Y=X$ and $N_{Y}\left(T_{0}\right) / T_{0}$ is cyclic of order $q_{0}-1 /\left(2, q_{0}-1\right)$. At this point we have the same situation that existed at the end of the proof of (10.12) (set $m=q_{0}$ but allow for the fact that T_{0} may not have prime order) and this led to a numerical contradiction. We conclude that $T_{0} \cap X$ is an r^{\prime}-group.

Suppose $1 \neq t \in T_{0} \cap X$ and consider $C=C_{X}(t)$. Let $t \in I$, a maximal torus of X. By (2.9), there are commuting groups of Lie type, D_{1}, \ldots, D_{l}, over extension fields of $\mathbf{F}_{q_{0}}$ such that $D_{1} \cdots D_{l} I$ is normal in C with quotient isomorphic to a subgroup of the center of the universal cover of Y. If $E(C) \neq 1$, we contradict the minimality of $|Y|$. Hence, $E(C)=1$. Consequently, either $D_{1} \cdots D_{l} I=I$ or $q_{0}=2$ or 3 and $D_{i} \cong$ $\operatorname{SL}\left(2, q_{0}\right), \operatorname{PSL}\left(2, q_{0}\right), \operatorname{SU}(3,2)$, or $\operatorname{PSU}(3,2)$, for $i=1, \ldots, l$.

Suppose one of the latter cases occurs and set $J=\left[D_{1} \cdots D_{l}, T_{0}\right]$. Then $J \leq D_{1} \cdots D_{l} \cap T_{0} \leq O_{r^{\prime}}\left(D_{1} \cdots D_{l}\right)$ (as T_{0} is an r^{\prime}-group). Also, $J \unlhd D_{1} \cdots D_{l} T_{0}$. Since T_{0} is abelian, $J \cap D_{i} \leq Z\left(D_{i}\right)$ for any i with $D_{i} \cong \mathrm{SL}(2,3)$ or $\operatorname{SU}(3,2)$. For such an $i,\left[T_{0}, D_{i}, D_{i}\right] \leq\left[Z\left(D_{i}\right), D_{i}\right]=1$, and since D_{i} is generated by r-elements, $\left[T_{0}, D_{i}\right]=1$. But then $D_{i} \leq$ $C_{G_{0}}\left(T_{0}\right)=T_{0}$, whereas T_{0} is an r^{\prime}-group. We conclude that $D_{i} \cong \operatorname{PSL}\left(2, q_{0}\right)$ or $\operatorname{PSU}(3,2)$ for $i=1, \ldots, l$. Normality of J in $D_{1} \cdots D_{k} T_{0}$ and the
previous commutator argument shows that $J=O_{r^{\prime}}\left(D_{1} \cdots D_{l}\right)$. In particular, there are root subgroups $A_{1} \cong A_{2} \cong Z_{q_{0}}$ of Y such that $\operatorname{PSL}\left(2, q_{0}\right) \cong$ $\left\langle A_{1}, A_{2}\right\rangle \leq C$ and $E=O_{r^{\prime}}\left(\left\langle A_{1}, A_{2}\right\rangle\right) \leq T_{0}$. Let t_{1} be a generator of E. As above, $E\left(C_{X}\left(t_{1}\right)\right)=1$. This implies that Y has Lie rank at most 2 . Since $X \leq G_{0}, n \geq 2$, and $\left|T_{0}\right| \geq \frac{1}{3} 12^{2} \geq 48$ (see (2.4)). As T_{0} is an abelian r^{\prime}-subgroup of $C_{Y}(t)$ we obtain a numerical contradiction.

We now have $D_{1} \cdots D_{l} I=I \unlhd C$. Let m be the Lie rank of the overlying algebraic group of X_{1}. Then $|C|$ is bounded by the order of a maximal torus of the universal cover of X, so (2.4) implies that $\left|T_{0} \cap X\right|$ $\leq\left(q_{0}+1\right)^{m}$ (replace q_{0} by $q_{1}=\sqrt{q_{0}}$ for the Suzuki and Ree groups). Here we use the fact that if $X=X_{1} \times X_{2}$, then $T_{0} \cap X_{1}=T_{0} \cap X_{2}=1$. Regarding $T_{0} / T_{0} \cap X$ as an abelian subgroup of $\operatorname{Out}(X)$ we have $\left|T_{0}\right| \leq$ $\left(q_{0}+1\right)^{m+2}$ (again we replace q_{0} by $q_{1}=\sqrt{q_{0}}$ in the Suzuki and Ree cases). This inequality also holds in case $T_{0} \cap X=1$.

We cannot have $X_{1} \cong \operatorname{Sz}(q), L_{3}(4)$, or $U_{4}(3)$. For the first two this follows since T_{0} is abelian of order at least 48. If $X_{1} \cong U_{4}(3)$, use (5.16) of [23] together with the existence of an extraspecial 3-group in X_{1} of order 3^{5} to conclude that $n \geq 4$. Then $\left|T_{0}\right| \geq \frac{1}{5} 12^{4}$, contradicting the above inequality.

Suppose M is a faithful module in characteristic p for a covering group of G_{0}. Using the main theorem of [18], the containment $X<G_{0}$, and the above paragraph, we can obtain lower bounds on $\operatorname{dim}(M)$. Excluding the Suzuki and Ree groups, we then have $\operatorname{dim}(M) \geq \frac{1}{2}\left(q_{0}^{m}-1\right)$ (in most cases this is too low, but for the symplectic groups in odd characteristic, it is exact). For $X \cong \operatorname{Sz}\left(q_{0}\right),{ }^{2} G_{2}\left(q_{0}\right),{ }^{2} F_{4}\left(q_{0}\right)$ we have $\operatorname{dim}(M) \geq\left(q_{0} / 2\right)^{1 / 2}\left(q_{0}-1\right), q_{0}\left(q_{0}-1\right),\left(q_{0} / 2\right)^{1 / 2} q_{0}^{4}\left(q_{0}-1\right)$, respectively. In what follows we use these bounds on $\operatorname{dim}(M)$ to obtain contradictory inequalities involving $\left|T_{0}\right|$. The contradiction is most easily obtained for the three exceptional cases, although they must be considered individually. We, therefore, leave these cases to the reader and present a treatment of the remaining cases.

First, suppose G_{0} to be a classical group and let M be the usual module for the corresponding linear group. Then $\operatorname{dim}(M) \leq 2 n+1$. By the previous paragraph, $2 n+1 \geq \frac{1}{2}\left(q_{0}^{m}-1\right)$, so $n>\frac{1}{4}\left(q_{0}^{m}\right)-1$. We then have the inequalities $\left(q_{0}+1\right)^{m+2} \geq\left|T_{0}\right| \geq \frac{1}{d}(q-1)^{n} \geq \frac{1}{2}(q-1)^{n-1}$ $>\frac{1}{2}(12)^{(1 / 4)\left(q_{0}^{m}\right)-2}$. This yields $288\left(q_{0}+1\right)^{m+2}>12^{(1 / 4)\left(q_{0}^{m}\right)}$. When $m \geq 2$ and $q_{0} \geq 5$ this is impossible. Moreover, if $q_{0}=3$ or 4 , then $m \leq 2$, while if $q_{0}=2$, then $m \leq 4$. Suppose $m=1$. Then the inequality forces $q_{0} \leq 25$. Considering subgroups of $\operatorname{PSL}(2, q)$, we see that $n \geq 2$. But then $\left|T_{0}\right|$ $\geq \frac{1}{d} 12^{n} \geq 48$, contradicting $T_{0} \leq \operatorname{Aut}(X)$. Therefore, $m \geq 2$ and it follows that $q_{0}=2,3$, or 4 . Also, $m=2$ in the latter cases.

We treat these cases separately, using the inequality $(*)\left(q_{0}+1\right)^{m+2}$ $\geq\left|T_{0}\right| \geq \frac{1}{d}(q-1)^{n} \geq \frac{1}{d} 12^{n}$. Suppose $q_{0}=4$. Then $2 n+1 \geq \frac{1}{2}\left(q_{0}^{m}-1\right)>$ 7 , so $n \geq 4$, which contradicts (*). Suppose $q_{0}=3$. Then $m=2$ and X is simple. For the moment, exclude the case $X \cong \operatorname{PSp}(4,3)$. The result in [18] then gives $2 n+1 \geq \operatorname{dim}(M) \geq 6$. So $n \geq 3$ and we contradict (*). If $X \cong \operatorname{PSp}(4,3)$, then X contains the split extension of an elementary abelian 3-group of order 3^{3} and S_{3} and $O_{3}(X)$ has class 3. However, G_{0} is a classical group with $n \geq 2$, and one checks that this forces $n \geq 3$. This is a contradiction, leaving only the case $q_{0}=2$. Since T_{0} is an r^{\prime}-group we can improve the earlier bound to get $\left|T_{0}\right| \leq\left(q_{0}+1\right)^{m+1}=3^{m+1}$. If $m=4$, the bound $2 n+1 \geq \frac{1}{2}\left(2^{m}-1\right)$ forces $n \geq 3$, whence $\left|T_{0}\right| \geq \frac{1}{4} 12^{3}$, contradicting the above. If $m=2,3$, then $n \geq 2$ and we again have a contradiction unless $X_{1} \cong \operatorname{PSU}(4,2)$ and $n=2$. $\operatorname{But} \operatorname{PSU}(4,2) \cong \operatorname{PSp}(4,3)$ and we have already observed that this forces $n \geq 3$.

At this point G_{0} is an exceptional group, and, except for the case $G_{0} \cong G_{2}(q)$, these cases are easier than the above. Suppose $G_{0}=G_{2}(q)$, so that G_{0} has a 7-dimensional representation in characteristic p. We then have the inequality $7=\operatorname{dim}(M) \geq \frac{1}{2}\left(q_{0}^{m}-1\right)$, so $q_{0}^{m} \leq 13$. If $q_{0}=2$, then as above, $\left|T_{0}\right| \leq\left(q_{0}+1\right)^{m+1}$ which forces $m \geq 4$ (as $d=1$), a contradiction. If $q_{0}=3$, then ($*$) forces $m=2(X$ would be solvable if $m=1)$, so $X \cong \operatorname{PSL}(3,3), \operatorname{PSp}(4,3)$, or $\operatorname{PSU}(3,3)$. But then we can improve the earlier bound on $\left|T_{0}\right|$ obtaining $\left|T_{0}\right| \leq 2\left(q_{0}+1\right)^{m+1}$, which contradicts $(*)$. Therefore, $q_{0} \geq 4, m=1$, and $X \cong \operatorname{PSL}\left(2, q_{0}\right)$. This contradicts $(*)$ (as $\left.q_{0} \leq 13\right)$. So $G_{0} \neq G_{2}(q)$.

