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ALEXANDER DUALITY

WILLIAM JULIAN, RAY MINES AND FRED RICHMAN

The Alexander duality theorem is developed in a manner that is
constructive in the sense of Bishop, yielding a constructive Jordan-
Brouwer theorem.

0. Introduction. The Alexander duality theorem, which generalizes the
Jordan curve theorem and the Jordan-Brouwer theorem, relates the struc-
ture of a compact subset of a d-dimensional sphere to that of its comple-
ment. The structure of the complement is not completely determined by
the structure of the subset. Indeed, the homotopy class of the complement
is not determined by the homeomoφhism class of the set, as the Alexander
horned sphere illustrates. Nevertheless certain connectivity properties of
the complement are so determined, such as the number of connected
components. This consequence of duality generalizes the Jordan-Brouwer
theorem that the complement in the /̂-sphere of a homeomorph of the
(d — l)-sphere has two components.

We develop the duality theorem in a manner that is constructive in
the sense of Bishop [3], thus generalizing the work in [1] on the construc-
tive Jordan curve theorem to obtain a constructive Jordan-Brouwer theo-
rem. The constructive approach requires showing how to use the informa-
tion given by a homeomoφhism of the (d — l)-sphere with a subset T of
the d-sphere Sd

9 to construct two points in Sd of positive distance away
from T such that any path joining them comes arbitrarily close to T; and,
given a point in Sd of positive distance from T, how to construct a path
joining it to one of the two points by a polygonal path that is bounded
away from T. The strategy, as in the classical situation, is to associate a
homeomoφhism invariant group Hd~\X) to each compact space X so
that if T is a compact subset of Sd and Hd~\T) = Hd~\Sd~λ), then T
satisfies the conclusion of the Jordan-Brouwer theorem. To this end we
develop a constructive Cech cohomology theory for compact spaces.

In [6] a constructive Vietoris homology theory is developed for
compact spaces, in which the homology objects are inverse systems of
(finitely presented) abelian groups. These more general objects made it
possible to get a theory that is both exact and continuous, an impossibility
if the objects are required to be abelian groups [4; X.4.1]. Moreover some
information is lost if we pass to the inverse limit: The first homology
group of a circle with a missing piece is trivial, but this fact provides no
information as to the size of the missing piece. However if we are given
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that the associated inverse system of groups is trivial, then we can
calculate the size of the missing piece. It is essential that we know this size
if we are to prove that the complement in the plane of such a punctured
circle is pathwise connected.

The situation for cohomology is different, as the category of direct
systems of finitely generated abelian groups is isomorphic to the category
of abelian groups. If we are given that the cohomology group of the
punctured circle is trivial, then we can compute the size of the puncture.
From a constructive point of view, the cohomology objects are countably
presented abelian groups, that is, groups generated by a countable number
of generators subject to a countable number of relations. The theory of
these groups is developed in §1.

We develop in §2 a homeomorphism invariant Cech cohomology
theory that satisfies the Eilenberg-Steenrod axioms. In §3 we show that
the cohomology of an inverse limit of compact spaces is the direct limit of
the cohomology groups of the spaces. This enables us to compute the
cohomology group of a compact subset T of a sphere as the direct limit of
the cohomology groups of approximating polyhedra. By suitably choosing
the approximating polyhedra, we can construct isomorphisms between
their cohomology groups and the homology groups of polyhedra ap-
proximating the complement of T via the combinatorial duality theorem.
There are no peculiarly constructive problems with this theorem as it deals
entirely with finite objects and operations. However we do have to observe
that the isomorphisms form a natural equivalence of functors in the
appropriate category. This is done in §5. In §6 we prove the Jordan-
Brouwer theorem.

1. Countably presented groups. An abelian group is countably pre-
sented if it can be written as a quotient of a countable free group by a
countable subgroup. From a classical point of view these groups are
simply countable groups; constructively they carry a little more informa-
tion. For example if we let H be the subgroup of the additive group Z of
integers which is Z or 0 depending on the truth of some proposition, then
Z/H is a countable group that cannot necessarily be asserted to be
countably presented. The two notions coincide for discrete groups, that is,
for groups in which the alternative "x — y or x ¥" y" is decidable.
Countably presented groups arise in this paper as cohomology groups of
compact spaces, and these groups need not be discrete.