For the other exceptional groups argue as follows. In each case X acts on a module M of dimension 27 if $G_{0} \cong F_{4}(q), E_{6}(q)$, or ${ }^{2} E_{6}(q)$, dimension 56 if $G_{0} \cong E_{7}(q)$, and dimension 248 if $G_{0}=E_{8}(q)$. These bounds give easy contradictions. Details are omitted, but we illustrate with the case $G_{0}=F_{4}(q)$. Here $\operatorname{dim}(M)=27 \geq \frac{1}{2}\left(q_{0}^{m}-1\right)$, while $n=4$ and $d=1$. As above we obtain a contradiction. This completes the proof of (10.13).
11. Classification (continued). In this section we complete the proof of (10.1). In view of the classification theorem and (10.11)-(10.13) we have $X=F^{*}(Y)$ a sporadic simple group or the direct product of two sporadic groups interchanged by an element of T_{0}. Our method is to first show that T_{0} is T.I. set in Y, of odd order, and to use this together with properties of the individual groups to obtain a contradiction. An effort has been made to keep the number of special properties to a minimum, avoiding an extensive list of references. For the most part we only need the orders of the sporadic groups (Table (11.1), below) and the structure
of centralizers of involutions (available in Table 1 of [2]). For certain groups we do appeal to the literature for additional information. A somewhat shorter proof could be obtained by citing a much larger number of references, but this did not seem worthwhile.

Let n be the Lie rank of \bar{G}. The containment $X \leq G_{0}$ certainly forces $n \geq 2$, whence $\left|T_{0}\right| \geq \frac{1}{d}(q-1)^{n} \geq 48$ (as $d \leq n+1$). In the following table we list the sporadic simple groups and their orders.

Table (11.1)

X	$\|X\|$	X	$X \mid$
M_{11} $2^{4} \cdot 3^{2} \cdot 5 \cdot 11$ M_{12} $2^{6} \cdot 3^{3} \cdot 5 \cdot 11$ M_{22} $2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$ M_{23} $2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23$ M_{24} $2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23$ J_{1} $2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$ J_{2} $2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7$ J_{3} $2^{7} \cdot 3^{5} \cdot 5 \cdot 17 \cdot 19$ J_{4} $2^{21} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11^{3} \cdot 23 \cdot 29$. $31 \cdot 37 \cdot 43$ HS $2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11$ Mc $2^{7} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11$ Suz $2^{13} \cdot 3^{7} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$ He $2^{10} \cdot 3^{3} \cdot 5^{2} \cdot 7^{3} \cdot 17$		ON	$2^{9} \cdot 3^{4} \cdot 5 \cdot 7^{3} \cdot 11 \cdot 19 \cdot 13$
		Co_{1}	$2^{21} \cdot 3^{9} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 23$
		Co_{2}	$2^{18} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 23$
		Co_{3}	$2^{10} \cdot 3^{7} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 23$
		F_{22}	$2^{17} \cdot 3^{9} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 23$
		F_{23}	$2^{18} \cdot 3^{13} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 2$
		F_{24}^{\prime}	$2^{21} \cdot 3^{16} \cdot 5^{2} \cdot 7^{3} \cdot 11 \cdot 13 \cdot 17$.
			$23 \cdot 29$
		Ly	$2^{8} \cdot 3^{7} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 31 \cdot 37 \cdot 67$
		F_{1}	$2^{46} \cdot 3^{26} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{2} \cdot 17$
			$19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$
		F_{2}	$2^{41} \cdot 3^{13} \cdot 5^{6} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19$
			$23 \cdot 31 \cdot 47$
			$2^{15} \cdot 3^{10} \cdot 5^{3} \cdot 7^{2} \cdot 13 \cdot 19 \cdot 31$
			$2^{14} \cdot 3^{6} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 19$
		Ru	$2^{14} \cdot 3^{3} \cdot 5^{3} \cdot 7 \cdot 13 \cdot 29$

(11.2). If $t \in T_{0}$ is an involution, then $T_{0} \leq O_{2}\left(C_{Y}(t)\right)$ and $C_{Y}(t)$ is 2-constrained.

Proof. The possibilities for $C_{X}(t)$ are presented in Table 1 of [2] and in [17] for $X=J_{4}$. Suppose $C_{X}(t)$ is not 2-constrained. We have $T_{0} \leq$ $N\left(E\left(C_{X}(t)\right)\right)$, so minimality of $|Y|$ implies (10.1) holds for $E\left(C_{X}(t)\right) T_{0}$. The only possibility is $X \cong J_{3}$ or $J_{3} \times J_{3}$, with t inducing an outer automorphism on each component of X. Hence, $C_{X}(t) \cong \operatorname{PSL}(2,17)$ or $\operatorname{PSL}(2,17) \times \operatorname{PSL}(2,17)$, and $q=17$. Also, $T_{0} \cap X \leq C_{X}(t), T_{0} \cap X$ intersects each component trivially if X is not simple, and $\left|T_{0} \cap X\right| \geq 12$ (24 if X is simple). Since T_{0} is a p^{\prime}-group, this is impossible. Therefore, $C_{X}(t)$ is 2-constrained. From (10.1) and the minimality of $|Y|$ we conclude $C_{Y}(t)$ $\leq N\left(T_{0}\right)$, which forces $T_{0} \leq O_{2}\left(C_{Y}(t)\right)$.
(11.3) (i) $\left|T_{0}\right|$ is odd.
(ii) X is simple.

Proof. Suppose $\left|T_{0}\right|$ is even and apply (11.2) to obtain $T_{0} \leq O_{2}\left(C_{Y}(t)\right)$ and $C_{Y}(t) 2$-constrained for each involution $t \in T_{0}$. Suppose $X=X_{1} \times X_{2}$, with $X_{2}=X_{1}^{y}$, for some $y \in T_{0}$. The previous remarks show that each involution, t, of T_{0} normalizes X_{1} and X_{2}, and since $y \in O_{2}\left(C_{Y}(t)\right)$ we necessarily have $C_{X}(t)$ a 2-group (consider [a_{1}, y] for $a_{1} \in C_{X_{1}}(t)$ of odd order). However, Table 1 of [2] and [17] show this to be impossible. Therefore (ii) holds.

We know that T_{0} is a 2 -group of order at least 48, and this forces $\left|T_{0}\right| \geq 2^{6}$. By Table 1 of [2] and [17] the only sporadic groups X having an involution t such that $O_{2}\left(C_{Y}(t)\right)$ contains an abelian subgroup of order 2^{6} are $R_{u}, \mathrm{Co}_{1}, \mathrm{Co}_{2}, F_{22}, F_{23}, F_{24}^{\prime}, F_{2}, J_{4}$, or F_{1}. Moreover, in each case $O_{2}\left(C_{Y}(t)\right)$ has exponent at most 4.

Since $\left|T_{0}\right| \geq 2^{6}, T_{0}$ has rank at least 3 . From (2.1)(iii) we conclude $n \geq 3$. Hence, $\left|T_{0}\right| \geq \frac{1}{d}(q-1)^{n} \geq \frac{1}{4} \cdot 12^{3}$ (recall, $d \leq n+1$), and since T_{0} is a 2-group, $\left|T_{0}\right| \geq 2^{9}$. Repeat the argument. Namely, T_{0} of exponent at most 4 implies T_{0} of rank at least 5. Therefore, $n \geq 5$ and $\left|T_{0}\right| \geq \frac{1}{6} \cdot 12^{5}>$ 2^{15}. Eventually, we obtain $\left|T_{0}\right|>|X|$, a contradiction.
(11.4) (i) $X=Y$.
(ii) $N_{X}\left(T_{0}\right)$ is the unique maximal subgroup of Y containing T_{0}.
(iii) T_{0} is a T.I. set in $X=Y$.

Proof. $X=Y$ by (11.3) and Table 1 of [2]. Suppose (ii) holds. If T_{0} is not a T.I. set in Y, then there exists $y \in Y-N\left(T_{0}\right)$ with $1 \neq T_{0} \cap T_{0}^{y}$. Choose $1 \neq t \in T_{0} \cap T_{0}^{y}$, so that $T_{0}, T_{0}^{y} \leq C_{Y}(t)$. By (ii), $C_{Y}(t) \leq N\left(T_{0}\right)$, so (6.3) forces the contradiction $T_{0}=T_{0}^{y}$. Therefore, it will suffice to prove (ii).

Let $T_{0} \leq M<X$. We must show $N_{X}\left(T_{0}\right) \geq M$. Suppose false, so that minimality of $|Y|$ implies that (10.1) holds for M. Therefore, either $O_{p}(M) \neq 1$ or $E(M)_{p} \neq 1$. Suppose $E(M)_{p} \neq 1$ and let D be a component of $E(M)_{p}$. By (7.1) $T_{0} \cap D$ is a maximal torus of D, hence $T_{0} \leq N(D)$. Then (7.2) shows that $T_{2}=C_{T_{0} D}\left(T_{1}\right)$ is a maximal torus of G_{0}, where T_{1} is a Cartan subgroup of D. Let V be a Sylow p-subgroup of D normalized by T_{2}. Then V is a product of T_{2}-root subgroups of G_{0} (use (9.1)), each of which has order a power of q. If $D \neq L_{2}\left(q^{a}\right)$, for some integer a, then T_{1} is necessarily of even order. But then $\left|T_{2}\right|$ is even, and applying (11.3) to
T_{2} rather than to T_{0}, we have a contradiction. So $D \cong L_{2}\left(q^{a}\right)$ and $\frac{1}{2}\left(q^{a}-1\right)$ is odd.

Suppose $|V|=q$ and let $\bar{T}_{2}=C_{\bar{G}}\left(T_{2}\right)^{0}$, a maximal torus of \bar{G}. There is a \bar{T}_{2}-root subgroup \bar{V} of \bar{G} such that $V=\bar{V}_{\sigma}$. Then D is generated by V and the opposite T_{2}-root subgroup of G_{0}, and it follows that either $D \cong \mathrm{SL}(2, q)$ or $G_{0} \cong \mathrm{PSp}(4, q)$ and V is a root subgroup for a short root. The first case contradicts $\left|T_{2}\right|$ odd. In the second case, consideration of $N_{G_{0}}(V)$ shows that $\left|T_{2}\right|=\frac{1}{2}(q-1)^{2}$ or $\frac{1}{2}\left(q^{2}-1\right)$, either way we again contradict $\left|T_{2}\right|$ odd. Therefore, $a>1$, and since $\frac{1}{2}\left(q^{a}-1\right)$ is odd, so is a. Thus, $q^{3}| | V \mid$. Also, $q \equiv-1(\bmod 4)$ forces q to be an odd power of p and $p \equiv-1(\bmod 4)$. From Table (11.1) we easily rule out all possibilities for X. Hence, $E(M)_{p}=1$.

We then have $O_{p}(M) \neq 1$. Let J be a minimal T_{0}-root subgroup contained in $O_{p}(M)$. Then $|J|=q^{a}$ for some $a \geq 1$. If $a=1$, argue as in the above paragraph and contradict the fact that $\left|T_{0}\right|$ is odd. Hence $a \geq 2$.