An abelian group is finitely presented if it can be written as the
quotient of a finite rank free group by a finitely generated subgroup.
Classically any finitely generated abelian group is finitely presented. It is
easily seen that countably presented groups are precisely the countable
direct limits of finitely presented groups. More is true: the category of
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countably presented groups is isomorphic to the category of countable
direct systems of finitely presented groups. This latter category is a
standard construction which we shall briefly outline, assuming the reader
to be familiar with direct and inverse limits.

The direct limit lim Ha of a direct system (Ha)a(EA is the union of the

Ha, two elements being equal if their images are equal in some Hβ. The
inverse limit lim Ka of an inverse system {Ka}a(ΞA consists of those

elements of the product UKa whose coordinates respect the maps in the
system.

DEFINITION. Let C be a category. The category Dir(C) has as its
objects the direct systems {Ha}a<EA of objects in C. A map between direct
systems {Ha}a(ΞA and {Kβ}βGB is an element of limα lim^Hom(7fα, Kβ).

THEOREM 1.1. The direct limit functor is an isomorphism between the
category of countable direct systems of finitely presented groups, and the
category of countably presented groups.

Proof. Let AQ -> Aλ -> and Bo -» B{ -> be direct systems of
finitely presented groups. Let A^ and B^ be their direct limits. We must
show that any map A^ -» B^ is induced by a map between the direct
systems, and that any map between the systems that induces the zero map
on A^ is zero. We construct a map inducing/as follows. Given /, let S be
a finite set of generators for At and R a finite set of generators for the
relations on S in Af.. Then f(S) can be regarded as a subset of some Bj
and, since/(i?) hold in B^, we can choosey so that/(i?) hold in Bj. This
gives a map Aέ -> Bj. The maps arising in this manner define a map
between the two direct systems that induces/on A^.

As each Ai is finitely generated, any map between the two systems
that induces the zero map on A^ is zero. D

THEOREM 1.2. Let Go -> Gλ -> be a direct system of finitely pre-
sented groups. If the direct limit of this system is finitely presented, then we
can reindex the system so that Gt = Ax? Θ Mt where Mt goes to zero in Gi+X

and At is mapped isomorphically onto Ai+X.

Proof. We may reindex so that each G, contains a finite set of
generators of G^ and that the relations holding on this set in G^ also hold
in Gt. These generators generate the subgroup At of Gi9 which maps
isomorphically onto Ai+V Each of the finite number of generators of Gt is
equal in G^ to an element of A(. Hence we may reindex so that Gi maps
into Ai+ι. The kernel of the map from G, to Gi+ λ is Mt. D
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2. Cech cohomology of totally bounded pairs. A subspace 7 of a metric
space S is ε-dense if given a point x in X we can find a point y in Y such
that d(x, y) < ε. The subspace Y is dense if it is ε-dense for every ε > 0.
The space X is totally bounded if for each ε > 0 it has a finite ε-dense
subspace. We consider the empty set to be finite, hence totally bounded.
A totally bounded pair consists of a totally bounded space X and a totally
bounded subspace X'. We shall sometimes denote such a pair simply by
X. For x in X we let Nδ(x) denote the set of all points y in X such that
d(x, y) < 8. A cover of a totally bounded pair X consists of a finite family
/ of nonempty subsets of X and positive numbers ε >: δ such that

(a) If x andy are in U E /, then d(.x, y) < ε.
(b) If x E X, then there is Uin / such that Nδ(x) C tΛ
We shall denote the cover simply by / and write ε(/) and δ(/) for ε

and δ to indicate to which cover they apply. Let /' denote the subfamily of
/ consisting of those subsets containing points of X'. We now show that
covers with pleasant constructive properties exist in abundance.

THEOREM 2.1. Let X be a totally bounded pair and e > 0. Then there
exists a cover I of X for which ε(7) < e satisfying

(a) Every set in I is open and totally bounded.
(b) Every finite subfamily F of I either has empty or nonempty intersec-

tion.
(c) Properties (a) and (b) hold for the family (U Π X': U E 7) of

subsets of X'.
(d) The subfamily /' of I consisting of those subsets containing points of

Xf is finite.