Suppose $a=2$. Then $J=X_{i}$ for some $i \in\{1, \ldots, v\}$ and $\bar{X}_{i}=\bar{U}_{\alpha} \times \bar{U}_{\beta}$ for α, β roots of the same length. Let $\bar{D}=\left\langle\bar{U}_{ \pm \alpha}, \bar{U}_{ \pm \beta}\right\rangle$. Then \bar{D} is a $\bar{T}\langle\sigma\rangle$-invariant rank two subgroup of \bar{G}, so $D=O^{p^{\prime}}\left(\overline{D_{\sigma}}\right)$ is a perfect central extension of one of the groups $\operatorname{PSL}\left(2, q^{2}\right), \operatorname{PSL}(3, q), \operatorname{PSU}(3, q)$, or $\operatorname{PSp}(4, q)$. By (7.1), $T_{0} \cap D$ is a maximal torus of D. Also, $T_{0} \leq N(J)$, so $T_{0} \cap D$ is contained in a proper parabolic subgroup of D. However, one checks that this forces $\left|T_{0} \cap D\right|$ even, a contradiction. Therefore, $a \geq 3$.

From Table (11.1) we conclude that X is one of the groups Ly, F_{5}, F_{2}, or F_{1}. In the first two cases, J is necessarily of order 5^{6} and a Sylow 5-subgroup of X. However, J is elementary abelian, while Ly contains $G_{2}(5)$ (Lyons [19]) and F_{5} contains a HS section (Table 1 of [2]), which contains a $U_{3}(5)$ section. This is impossible, forcing $X \cong F_{2}$ or F_{1}. At this point we appeal to (11.8) (which is proved independently of (11.4)) to obtain a contradiction. This completes the proof of (11.4).
(11.5) G_{0} has a faithful irreducible projective module M over a field of characteristic p and satisfying
(i) $\operatorname{dim}(M) \leq 2 n+1$ if G_{0} is a classical group;
(ii) $\operatorname{dim}(M) \leq 8$ if $G_{0} \cong G_{2}(q)$;
(iii) $\operatorname{dim}(M) \leq 27$ if $G_{0} \cong F_{4}(q), E_{6}(q)$, or ${ }^{2} E_{6}(q)$;
(iv) $\operatorname{dim}(M) \leq 56$ if $G_{0} \cong E_{7}(q)$; and
(v) $\operatorname{dim}(M) \leq 248$ if $G_{0} \cong E_{8}(q)$.

Proof. If G_{0} is a classical group use the natural module associated with the corresponding linear group. If $G_{0}=G_{2}(q)$, the containment $G_{2}(q) \leq D_{4}(q)$ implies the result. Each of the groups in (iii) is contained in $E_{6}(K)$. To obtain the module M, consider the group $E_{7}(K)$ and let P be the standard parabolic subgroup whose derived group involves $E_{6}(K)$. Then $M=R_{u}(P)$ can be viewed as a 27-dimensional module for the Levi factor of P. A similar procedure establishes (iv), while in (v) we let M be the Lie algebra of $\bar{G}=E_{8}(K)$.
(11.6) (i) $\left|T_{0}\right| \geq \frac{1}{d}(q-1)^{n} \geq \frac{1}{14} \cdot 12^{n}$.
(ii) If $n \geq k$, then $\left|T_{0}\right| \geq 1 /(k+1) \cdot 12^{k}$.

Proof. By (2.3) $\left|T_{0}\right| \geq \frac{1}{d}(q-1)^{n}$. As $d \leq q+1$ and $q \geq 13$, we have $\frac{1}{d}(q-1)^{n} \geq((q-1) /(q+1))(q-1)^{n-1} \geq \frac{6}{7} 12^{n-1}=\frac{1}{14} 12^{n}$, which proves (i). To prove (ii) use the inequality $\left|T_{0}\right| \geq \frac{1}{d}(q-1)^{n} \geq$ $(1 /(n+1)) 12^{n}$ and repeated use of the inequality $(1 /(l+1))(q-1)^{l}$ $>\frac{1}{l}(q-1)^{l-1}$.
(11.7) X is not a Mathieu group.

Proof. Suppose X is a Mathieu group. Regard X as a subgroup of M_{24}, acting on a set Ω of size 24. Let Δ be an orbit of T_{0} of maximal length. Fix $\alpha \in \Delta$ and set $T_{1}=\left(T_{0}\right)_{\alpha}$. By (11.3) $|\Delta|$ is odd and since T_{0} is abelian, T_{1} fixes each point in Δ. From $\left|T_{0}\right| \geq 48$ we conclude $T_{1} \neq 1$, and since $|\Delta| \geq 3, T_{1} \leq M_{21} \leq \operatorname{Aut}(\operatorname{PSL}(3,4))$.

If $|\Delta|=3$, then $\left|T_{1}\right| \geq 16$ forces $7\left|\left|T_{1}\right|\right.$, whence T_{0} has an orbit of size a multiple of 7 . This contradicts the choice of Δ. Therefore $|\Delta| \geq 5$ and T_{1} must be contained in a Cartan subgroup of $\operatorname{Aut}(\operatorname{PSL}(3,4)) \geq M_{21}$. Then $\left|T_{1}\right|$ divides 9 and $|\Delta| \geq 7$. This forces $\left|T_{1}\right|=3$, whence $|\Delta| \geq 16$, impossible.
(11.8) $X \not \neq F_{2}$ or F_{1}.

Proof. If $X \cong F_{2}$ or F_{1}, then X contains a covering of ${ }^{2} E_{6}(2)$ (see Table 1 of [2]). By [18] any faithful projective representation of ${ }^{2} E_{6}(2)$ in odd characteristic has degree at least $3 \cdot 2^{9}$. So (11.5) implies G is a classical group and $n \geq \frac{1}{2}\left(3 \cdot 2^{9}-1\right)$. Combining this with (11.6) we have $\left|T_{0}\right|>$ $|X|$, a contradiction.
(11.9) $X \not \neq M c$ or Co_{3}.

Proof. Suppose $X \cong \mathrm{Mc}$ or Co_{3}. By (11.4)(ii) $N_{X}\left(T_{0}\right)$ is a maximal subgroup of X, all such subgroups being determined in Finkelstein [11]. Now X acts faithfully on the Lie algebra, M, of G. Also, $\hat{A}_{8} \leq \mathrm{Mc} \leq \mathrm{Co}_{3}$ and $A_{8} \cong \mathrm{GL}(4,2)$. Decomposing M into eigenspaces for the central involution of the \hat{A}_{8} and using [18], we have $\operatorname{dim}(M) \geq 2 \cdot 7=14$. This implies $n \geq 4$ and so $\left|T_{0}\right| \geq \frac{1}{5} 12^{4}$. The results in [11] yield a contradiction.

(11.10) $X \neq$ HS.

Proof. Suppose $X \cong$ HS. Then X is 2-transitive of degree 176, with 1-point stabilizer $\operatorname{PSU}(3,5)$ and 2-point stabilizer an extension of $\operatorname{SL}(2,5)$ by Z_{6}. Say X acts on Ω and Δ is a non-trivial orbit of T_{0}. For $\alpha \in \Delta$, $T_{1}=\left(T_{0}\right)_{\alpha}$ stabilizes each point in Δ, hence $T_{1} \leq \operatorname{SL}(2,5) \times Z_{3}$ and $\left|T_{1}\right| \leq 15$. In particular, $\left|T_{0}\right| \leq 15 \cdot 176$.

If $p \neq 5$, then using the containment $\operatorname{PSU}(3,5)<G_{0}$ together with [18] and (11.5) we have $n \geq 4$. Hence, $\left|T_{0}\right| \geq \frac{1}{d}(q-1)^{n} \geq \frac{1}{5} \cdot 12^{4}$, contradicting $\left|T_{0}\right| \leq 15 \cdot 176$. So $p=5$, which forces $q \geq 25$ and $\left|T_{0}\right| \geq$ $\frac{1}{d}(q-1)^{n} \geq \frac{1}{3} \cdot 24^{2}=2^{6} 3$. Also, T_{0} has order prime to 5 , so $\left|T_{1}\right| \leq 3^{2}$ and $|\Delta|>21$. The lower bound on $\left|T_{0}\right|$ implies that each orbit of T_{0} is non-trivial, of odd length, and of order greater than 21, but dividing $|X|$. Table (11.1) shows this to be impossible.
(11.11) $X \not \approx \mathrm{Ru}$ or Suz.

Proof. Suppose $X \cong \mathrm{Ru}$ or Suz then X contains a subgroup $(A \times R) D$, where $Z_{2} \times Z_{2} \cong R \unlhd R D \cong A_{4}, D \leq N(A)$, and $A \cong \operatorname{Sz}(8)$ or $\operatorname{PSL}(3,4)$, respectively (this follows from Table 1 of [2]). Let M be a nontrivial, projective, irreducible module for G_{0} in characteristic p, and let \hat{G}_{0} be the representation group for M.

Write $M=C_{M}(\hat{R}) \oplus[M, \hat{R}]$. We first show that $[\hat{A},[M, \hat{R}]] \neq 0$. Suppose otherwise. Using (3.3) and (8.10)(i) of [2] we see that there exists $x \in \hat{X}$ with $\hat{R}^{x} \leq \hat{A} \hat{R}$ and $\hat{R}^{x} \cap \hat{A} \leq Z(\hat{X}) \geq \hat{R}^{x} \cap \hat{R}$. Then $\hat{A} \hat{R}=\hat{A} \hat{R}^{x}$. Since \hat{A} is trivial on $[M, \hat{R}]$ we conclude $\left[M, \hat{R}^{x}\right] \geq[M, \hat{R}]$, hence equality holds. Therefore, $C_{M}(\hat{R})=C_{M}\left(\hat{R}^{x}\right)$, whereas \hat{R}^{x} induces a subgroup of \hat{A} on $C_{M}(\hat{R})$ and, surely, $\left[\hat{A}, C_{M}(\hat{R})\right] \neq 0$. Therefore, $[\hat{A},[M, \hat{R}]] \neq 0$, as asserted.

Suppose $X \cong \mathrm{Ru}$. Then the main theorem of [18] implies $\operatorname{dim}(M) \geq$ $\operatorname{dim}([M, \hat{R}]) \geq 8$ and $\operatorname{dim}(M) \geq 14$ in case $Z(\hat{X})$ has odd order. If \hat{R} is not abelian, then Clifford's theorem and Schur's lemma imply that M contains the direct sum of two faithful $K[\hat{A}]$-composition factors, hence $\operatorname{dim}(M) \geq 16$. If \hat{R} is abelian, we can write $[M, \hat{R}] \geq M_{1} \oplus M_{2} \oplus M_{3}$, the
sum of three faithful irreducibles for \hat{A}, permuted transitively by \hat{D}. Here $\operatorname{dim}(M) \geq 24$ and $\operatorname{dim}(M) \geq 42$ if $Z(\hat{X})$ has odd order. Apply (11.5) and note that in (11.5)(iii) the module corresponded to a 3-fold cover of $E_{6}(K)$. We conclude that $n \geq 7$ and if $n=7$, then $G_{0} \cong E_{7}(q)$ and $d=2$. Therefore, $\left|T_{0}\right| \geq \frac{1}{2} 12^{7}$, and this contradicts (11.3) and (11.4)(i).

Now suppose $X \cong$ Suz and let M be the Lie algebra of \bar{G}. Here $X=\hat{X}$ acts on M and A does not centralize [M, R]. Also, $[M, R]=M_{1} \oplus M_{2} \oplus$ M_{3}, where M_{1}, M_{2}, and M_{3} are the fixed spaces of the involutions in R. The spaces M_{1}, M_{2}, and M_{3} are left invariant by A and permuted transitively by D. It follows from [18] that $\operatorname{dim}(M) \geq 3 \cdot \operatorname{dim}\left(M_{1}\right) \geq 45$. If $\bar{G}=F_{4}(K)$, we have a contradiction by replacing M by the module in (10.5)(iii) (a module for the 3-fold cover of $E_{6}(K)$). Hence $n \geq 5$. Since $\left|T_{0}\right|$ is odd equality holds only if $G_{0}=\operatorname{PSp}(10, q)$ or $\mathrm{PSO}^{-}(10, q)^{\prime}$ with $\left|T_{0}\right| \geq \frac{1}{2}(q-1)^{6}$. The only possibilities are $\left|T_{0}\right|=\frac{1}{2}\left(q^{5}+1\right)$ with $q=13$ or 17 , or $n=6$ and $G_{0}=\operatorname{PSU}(7,13)$. In each case we have a numerical contradiction.

$$
(11.12) X \not \approx J_{1}
$$

Proof. We use (11.4)(iii) to conclude $\left|T_{0}\right|^{2} \leq|X|$. If $n \geq 3$, then $\left|T_{0}\right|>\frac{1}{4} 12^{3}$ and this is impossible. Thus, $n=2$. A Sylow 2-normalizer of X contains a Frobenius group of order $2^{3} 7$. Therefore, any projective irreducible for X in odd characteristic has dimension at least 7. By (11.5) $\bar{G} \cong G_{2}(K)$, hence $d=1$ and $\left|T_{0}\right| \geq(q-1)^{2}$. As $\left|T_{0}\right|^{2} \leq X$, this forces $q \leq 19$. As $\left|T_{0}\right|$ is odd, $\left|T_{0}\right|=\Phi_{3}(q)$ or $\Phi_{6}(q)$, and one checks that $\left|T_{0}\right|\left|\left|J_{1}\right|\right.$.
(11.13) $X \not \not \not J_{2}$ or J_{3}.

Proof. Suppose $X \cong J_{2}$ or J_{3} and let t be a 2-central involution in X. By Table 1 of [2] we have $C_{X}(t)$ an extension of an extraspecial group of order 2^{5} by A_{5}.

We first claim $n \geq 3$. To see this let M be a faithful $K[X]$-module, and write $M=[M, t] \oplus C_{M}(t)$. As M is faithful each of the factors is non-trivial, and they are both $C_{X}(t)$ invariant. Since $O_{2}\left(C_{X}(t)\right)$ is extraspecial, we have $\operatorname{dim}([M, t]) \geq 4$. Now consider $C_{M}(t)$. Involutions in $O_{2}\left(C_{X}(t)\right)$ are non-trivial on $C_{M}(t)$ and it is easy to see that such involutions are conjugates of t (use Table 1 of [2]). Thus, $O_{2}\left(C_{X}(t)\right)$ acts in a non-trivial manner on $C_{M}(t)$ and it follows from Clifford's theorem that $\operatorname{dim}\left(C_{M}(t)\right) \geq 5$. Consesquently, $\operatorname{dim}(M) \geq 9$. Now $\operatorname{SL}(3, K)$ acts on its

Lie algebra of dimension 8; $G_{2}(K)$ acts in 8 dimensions; while $\operatorname{PSp}(4, K)$ $\cong O(5, K)^{\prime}$ acts in 5 dimensions. This proves the claim, and so $\left|T_{0}\right| \geq \frac{1}{4} 12^{3}$.

From Sylow's theorem, we have the Sylow 7-subgroups of J_{2} selfcentralizing while the Sylow r-subgroups of J_{3} are self-centralizing for $r=17$, 19. Since $\left|T_{0}\right|$ is odd, the above inequality shows $\left|T_{0}\right|=3^{3} \cdot 5^{2}$ or $3^{5} \cdot 5$, according to $X \cong J_{2}$ or J_{3}. However, (11.4) implies that $\left|X: N_{X}\left(T_{0}\right)\right|$ $\equiv 1\left(\bmod \left|T_{0}\right|\right)$ and this is impossible.
(11.14) $X \not \neq J_{4}$.

Proof. Suppose $X \cong J_{4}$. We refer the reader to Janko [17] for properties of J_{4}. If t is a 2-central involution then $O_{2}\left(C_{X}(t)\right)$ is extraspecial of order 2^{13}. So if M is the Lie algebra of \bar{G} we have $\operatorname{dim}(M) \geq 2^{6}$. Thus $n \geq 6$ and $\left|T_{0}\right| \geq \frac{1}{7} 12^{6}$.

If $P \in \operatorname{Syl}_{r}(X)$, then by [17] P is self-centralizing for $r=23,29,31$, 37, and 43. The Sylow 11 -subgroups of X are non-abelian, so by Table 1 we have $\left|T_{0}\right|$ dividing $3^{3} \cdot 5 \cdot 7 \cdot 11^{2}$. This contradicts the inequality above.
(11.15) $X \neq \mathrm{He}$.

Proof. Suppose $X \cong$ He. From Table 1 of [2] it follows that X contains a klein group R such that $E\left(C_{X}(R)\right)$ is a covering group of $\operatorname{PSL}(3,4)$ with center R, and $N_{X}(R)$ is transitive on R. An easy argument using [18] shows that a faithful projective $K\left(E\left(C_{X}(R)\right)\right)$-module has dimension at least $4 \cdot 3=12$. So (11.5) yields $n \geq 4$, hence $\left|T_{0}\right| \geq \frac{1}{5} \cdot 12^{4}$.

Since $N_{X}(R)$ has a section isomorphic to $\operatorname{PGL}(3,4), X$ has non-abelian Sylow 3-subgroups. Therefore, $3^{3} \dagger\left|T_{0}\right|$. The Sylow 17 -subgroups of X are self-centralizing, so $\left|T_{0}\right|$ is prime to 17 . From Table (11.1) and the above inequality we conclude that $O_{5}\left(T_{0}\right) \in \operatorname{Syl}_{5}(X)$ or $O_{7}\left(T_{0}\right) \in$ $\operatorname{Syl}_{7}(X)$. Since 5 and 7 are divisors of $\left|C_{X}(R)\right|$, we may assume (by (11.4)(iii)) that $R \leq N\left(T_{0}\right)$. But then $T_{0}=\left\langle C_{T_{0}}(r) \mid 1 \neq r \in R\right\rangle$, whereas $C_{T_{0}}(r) \leq N(R)$ for each $r \in R^{\#}$ and $\left|N_{X}(R)\right|$ is not divisible by $\left|T_{0}\right|$. This is a contradiction.

$$
(11.16) X \neq \mathrm{Ly}
$$

Proof. Suppose $X \cong$ Ly. Let M be a module as given in (11.5). If $p \neq 5$, then the containment $G_{2}(5) \leq X$ (see Lyons [19]) and [18] implies $\operatorname{dim}(M) \geq 120$. Hence $n \geq 8$, equality possible only if $\bar{G}=E_{8}(K)$ and $d=1$. It follows that $\left|T_{0}\right| \geq 12^{8}$. But (11.4)(iii) implies $\left|T_{0}\right|^{2} \leq|X|$, and this is impossible. Therefore, $p=5$ and $q \geq 25$.

Since $p=5,\left|T_{0}\right|$ is prime to 5 . As $\left|T_{0}\right| \geq 48$, and Sylow r-subgroups of X are self-centralizing for $r=31,37,67$ (see (3.3) of [19] or use Sylow's theorem), we conclude $\left|T_{0}\right|$ divides $3^{7} \cdot 7 \cdot 11$. By [19] there is an involution $j \in X$ with $C_{X}(t) \cong \hat{A}_{11}$, the covering group of A_{11}. We may regard $C_{X}(t)$ as acting on M, and write $M=M_{1} \oplus M_{2}$, where $M_{1}=C_{X}(t)$ and $M_{2}=$ [M, t]. Each of M_{1} and M_{2} is non-trivial and considering the action of a Frobenius subgroup of $C_{X}(t)$ of order 55 we have $\operatorname{dim}\left(M_{i}\right) \geq 5$ for $i=1$, 2 . Hence $\operatorname{dim}(M) \geq 10$, so (11.5) implies $n \geq 4$, with equality only if $\bar{G}=F_{4}(K)$ and $d=2$. Therefore, $\left|T_{0}\right| \geq \frac{1}{2} 24^{4}=3^{4} \cdot 2^{11}$. From the previous divisibility condition we have $\left|T_{0}\right|=3^{7} \cdot 7 \cdot 11$, whereas X does not have abelian Sylow 3-subgroups. This is a contradiction.
(11.17) $X \neq \mathrm{ON}$.

Proof. Suppose false. We quote O'Nan [20] for the following fact about X. Namely, a Sylow 3-subgroup, A, of X is elementary abelian of order 3^{4}, its normalizer being an extension of $Q_{8} \circ D_{8}$ by D_{10}. It follows that each orbit of $N(A)$ on $A^{\#}$ has size a multiple of 40 . Let \hat{X} be the covering group of X that acts on M. If \hat{A} is abelian, then the above and Clifford's theorem implies $\operatorname{dim}(M) \geq 40$. Thus, $n \geq 7$ and $\left|T_{0}\right| \geq \frac{1}{8} \cdot 12^{7}$. Otherwise, \hat{A} contains an extraspecial subgroup of order 3^{5}. Here, $\operatorname{dim}(M)$ ≥ 9 and $3\left|\left|Z\left(\hat{G}_{0}\right)\right|\right.$. The proof of (11.5), shows $n=6$ with equality only if $\bar{G}=E_{6}(K)$. Hence, $\left|T_{0}\right| \geq \frac{1}{3} \cdot 12^{6}$. But (11.4)(iii) implies $\left|T_{0}\right|^{2} \leq|X|$, and this contradicts Table (11.1).
(11.18) $X \not \not \neq F_{22}, F_{23}$, or F_{24}^{\prime}.

Proof. Suppose $X \cong F_{22}, F_{23}$, or F_{24}^{\prime}. Let M be a module as in (11.5). We first obtain lower bounds for $\operatorname{dim}(M)$. Suppose $X \cong F_{22}$ or F_{23}. By Table 1 of [2] there is an involution $j \in X$ such that $C_{X}(j)=C_{X}(j)^{\prime}$ and $C_{X}(j) /\langle j\rangle \cong U_{6}(2)$ or F_{22}, respectively. Let \hat{D} be the derived group of the preimage of $C_{X}(j)$ in a covering group of X that affords M. By Griess [14], [15] we see that \hat{D} contains an involution \hat{j} such that $\hat{j} Z(\hat{D})=j$ (in fact $\hat{D} \cong C_{X}(j)$ if $X \cong F_{23}$).