Proof. Let Y be a finite e/4-dense subset of X. For each finite subset
Z of Y let fz(x) = sup{d(x, z): z E Z}. By [2; Theorem 0.1] we can
choose θ in (e/4, e/2) so that {x E X: fz(x) < θ) and {x E X': / z(x)
< θ} are totally bounded for each finite subset Z of Y. If / = {JV̂ (j ) : j
E 7}, then (a), (b) and (c) hold. Let ε(7) = 20 < e and δ(/) = θ - e/4.
Then Λ ^ J O is nonempty, and N8^(x) C Nθ(y)9 where y is an element of
the e/4-approximation Y such that d(x, y) < e/4. Part (d) follows from
the total boundedness of the sets U Π X'. D

Each cover / gives rise to simplicial pair, which we shall also denote
by /, by declaring a finite subset of / (Γ) to be a simplex if its intersection
contains a point of X (Xf). A simplicial map is a vertex map on simplicial
pairs that takes simplices to simplices. Two simplicial maps a and β are
contiguous if aσ U βσ is a simplex for all simplices σ. We say that a and β
are combinatorial homotopic, and write a ~ β, if there exist simplicial
maps a = α0, a 1 ? . . . ,a m = /? such that αz is contiguous to α / + 1 for
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0 < i < m. Combinatorially homotopic maps induce the same maps on
homology and cohomology.

Let/: X -> Ybe a map of totally bounded pairs, that is,/is uniformly
continuous and /(X') C Y'. Let / and / be covers of X and Y respectively.
Then we say that fj is defined if there is a simplicial map a: I -* J such
that f(U) C <x(U) for all U in /. If β is also a map from / to / such that
/([/) C β(U) for all ί/ in /, then a and /? are contiguous. Thus setting
fj(U) = a(U) uniquely defines a simplicial map up to combinatorial
homotopy.

I f/and g map X to Y, and d(fxv gx2) < δ(V) whenever d(xv x2) <
ε(/), then fj and gj are defined and fj ~ gj.

THEOREM 2.2. Letf:X->Y and g:Y -* Z be maps of totally bounded
pairs. Let /, / and K be covers of X, Y and Z respectively. If fj and gJ

κ are
defined, then (gf )r

κ is defined and(gf)r

κ~ gJ

κfJ. D

We say that a cover / is a refinement of a cover / of the same pair
(X, X') if idj is defined. The covers of Theorem 2.1 form a cofinal
directed set under this relation since id^ is defined if ε(/) < 8(J). The
cohomology group Hn( X, Xf) is defined to be the direct limit of the groups
Hn(I, Γ) over the covers / of (X, X'). Hence, by Theorems 1.1 and 2.1,
Hn( X, X') is countably presented.

The groups Hn do not distinguish a space from its completion:

THEOREM 2.3. Let (X, X') c (7, F ) be an inclusion of totally bounded
pairs. If Xis dense in Yand X' is dense in Y\ then Hn{X, X') = Hn(Y, F ) .

Proof. If /is a cover of Xas in Theorem 2.1, then/ = (U Π Y:U G /)
is a cover of 7 with the same simplicial structure as /. D

We now show that Hn provides a cohomology theory in the sense of
Eilenberg-Steenrod. That Hn is a functor, that the coboundary map is
natural, that Hn = 0 on one point spaces for n Φ 0, and that the cohomol-
ogy sequence

Hή~\X') -> Hn(X, X') -> Hn(X) -» # " ( * ' ) -> # n + 1 ( * , Λ")

is exact, is immediate from the corresponding facts for Hn{I). We need to
verify the excision and homotopy axioms.

THEOREM 2.4. Let (X, X') be a totally bounded pair and Y a totally
bounded subspace of X such that Yf — Y ΓΊ X' is totally bounded. Suppose
there is 8 > 0 such that for each x in X either x E Y or every point within δ
ofx is in Xf. Then the homomorphism Hn(X, X') -> Hn(Y, Yr) induced by
the inclusion (7, Yf) C (X, Xf) is an isomorphism.
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Proof. If / is a cover of X, and ε(/) < δ, then there is a finite
subfamily 70 of /, every element of which intersects Y, such that every
simplex of / is either contained in Io or contained in /'. Indeed choose 70

so that if U is in Io then U Π Y is nonempty, and if U is not in Io then
U C X'. If a simplex of / has some vertex not in 70, then all vertices are in
/'. The natural map Hn{I) -> H"(I0) is an isomorphism.