Write $M=C_{M}(\hat{j}) \oplus[M, \hat{j}]$. Clearly $[M, \hat{j}]$ affords a non-trivial module for \hat{D}. This is also true of $C_{M}(\hat{j})$. For if \hat{D} is trivial on $C_{M}(j)$, then choosing $j \neq j^{x} \in C_{X}(j)$ we find that \hat{j}^{x} can be chosen so that $\hat{j}^{x}=\hat{j}$, and this is impossible. If $X \cong F_{22}$, then by [18] we have $C_{M}(\hat{j})$ and $[M, \hat{j}]$ each of dimension at least 21 , and so $\operatorname{dim}(M) \geq 42$. If $X \cong F_{23}$, we have $C_{M}(\hat{j})$ and $[M, \hat{j}]$ modules for \hat{D}, each non-trivial as before. Hence $\operatorname{dim}(M) \geq 84$. This also holds if $X \cong F_{24}^{\prime}$, since $F_{23} \leq F_{24}^{\prime}$.

If $X \cong F_{22}$, then by (11.5) $n \geq 7$, with equality possible only if $\bar{G}=E_{7}(K)$. Therefore, $\left|T_{0}\right| \geq \frac{1}{2} \cdot(12)^{7}$. On the other hand, (11.4)(iii) implies $\left|T_{0}\right|^{2} \leq X$, and this is a contradiction.

Now suppose $X \cong F_{23}$ or F_{24}. If X is a classical group then by (11.5) $n \geq \frac{1}{2}(84-1)>41$. Hence $\left|T_{0}\right|>\frac{1}{42} \cdot(12)^{41}$, contradicting $\left|T_{0}\right|^{2} \leq|X|$. So X is not a classical group, which forces $\bar{G}=E_{8}(K)$. From Table (11.1) we have $23||X|$. However, 23 does not divide $| E_{8}(q) \mid$ for $13 \leq q<47$ with $q \neq 23$ (one checks this by noting that neither $\Phi_{11}(q)$ nor $\Phi_{22}(q)$ divides $\left.\left|E_{8}(q)\right|\right)$. On the other hand 17 does not divide $\left|E_{8}(23)\right|$. Therefore, $\left|T_{0}\right| \geq \frac{1}{2}(46)^{8}$, contradicting $\left|T_{0}\right|^{2} \leq|X|$.
(11.19) $X \not \not \neq \mathrm{Co}_{2}$.

Suppose $X \cong \mathrm{Co}_{2}$. Table 1 of [2] shows that some involution in X has centralizer containing an extension of an elementary abelian group, A, of order 2^{4} by GL(4,2) (natural action). It follows from Clifford's theorem that $\operatorname{dim}(M) \geq 15$, where M is as in (11.5) (an easy argument shows that we can regard A as acting on M). By (11.5), $n \geq 7$ if \bar{G} is a classical group; otherwise $n \geq 4$. Suppose $\bar{G} \cong F_{4}(K)$. By Table 1 of [2] we see that X contains an elementary abelian group, E, of order 2^{10}. By (5.16) of [25], E normalizes a maximal torus of \bar{G}, and this forces the Weyl group of $F_{4}(K)$ to have an elementary abelian subgroup of order at least 2^{6}. This is false. So $\bar{G} \not \not F_{4}(K)$ and we conclude from (11.5) that $n \geq 6$, equality only if $\bar{G}=E_{6}(K)$. It follows that $\left|T_{0}\right| \geq \frac{1}{3} \cdot 12^{6}$. Sylow's theorem implies that subgroups of X having order 11 or 23 are self-centralizing, so Table (11.1) implies $\mid T_{0} \| 3^{6} 5^{3} 7$. This is a contradiction.

$$
\text { (11.20) } X \not \not \not \mathrm{Co}_{1} .
$$

Proof. Suppose $X \cong \mathrm{Co}_{1}$. We first claim that $n \geq 8$, equality possible only for $\bar{G}=E_{8}(K)$. Table 1 of [2] shows that there is an involution $j \in X$ such that $C_{X}(j) \geq A \times R \cong G_{2}(4) \times\left(Z_{2} \times Z_{2}\right)$ and $R^{\#}$ consists of conjugates of j. As in (8.6) and (8.8) of [2] there exists a conjugate R^{x} of R such that $R^{x} \leq A R, R^{x} \cap A=1$, and R^{x} projects to the center of a Sylow 2-subgroup of A.

Let V be the Lie algebra of \bar{G} and write $V=[V, R] \oplus C_{V}(R)$. Then $[V, R]=V_{1} \oplus V_{2} \oplus V_{3}$, where $V_{i}=[V, R] \cap C\left(j_{i}\right)$ and $R^{\#}=\left\{j_{1}, j_{2}, j_{3}\right\}$. As in (11.11) we have $\left[A, V_{i}\right] \neq 1$ for $i=1,2,3$, so by $[18] \operatorname{dim}(V) \geq$ $\operatorname{dim}[V, R] \geq 3 \cdot \operatorname{dim}\left(V_{1}\right) \geq 3 \cdot 60=180$. The claim follows. Consequently, $\left|T_{0}\right| \geq(q-1)^{8} \geq 12^{8}$.

By (11.4)(iii), $\left|T_{0}\right|^{2} \leq X$, which by the above inequality is impossible for $q>13$. Hence, $q=13$. Now 13 has order 11 (modulo 23) and this forces $n \geq 10$. But then, $\left|T_{0}\right| \geq \frac{1}{11}(12)^{10}$, again contradicting $\left|T_{0}\right|^{2} \leq X$.
(11.21) $X \not \neq F_{5}$.

Proof. Suppose $X \cong F_{5}$ and let V be the Lie algebra of \bar{G}. If $p \neq 5$, then use ($\S 4, \mathrm{II})$ of Harada [16] to conclude that X contains an extraspecial group of order 5^{5} and an element inducing Z_{4} on the center of the extraspecial group. Elementary arguments imply that $\operatorname{dim}(V) \geq 100$. Hence $n \geq 7$, equality possible only for $\bar{G}=E_{7}(K)$ or $C_{7}(K)$. We then have $\left|T_{0}\right| \geq \frac{1}{2}(12)^{7}$, contradicting $\left|T_{0}\right|^{2} \leq X$.

Suppose $p=5$. Then $q=5^{a}$ for $a \geq 2$ and from (11.1) we have $\left|T_{0}\right|$ dividing $3^{6} \cdot 7 \cdot 11 \cdot 19$. Since $19\left|\left|G_{0}\right|\right.$, a primitive divisor argument shows that if $q=25$, then $\Phi_{d_{1}}(25)$ divides $\left|G_{0}\right|$, for d_{1} a multiple of 9 . But then $\varphi\left(d_{1}\right) \geq \varphi(9)=6$ and $\left|T_{0}\right| \geq \frac{1}{d}(24)^{6}$, a contradiction. For $q=5^{3}$ use the prime 11 to obtain a contradiction, etc.
(11.22) $X \nRightarrow F_{3}$.

Proof. Suppose $X \not \neq F_{3}$. Then X contains a non-split extension of an elementary abelian group of order 2^{5}, by $\operatorname{SL}(5,2)$ (Thompson [27]). This group has trivial multiplier, so (11.5) implies that $n \geq 7$, with equality possible only if $\bar{G}=E_{7}(K)$. Hence $\left|T_{0}\right| \geq \frac{1}{2}(q-1)^{7}$.

If $q \geq 23$, then this contradicts $\left|T_{0}\right|^{2} \leq|X|$. For the remaining cases argue as follows. Since 31 divides $|X|, 31$ divides $\left|G_{0}\right|$. So there is an integer d_{1} such that $31\left|\Phi_{d_{1}}(q)\right|\left|G_{0}\right|$. One checks that d_{1} is a multiple of 30,30 or 15 , according to $q=13,17$, or 19 . It follows that $n \geq 8$, equality possible only if $G_{0}=E_{8}(q)$. Hence $\left|T_{0}\right| \geq(q-1)^{8}$ and this contradicts $\left|T_{0}\right|^{2} \leq|X|$.

We have now considered all possibilities for X, completing the proof of (10.1).
12. Some consequences of (10.1). In this section we derive some consequences of (10.1) and (10.2). Throughout this section assume that $p>3$ and $q>11$.

Theorem (12.1). The map $\bar{X} \rightarrow \bar{X}_{\sigma}$ is a bijection between the set of closed, connected, σ-invariant subgroups of \bar{G} containing a maximal torus and the set of subgroups of G generated by maximal tori of G.

The above theorem will be a consequence of the next result which gives additional information. In particular, the inverse of the map $\bar{X} \rightarrow \bar{X}_{\sigma}$ is described. We first need some notation.

For a subset Δ of $\bar{\Sigma}$, let $\bar{G}(\Delta, \bar{T})=\left\langle\bar{U}_{\alpha} \mid \alpha \in \Delta\right\rangle$. If $\Delta=\Delta^{\sigma}$, then $\bar{G}(\Delta, \bar{T})$ is σ-invariant and we set $G(\Delta, T)=O^{p^{\prime}}\left(\bar{G}(\Delta, \bar{T})_{\sigma}\right)$. For $\bar{X} \leq \bar{G}$, let $\bar{\Sigma}(\bar{X}, \bar{T})=\left\{\alpha \in \bar{\Sigma} \mid \bar{U}_{\alpha} \leq \bar{X}\right\}$, and for $X \leq G$, set $\bar{\Sigma}(X, T)=$ $\cup_{X_{i} \leq X} \bar{\Sigma}_{i}$. If the maximal torus \bar{T} is understood we abbreviate the above to $\bar{G}(\Delta), G(\Delta), \bar{\Sigma}(\bar{X})$, and $\bar{\Sigma}(X)$, respectively.

We say that a subset Δ of $\bar{\Sigma}$ is \bar{T}-closed if $\Delta=\Delta^{\sigma}=\bar{\Sigma}(\bar{G}(\Delta))$. This agrees with the concept introduced in $\S 10$. A final notation. For $Y \leq G$, let $\bar{G}(Y, T)=\bar{G}(\bar{\Sigma}(Y)) \cdot \bar{T}$, abbreviated to $\bar{G}(Y)$ when T is understood. We can now state

Theorem (12.2). Let $T_{0} \leq Y \leq G$. Then
(i) $\Delta=\bar{\Sigma}(Y)$ is the unique \bar{T}-closed subset of $\bar{\Sigma}$ satisfying $G(\Delta) T_{0} \unlhd Y$.
(ii) $\bar{G}(Y)$ is independent of T_{0}. That is, if T_{1} is a maximal torus of G with $T_{1} \cap G_{0} \leq Y$, then $\bar{G}\left(Y, T_{1}\right)=\bar{G}(Y, T)$.
(iii) $Y \leq N(\bar{G}(Y))$, T normalizes Y, and $G(\Delta) T \unlhd Y T$.
(iv) If $Y \geq T$ and if Y is generated by maximal tori of G, then $\bar{G}(Y, T)$ is the unique closed, connected, σ-invariant subgroup of \bar{G} containing a maximal torus of \bar{G} and having fixed point set Y.
(v) If $\bar{X}=\bar{X}^{\sigma}=\bar{X}^{0} \geq \bar{T}$, then $X=\left\langle T^{X}\right\rangle$, where $X=\bar{X}_{\sigma}$.

It is clear that (12.1) follows from (12.2) and that the inverse of the map $\bar{X} \rightarrow \bar{X}_{\sigma}$ is the map $Y \rightarrow \bar{G}(Y)$. The next several results aim at the proof of (12.2). First we characterize \bar{T}-closed subsets of $\bar{\Sigma}$ at the G-level.
(12.3) A σ-invariant subset Δ of $\bar{\Sigma}$ is \bar{T}-closed if and only if $\bar{\Sigma}(G(\Delta))$ $=\Delta$.

Proof. Suppose $\Delta=\Delta^{\sigma}$. First assume that $\bar{\Sigma}(G(\Delta))=\Delta$. Clearly $\Delta \subseteq \bar{\Sigma}(\bar{G}(\Delta))$. If Δ is not closed, then there is some $\langle\sigma\rangle$-orbit $\bar{\Sigma}_{i}$ of $\bar{\Sigma}$ such that $\bar{X}_{i} \leq \bar{G}(\Delta)$ and $\bar{\Sigma}_{i} \mp \Delta$. However, $\bar{X}_{i} \leq \bar{G}(\Delta)$ implies $X_{i} \leq G(\Delta)$, so the assumption gives $\bar{\Sigma}_{i} \subseteq \Delta$, a contradiction. Therefore, Δ is closed.

Now assume that Δ is closed. Hence, $\bar{\Sigma}(\bar{G}(\Delta))=\Delta$ and we must prove $\bar{\Sigma}(G(\Delta))=\Delta$. Clearly, $\Delta \subseteq \bar{\Sigma}(G(\Delta))$, so it will suffice to take $X_{i} \leq G(\Delta)$ and show $\bar{X}_{i} \leq G(\Delta)$. If X_{i} is a p-group, then by (3.9) of [4] there is a σ-invariant parabolic subgroup \bar{P} of $\bar{G}(\Delta) \bar{T}$ such that $X_{i} \leq R_{u}(\bar{P})$ and $T_{0} \leq \bar{P}$. By (6.4) we also have $\bar{T} \leq \bar{P}$. Therefore, $R_{u}(\bar{P})$ is a product of \bar{T}-root subgroups of \bar{G} and using (6.9), we have $\bar{X}_{i} \leq R_{u}(\bar{P}) \leq \bar{G}(\Delta)$, as required.

Suppose X_{i} is a group of Lie type and let T_{1} be a Cartan subgroup $G(\Delta)$ (a p-complement in a Sylow p-normalizer). Then $T_{2}=C_{G(\Delta) T_{0}}\left(T_{1}\right)$ is a maximal torus of G_{0} (by (9.1)), and we set $\bar{T}_{2}=C_{\bar{G}}\left(T_{2}\right)^{0}$, a maximal torus of \bar{G}. Then $T_{2} \leq G(\Delta) T_{0} \leq \bar{G}(\Delta) \bar{T}$ and we claim that T_{2} normalizes a σ-invariant maximal torus of $\bar{G}(\Delta) \bar{T}$. To see this first use (5.16) of [25] to get $T_{2} \leq N\left(\overline{A_{1}}\right)$, where $\overline{A_{1}}$ is a σ-invariant maxial torus of $\bar{G}(\Delta)$. Then let $\bar{A}=\bar{A}_{1} Z(\bar{G}(\Delta))^{0}$ and check that \bar{A} is a maximal torus of $\bar{G}(\Delta) \bar{T}$. This proves the claim, so by (6.3) and (2.8) we must have $\bar{A}=\bar{T}_{2}$.

Set $Y=G(\Delta)$ and note that $\bar{G}(\Delta) \leq \bar{Y}\left(T_{0}\right)$. Since $G(\Delta) \leq \bar{G}(\Delta)$ and since each T_{2}-root subgroup contained in $G(\Delta)$ is a p-group, the argument in the second paragraph of the proof shows that $\bar{Y}\left(T_{2}\right) \leq \bar{G}(\Delta)$. On the other hand, (9.1) shows that $\bar{Y}\left(T_{2}\right)=\bar{Y}\left(T_{0}\right)$, so we now have $\bar{G}(\Delta)=$ $\bar{Y}\left(T_{0}\right)$. By definition, $\bar{X}_{i} \leq \bar{Y}\left(T_{0}\right)$, so $\bar{X}_{i} \leq \bar{G}(\Delta)$ as required.
(12.4) Let $T_{0} \leq Y \leq G$. Set $\Delta=\bar{\Sigma}(Y)$. Then Δ is the unique \bar{T}-closed subset of $\bar{\Sigma}$ satisfying $G(\Delta) T_{0} \unlhd Y$.

Proof. Let $\Delta=\bar{\Sigma}(Y)$. By (10.1), $Y\left(T_{0}\right) T_{0} \unlhd \underline{Y}$ and $Y\left(T_{0}\right)=$ $O^{p^{\prime}}\left(\bar{Y}\left(T_{0}\right)_{\sigma}\right)$. From the definitions we have $\bar{Y}\left(T_{0}\right) \equiv \bar{G}(\Delta)$, so $Y\left(T_{0}\right)=$ $G(\Delta)$, which proves $G(\Delta) T_{0} \unlhd Y$. From (12.3), it follows that Δ is \bar{T}-closed. For if $X_{i} \leq G(\Delta)$, then $X_{i} \leq Y$ and $\bar{\Sigma}_{i} \subseteq \Delta$. Hence $\Delta=\bar{\Sigma}(G(\Delta))$.

For the uniqueness of Δ argue as follows. Let $\Omega \subseteq \bar{\Sigma}$ with $\Omega=\Omega^{\sigma}$ and $G(\Omega) T_{0} \unlhd Y$. If X_{i} is any T-root subgroup of G, then $\left\langle T_{0}^{X_{i}}\right\rangle=X_{i} T_{0}$ (see (6.7) and (7.1)). So if $X_{i} \leq Y$, we have $X_{i} \leq G(\Omega)$. This implies that $\bar{\Sigma}(G(\Omega))=\bar{\Sigma}(Y)$. If, in addition, Ω is \bar{T}-closed, then (12.3) yields $\Omega=$ $\bar{\Sigma}(G(\Omega))=\bar{\Sigma}(Y)=\Delta$, and Δ is unique.
(12.5) Let $T_{0} \leq Y \leq G$. Then
(i) $Y \leq N(\bar{G}(Y))$;
(ii) $T \leq N_{G}(Y)$; and
(iii) $G(\bar{\Sigma}(Y)) T \unlhd Y T$.

Proof. Let $\Delta=\bar{\Sigma}(Y)=\bar{\Sigma}(Y, T)$. By (12.4), $G(\Delta) T_{0} \unlhd Y$ and Δ is \bar{T}-closed. As in the proof of (12.4) we have $G(\Delta)=Y\left(T_{0}\right)$. Let T_{2} be a p-complement of the normalizer of a Sylow p-subgroup of $Y\left(T_{0}\right) T_{0}$. By (9.1), T_{2} is a maximal torus of G_{0}, so $\bar{T}_{2}=C_{\bar{G}}\left(T_{2}\right)^{0}$ is a maximal torus of \bar{G}.

By (10.2) and (9.1) we have $Y\left(T_{0}\right)=Y\left(T_{0}\right)\left(T_{2}\right)$. If D is any T_{2}-root subgroup of G, then $\left\langle T_{2}^{D}\right\rangle=D T_{2}$. As $\left\langle T_{2}^{Y}\right\rangle \leq Y\left(T_{0}\right) T_{0}$, we conclude that $Y\left(T_{2}\right) \leq Y\left(T_{0}\right)$, and hence $Y\left(T_{0}\right)=Y\left(T_{2}\right)$. From (9.1) we also have $\bar{Y}\left(T_{2}\right)$ $=\bar{Y}\left(T_{0}\right)$ and $\bar{Y}\left(T_{0}\right) \bar{T}=\bar{Y}\left(T_{2}\right) \bar{T}_{2}$. The Frattini argument yields $Y=$ $Y\left(T_{2}\right) N_{Y}\left(T_{2}\right)$.

Since $\bar{G}(\Delta)=\bar{Y}\left(T_{0}\right)$, we have $\bar{G}(Y)=\bar{Y}\left(T_{0}\right) \bar{T}=\bar{Y}\left(T_{2}\right) \bar{T}_{2}$. By (2.5) $\bar{G}(Y)_{\sigma}=(\bar{G}(\Delta) \bar{T})_{\sigma}=G(\Delta) T$ and also $\bar{G}(Y)_{\sigma}=Y\left(T_{0}\right) T=Y\left(T_{2}\right) T_{3}$, where $T_{3}=\left(\bar{T}_{2}\right)_{\sigma}$.

As $Y\left(T_{2}\right) \leq \bar{Y}\left(T_{2}\right)$ and $N_{Y}\left(T_{2}\right) \leq N\left(\bar{Y}\left(T_{2}\right)\right) \cap N\left(\bar{T}_{2}\right)$, we necessarily have $Y=Y\left(T_{2}\right) N_{Y}\left(T_{2}\right) \leq N(\bar{G}(Y)$), proving (i). By the above, $Y \leq$ $N\left(\bar{G}(Y)_{\sigma}\right)=N(G(\Delta) T)$, so this will prove (iii), once (ii) is proved.

Now, $Y \leq N(\bar{G}(Y))$, so Y normalizes $\bar{G}(Y)_{\sigma}=Y\left(T_{0}\right) T=Y\left(T_{2}\right) T_{3}=$ $Y\left(T_{0}\right) T_{3}$. The group $N_{Y}\left(T_{2}\right)$ also normalizes T_{3}, so $\left[N_{Y}\left(T_{2}\right), T_{3}\right] \leq$ $T_{3} \cap G_{0}=T_{2}$, and $\left[N_{Y}\left(T_{2}\right), Y\left(T_{0}\right) T_{3}\right] \leq Y\left(T_{0}\right) T_{2}=Y\left(T_{0}\right) T_{0}$. Letting \sim denote images modulo $Y\left(T_{0}\right)$ we use the above to conclude [Y^{\sim}, T^{\sim}] $=$ $\left[N_{Y}\left(T_{2}\right)^{\sim}, T^{\sim}\right]=\left[N_{Y}\left(T_{2}\right)^{\sim}, T_{3}^{\sim}\right] \leq T_{0}^{\sim} \leq Y^{\sim}$. This proves (ii) and completes the proof of (12.5).
(12.6) Let $T_{0} \leq Y \leq G$. If T_{1} is any maximal torus of G with $T_{2}=$ $T_{1} \cap G_{0} \leq Y$, then $\bar{G}\left(Y, T_{1}\right)=\bar{G}(Y, T)$.

Proof. Let $\Delta=\bar{\Sigma}(Y, T)$, so $G(\Delta) T_{0} \unlhd Y$ by (12.4). Also, $G(\Delta)=$ $Y\left(T_{0}\right)$, by (10.1). By (10.2), $Y\left(T_{0}\right) / O_{p}(Y)=E\left(Y / O_{p}(Y)\right)$, so $Y\left(T_{0}\right)=$ $Y\left(T_{2}\right)$. Also, $Y\left(T_{0}\right)=G(\Delta, T)$ and $Y\left(T_{2}\right)=G\left(\Delta_{1}, T_{1}\right)$, where $\Delta_{1}=$ $\bar{\Sigma}\left(Y, T_{1}\right)$. By (12.5)(iii) Y normalizes $\bar{G}(Y, T)=\bar{G}(\Delta) \bar{T}$. In particular, $T_{2} \leq N(\bar{G}(\Delta) \bar{T})$.

We claim that $\bar{T}_{1} \leq \bar{G}(\Delta) \bar{T}$, where $\bar{T}_{1}=C_{G}\left(T_{1}\right)^{0}$. Let $\bar{Q}=R_{u}(\bar{G}(\Delta) \bar{T})$ and \bar{Z} / \bar{Q} the connected center of $\bar{G}(\Delta) \bar{T} / \bar{Q}$. So $\bar{G}(\Delta) \bar{T} / \bar{Z}$ is semisimple and (5.16) of [25] shows that T_{2} normalizes a σ-invariant maximal torus of $\bar{G}(\Delta) \bar{T} / \bar{Z}$. So there is a σ-invariant maximal torus \bar{A} of \bar{G}, with $\bar{A} \leq \bar{G}(\Delta) \bar{T}$ and $T_{2} \leq N(\bar{A} \bar{Q})$. Let $A=\bar{A}_{\sigma}$ and $Q=\bar{Q}_{\sigma}$. Then T_{2} normalizes $(\bar{A} \bar{Q})_{\sigma}=$ $A Q$ and $T_{2} A Q / Q$ is a solvable p^{\prime}-group. By Hall's theorem T_{2} is contained in a Hall p^{\prime}-group of $T_{2} A Q$, so T_{2} normalizes A^{x}, for some $x \in Q$. But A^{x} is a maximal torus of G, whence $T_{2}=A^{x} \cap G_{0}$ by (6.3). Then (2.6) gives $\bar{A}^{x}=\bar{T}_{1}$, and the claim is proved. Therefore, $\bar{G}(\Delta) \bar{T}=\bar{G}(\Delta) \bar{T}_{1}$.

Let $\Omega=\bar{\Sigma}\left(\bar{G}(\Delta), \bar{T}_{1}\right)$ so that $\bar{G}(\Delta)=\bar{G}\left(\Omega, \bar{T}_{1}\right)$. Clearly Ω is \bar{T}_{1}-closed and $G\left(\Omega, T_{1}\right)=G(\Delta)$. By (2.5)(iv), $G\left(\Omega, T_{1}\right) T_{2}=G(\Delta) T_{0} \unlhd Y$, so (12.4) forces $\Omega=\bar{\Sigma}\left(Y, T_{1}\right)$. At this stage we have $\bar{G}\left(Y, T_{1}\right)=\bar{G}(Y, T)$, as desired.
(12.7) Assume that Y is generated by G conjugates of maximal tori of G. Then $Y=\bar{X}_{\sigma}$ for a unique closed connected, σ-invariant subgroup \bar{X} of \bar{G} such that \bar{X} contains a maximal torus of \bar{G}.

Proof. Let T_{1}, T_{2} be maximal tori of G with $T_{1} \leq Y \geq T_{2}$. Let $\Delta_{i}=\bar{\Sigma}\left(Y, T_{i}\right)$ for $i=1,2$. Then $G\left(\Delta_{i}, T_{i}\right) T_{i} \unlhd Y$ for $i=1,2$ (see
(12.5)(iii)). By (12.6), $\bar{G}\left(Y, T_{1}\right)=\bar{G}\left(Y, T_{2}\right)$, so taking fixed points (and applying (2.5)) we have $G\left(\Delta_{1}, T_{1}\right) T_{1}=G\left(\Delta_{2}, T_{2}\right) T_{2}$. Fixing T_{1} and letting T_{2} vary over all maximal tori of G contained in Y, we conclude that $Y=G\left(\Delta_{1}, T_{1}\right) T_{1}$ and this gives the existence of \bar{X}.

Now suppose $Y=\bar{X}_{\sigma}$, with \bar{X} closed, connected, σ-invariant, and containing a maximal torus \bar{T}_{1} of \bar{G}. We may take \bar{T}_{1} to be σ-invariant. Set $T_{1}=\left(\bar{T}_{1}\right)_{\sigma}$. Let $\Delta_{1}=\bar{\Sigma}\left(\bar{X}, T_{1}\right)$, so $\bar{X}=\bar{G}\left(\Delta_{1}\right) \bar{T}_{1}$. Hence $G\left(\Delta_{1}\right) \unlhd Y$ and $Y / G\left(\Delta_{1}\right)$ is a p^{\prime}-group. This implies that each T_{1}-root subgroup of G contained in Y is actually in $G\left(\Delta_{1}\right)$. That is, $\bar{\Sigma}\left(G\left(\Delta_{1}\right)\right)=\bar{\Sigma}\left(Y, T_{1}\right)$. But Δ_{1} is \bar{T}_{1}-closed. Thus (12.3) shows that $\Delta_{1}=\bar{\Sigma}\left(Y, T_{1}\right)$ and then $\bar{X}=\bar{G}\left(Y, T_{1}\right)$, proving uniqueness.

At this point all parts of Theorem (12.2) have been established, with the exception of (v). Suppose \bar{X} is as in (12.2)(v) and let $X=\bar{X}_{\sigma}$. By (10.1), $X\left(T_{0}\right) T_{0}=\left\langle T_{0}^{X}\right\rangle \unlhd X$. Also, $X\left(T_{0}\right)=O^{p^{\prime}}\left(\bar{X}\left(T_{0}\right)_{\sigma}\right) \geq O^{p^{\prime}}\left(\bar{X}_{\sigma}\right)$. Since $X=O^{p^{\prime}}\left(\bar{X}_{\sigma}\right) T$, we have the result.

We close this section with some results on generation. From now on, \bar{T} is fixed. We thus delete mention of \bar{T} and T from the earlier notation and say $\Delta \subseteq \bar{\Sigma}$ is closed if it is \bar{T}-closed.
(12.8) Let $\Omega_{1}, \ldots, \Omega_{k}$ be closed subsets of $\bar{\Sigma}$. Then

$$
\left\langle G\left(\Omega_{1}\right), \ldots, G\left(\Omega_{k}\right)\right\rangle=O^{p^{\prime}}\left(\left\langle\bar{G}\left(\Omega_{1}\right), \ldots, \bar{G}\left(\Omega_{k}\right)\right\rangle_{\sigma}\right)
$$

Proof. Let $\Omega=\bar{\Sigma}\left(\left\langle\bar{G}\left(\Omega_{1}\right), \ldots, \bar{G}\left(\Omega_{k}\right)\right\rangle\right)$. Then $\bar{G}(\Omega) \geq \bar{G}\left(\Omega_{i}\right)$ for $i=$ $1, \ldots, k$ and Ω is closed. Let $Y=\left\langle G\left(\Omega_{1}\right), \ldots, G\left(\Omega_{k}\right)\right\rangle$ and set $\Delta=\bar{\Sigma}(Y)$. By (12.4) we have $G(\Delta) T_{0} \unlhd Y T_{0}$ and it follows that $Y=G(\Delta)$.

Suppose $\bar{\Sigma}_{j} \subseteq \Omega_{i}$ for some i and j. Then $\bar{X}_{j} \leq \bar{G}\left(\Omega_{i}\right)$ and $X_{j} \leq G\left(\Omega_{i}\right)$ $\leq Y$, proving $\bar{\Sigma}_{j} \subseteq \bar{\Sigma}(Y)=\Delta$. We conclude $\Omega_{i} \subseteq \Delta$ for $i=1, \ldots, k$. Therefore, $\bar{G}(\Delta) \geq\left\langle\bar{G}\left(\Omega_{1}\right), \ldots, \bar{G}\left(\Omega_{k}\right)\right\rangle$. Since Δ is closed (by (12.4)), we have $\Omega \subseteq \Delta$. Hence, $G(\Omega) \leq G(\Delta)$. On the other hand, $\bar{G}(\Omega) \geq \bar{G}\left(\Omega_{i}\right)$ for $i=1, \ldots, k$, so $G(\Omega) \geq\left\langle G\left(\Omega_{1}\right), \ldots, G\left(\Omega_{k}\right)\right\rangle=Y=G(\Delta)$. This proves $G(\Omega)=G(\Delta)=Y$, which proves the result.

The following results extend (6.10) to arbitrary collections of T-root subgroups.

Theorem (12.9). Let $X_{i_{1}}, \ldots, X_{i_{k}}$ be T-root subgroups of G. Then

$$
\left\langle X_{i_{1}}, \ldots, X_{i_{k}}\right\rangle=O^{p^{\prime}}\left(\left\langle\bar{X}_{i_{1}}, \ldots, \bar{X}_{i_{k}}\right\rangle_{\sigma}\right) .
$$

Proof. Set $Y=\left\langle X_{i,}, \ldots, X_{i_{k}}\right\rangle$ and $\Delta=\bar{\Sigma}(Y)$. Apply (12.4) to $Y T_{0}$ and conclude that $Y=G(\Delta)$ and Δ is closed. For $j=1, \ldots, k, \bar{\Sigma}_{i,} \subseteq \Delta$, so $\bar{X}_{i_{j}} \leq \bar{G}(\Delta)$. Therefore, $O^{p^{\prime}}\left(\left\langle\bar{X}_{i_{i}}, \ldots, \bar{X}_{i_{k}}\right\rangle_{\sigma}\right) \leq O^{p^{\prime}}(\bar{G}(\Delta))=G(\Delta)=Y=$ $\left\langle X_{i,}, \ldots, X_{i_{k}}\right\rangle$. Since the other containment is obvious, the proof is complete.

Theorem (12.10). Let S be an arbitrary set of p^{\prime}-elements of G. Then
(i) If \bar{G} is simply connected, then $\left\langle C_{G_{1}}(a): s \in S\right\rangle=G_{1} \cap$ $\left\langle C_{\bar{G}}(s): s \in S\right\rangle$.
(ii) If \bar{G} is simply connected, then $G_{1}=\left\langle C_{G_{1}}(s): s \in S\right\rangle$ if and only if $\bar{G}=\left\langle C_{\bar{G}}(s): s \in S\right\rangle$.
(iii) If $\bar{G}=\left\langle C_{\bar{G}}(s)^{0}: s \in S\right\rangle$, then $G_{1}=\left\langle C_{G_{1}}(s): s \in S\right\rangle$.
(iv) If $S \subseteq T$ with T a maximal torus of G, then $G_{1}=\left\langle E\left(C_{G_{1}}(s)\right): s \in\right.$ $S\rangle$ if and only if $\bar{G}=\left\langle E\left(C_{\bar{G}}(s)\right): s \in S\right\rangle$.

Proof. Set $X=\left\langle C_{G_{1}}(s): s \in S\right\rangle$ and $\tilde{X}=\left\langle C_{G}(s)^{0}: s \in S\right\rangle$. Fix $s \in S$ and T a maximal torus of G with $s \in T$. Then $T_{0}=T \cap G_{0}$ and $T_{1}=T \cap$ G_{1} are maximal tori of G_{0} and G_{1}, respectively. Let \bar{T} be the unique maximal torus of \bar{G} containing T. Then $T_{0} \leq T_{1} \leq X$ and $\bar{T} \leq \tilde{X}$.

Let $\bar{C}=C_{\bar{G}}(s)^{0}$ and $C=\bar{C}_{\sigma}$. By (10.1) we have $X\left(T_{0}\right) \unlhd X$. Also T normalizes $X\left(T_{0}\right)$. Let \bar{X} be the unique σ-invariant, connected subgroup of \bar{G} satisfying $\bar{T} \leq \bar{X}$ and $\bar{X}_{\sigma}=X\left(T_{0}\right) T$ (use (12.1)). Then (12.2)(iv) implies $\bar{X}=\bar{G}(X, T)$. Since $C_{G}(s)=C_{G_{\underline{I}}}(s) T$, we have $\bar{G}(C, T) \leq \bar{G}(X, T)=\bar{X}$. On the other hand, $\bar{G}(C, T)=\bar{C}$ (this follows from (12.1) as both have fixed point set under σ equal to C). So $\bar{C} \leq \bar{X}$ and letting s vary we obtain $\tilde{X} \leq \bar{X}$.

From $\tilde{X} \leq \bar{X}$ and $\bar{X}_{\sigma}=X\left(T_{0}\right) T$, we immediately have (iii). Suppose \bar{G} is simply connected. Then $C_{\vec{G}}(s)=C_{\overparen{G}}(s)^{0}$ for each $s \in S$. In particular $\tilde{X}_{\sigma} \geq\left\langle C_{G}(s): s \in S\right\rangle \geq X$. Letting s, T be as before we have $\tilde{X}_{\sigma} \geq$ $\langle X, T\rangle \geq X\left(T_{0}\right) T=\bar{X}_{\sigma} \geq \tilde{X}_{\sigma}$. Consequently, $\bar{X}_{\sigma}=\tilde{X}_{\sigma}$ and (12.1) yields $\tilde{X}=\bar{X}$. Also $\langle X, T\rangle=X\left(T_{0}\right) T=X T$. Therefore, $\tilde{X} \cap G_{1}=\bar{X} \cap G_{1}=$ $\bar{X}_{\sigma} \cap G_{1}=X T \cap G_{1}=X\left(T \cap G_{1}\right)=X T_{1}=X$, proving (i). If $X=G_{1}$, then $X T=G$, forcing $\bar{X}=\bar{G}$. Hence $\tilde{X}=\bar{G}$. Combining this with (iii) we have (ii).

Finally, suppose $S \subseteq T$ for T a maximal torus of G. For purposes of proving (iv) we may assume \bar{G} is simply connected. For $s \in S, C_{\bar{G}}(s)=$ $E\left(C_{\bar{G}}(s)\right) \bar{T}$ and $C_{G}(s)=E\left(C_{G}(s)\right) T$ (by (2.9) and its proof). Hence $\tilde{X}=$ $\left\langle E\left(C_{G}(s)\right): s \in S\right\rangle \bar{T}_{1}$. From the previous paragraph $\tilde{X}=\bar{X}$, so $\tilde{X}_{\sigma}=\bar{X}_{\sigma}$ $=X T$. (iv) now follows from (12.1).
(12.11) Let S_{1}, \ldots, S_{k} be subsets of T. Suppose that for each $\alpha \in \bar{\Sigma}^{+}$, there is some $i \in\{1, \ldots, k\}$ with $S_{i} \subseteq C\left(\bar{U}_{\alpha}\right)$. Then $G_{0}=$ $\left\langle E\left(C_{G_{0}}\left(S_{i}\right)\right) \mid i=1, \ldots, k\right\rangle$.

Proof. For $1 \leq i \leq k, C_{\vec{G}}\left(S_{i}\right)^{0}$ is a reductive group and $\left(C_{\vec{G}}\left(S_{i}\right)^{0}\right)^{\prime}$ a semi-simple group. Hence $E\left(C_{G_{0}}\left(S_{i}\right)\right) \geq O^{p^{\prime}}\left(\left(C_{\bar{G}}\left(S_{i}\right)_{\sigma}^{0}\right)\right)$. By (12.4), $E\left(C_{G_{0}}\left(S_{i}\right)\right)=G\left(\Omega_{i}\right)$ for a unique closed subset Ω_{i} of $\bar{\Sigma}\left(\right.$ if $E\left(C_{G_{0}}\left(S_{i}\right)\right)=1$, set $\Omega_{i}=\varnothing$ and $\left.G\left(\Omega_{i}\right)=1\right)$.

By (12.8), $\left\langle G\left(\Omega_{1}\right), \ldots, G\left(\Omega_{k}\right)\right\rangle=O^{p^{\prime}}\left(\left\langle\bar{G}\left(\Omega_{1}\right), \ldots, \bar{G}\left(\Omega_{k}\right)\right\rangle_{\sigma}\right)$. If $\alpha \in \bar{\Sigma}^{+}$ with $S_{i} \leq C\left(\bar{U}_{\alpha}\right)$, then S_{i} centralizes $\left\langle\bar{U}_{ \pm \alpha}\right\rangle \leq\left(C_{\bar{G}}\left(S_{i}\right)^{0}\right)^{\prime}$. So if $\alpha \in \bar{\Sigma}_{j}$, we have $\bar{X}_{j}, \bar{X}_{j}^{*} \leq\left(C_{\bar{G}}\left(S_{i}\right)^{0}\right)^{\prime}$ and then $X_{j}, X_{j}^{*} \leq G\left(\Omega_{i}\right)$. Since Ω_{i} is closed, we conclude $\bar{\Sigma}_{j}, \bar{\Sigma}_{j}^{*} \subseteq \Omega_{i}$. These remarks and our assumption show that $\left\langle\bar{G}\left(\Omega_{1}\right), \ldots, \bar{G}\left(\Omega_{k}\right)\right\rangle=\bar{G}$, and the result follows.
(12.12) Let T be a maximal torus of G and $R \leq T$. Then $G_{0}=$ $\left\langle E\left(C_{G_{0}}\left(R_{1}\right)\right)\right| R_{1} \leq R$ and R / R_{1} cyclic \rangle.

Proof. Let $R \leq T$ and $\alpha \in \bar{\Sigma}^{+}$. Then R induces a cyclic group on \bar{U}_{α}, hence $R_{1}=C_{R}\left(\bar{U}_{\alpha}\right)$ has cyclic quotient group. So (12.12) follows from (12.11).

References

1. M. Aschbacher and G. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J., 63 (1976), 1-91.
2. \qquad , On groups with a standard component of known type, Osaka J. Math., 13 (1976), 439-482.
3. A. Borel, Linear Algebraic Groups, W. A. Benjamin, Inc., New York, (1969).
4. A. Borel and J. Tits, Elements unipotents et sousgroupes paraboliques de groupes reductifs, I, Invent. Math., 12 (1971), 95-104.
5. N. Burgoyne and C. Williamson, On a theorem of Borel and Tits theorem for finite Chevalley groups, Arch. Math., Basel, 27 (1976), 489-491.
6. R. Carter, Conjugacy classes in the Weyl group, Compositio Mathematica, 25 (1972), 1-59.
7. E. Cline, B. Parshall and L. Scott, Minimal elements of $\mathbf{U}(H, p)$ and conjugacy of Levi complements in finite Chevalley groups, J. Algebra, 34 (1975), 521-523.
8. C. W. Curtis, Reduction theorems for characters of finite groups of Lie type, J. Math. Soc. Japan, 27 (1975), 666-688.
9. C. W. Curtis, W. Kantor and G. Seitz, The 2-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc., 218 (1976), 1-59.
10. P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. Math., 103 (1976), 103-161.
11. L. Finkelstein, The maximal subgroups of Conway's group C_{3} and McLaughlin's group, J. Algebra, 25 (1973), 58-89.
12. P. Fong and G. Seitz, Groups with a (B,N)-pair of rank 2, II, Invent. Math., 24 (1974), 191-239.
13. D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
14. R. Griess, Schur multipliers of finite simple groups of Lie type, Trans. Amer. Math. Soc., 183 (1973), 355-421.
15. , Schur multipliers of some sporadic simple groups, J. Algebra, 20 (1972), 320-349.
16. K. Harada, On the simple group F of order $2^{14} \cdot 3^{6} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 19$, Scott-Gross, symposium, 119-195.
17. Z. Janko, A new finite simple group of order 86, 775, 571, 046, 077, 562, 880 which possesses M_{24} and the full cover of M_{22} as subgroups, J. Algebra, 42 (1976), 564-596.
18. V. Landazuri and G. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, J. Algebra, 32 (1974), 418-443.
19. R. Lyons, Evidence for a new finite simple group, J. Algebra, 20 (1972), 540-569.
20. M. O'Nan, Some evidence for the existence of a new simple group, Proc. London Math. Soc., 32 (1976), 421-479.
21. G. Seitz, Subgroups of finite groups of Lie type, J. Algebra, 61 (1979), 16-27.
22. ___ Small rank permutation representations of finite Chevalley groups, J. Algebra, 28 (1974), 508-517.
23. __, Generation of finite groups of Lie type, Trans. Amer. Math. Soc., 271 (1982), 351-407.
24. ___ The root groups of a maximal torus, Proc. of symp. in pure math., Amer. Math. Soc., 37 (1980).
25. T. Springer and R. Steinberg, Conjugacy classes, Springer lecture notes, 131.
26. R. Steinberg, Endomorphisms of linear algebraic groups, Memoirs, Amer. Math. Soc., 80 (1968).
27. J. Thompson, A simple subgroup of $E_{8}(3)$, Finite groups, (Iwahori symposium), Japan. Soc. for promotion of sciences, Tokyo, (1976), 113-116.
28. K. Zsigmondy, Zur Theorie der Potenzreste, Monatshefte Math. Phys., 3 (1892), 265-284.

Received July 21, 1980. Research supported in part by NSF Grant MCS 78-01944.
University of Oregon
Eugene, OR 97403

[^0]: *Added in proof. If r is odd, T / T_{0} could be Z_{4} with $q=7,9$. In this case multiplying a by an element of T one can assume $a \in \mathrm{PO}^{ \pm}(2 r, q)$ and argue within the linear group.