If / is a cover of 7, and / is a cover of X such that ε(/) <
min(δ, δ(/)/2), let a : IQ -> / be such that αί/ contains a δ(/) neighbor-
hood in Y of a point i n ί / Π 7 . Then α* : if"(/) -> Hn(I0) s //"(/) gives
the desired inverse map. G

THEOREM 2.5. Lei X be a totally bounded pair and T the unit interval
Let ft: X-* XX T be defined by f{x) = (x, /). ΓAert /0 #wd/, induce the
same map on cohomology.

Proof. We may assume that the metric on X X Γis d((xl9 tλ), (x2, t2))
= sup( </(:*„ x 2 ), I *! — ί2 |)

 A n y element of Hn(XX T) is equal to an
element of Hn(I X / ) where I is a cover of X and / is a cover of T. Then
ft = (ft)ίχj i s defined by gt(U) = UXV where / G V G /. If | j - 11<
δ ( / ) , then gs and ĝ  may be taken equal so, taking δ steps from 0 to 1, we
see that g0 and gx induce the same map on Hn(I X J). D

The metric complement of a totally bounded subspace consists of all
points whose distance to the subspace is positive.

THEOREM 2.6. If(X, X') is a totally bounded pair such that Hr(X, X')
φ 0, then the metric complement of X' is nonempty.

Proof. Let / be a cover of X such that the map Hr(I) -> H\ X) is
nonzero, and let J be a cover of X such that ε(J) < δ(/)/2. For each Fin
/ choose xv G V. Either d(xv, X') > δ/4 or d(xv, X') < δ/2. If the
former occurs for some V in the finite family J, then we have constructed
a point in the metric complement of X\ If not, then for each V in / there
is JV i n x' such that d{xv, yv) < δ/2. Choose Uv G / such that Nδ(yv) C
Uv. Then V C Uv and Uv G /'. Thus the map H\I) -* iy r(/) is zero,
contradicting the fact that the map Hr(I) -* Hr{X) is nonzero. D

3. Inverse limits of compact pairs. An inverse system of compact metric
pairs is a family of compact metric pairs X(i), i — 1,2,..., and maps
/(/, j): X(j) -> X(i) defined for i <j such that/(ι, k) =/(ί, y)/(y, fc) if
i <j < k. To construct the inverse limit X(oo) of this system we first
redefine the metric dέ on X(i) to be the equivalent metric wf(di9 \/i) so
that the diameter of X(i) does not exceed \/i. Define ^(oo) to be
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{x E UX(i): xt =/(/, j)xj for all i <j}9 with d(x, y) = sup </,.(*,., ^ ) .
Define/(/): -Y(oo) -> X(i) to be projection on the ith coordinate. In this
section we shall prove the following theorem, after establishing two
lemmas.

THEOREM 3.1. Let {X(i), /(/, j)} be an inverse system of compact pairs
with limit [X(oo), /(/)}. If for each i and 8 > 0 there is j > / so that
f(i)X(oo) is δ-dense in f(i, j)X(j), then Hn(X(oo)) is isomorphic to
Lim

A pair (7, Y') is δ-dense in (X, X') if Y is δ-dense in X and Yf is
δ-dense in X'. The δ-density hypothesis always holds classically, but is
necessary constructively as the following example shows.

EXAMPLE 3.2. Let {a^ be an increasing sequence of O's and Γs which
cannot be all O's. Let X(i) be the closed unit disk if at — 0, and the unit
circle if ai — 1. Let/(/, j) be the inclusion map X(j) C X(i). Then ΛΓ(oo)
is the unit circle, so Hι(X(oo)) is an infinite cyclic group. If Theorem 3.1
held in this case, then we could find a nonzero element of Lim Hι(X(i))9

hence an / such that Hι(X(i)) φ 0. Thus we could find / so that at= 1.
But this is Markov's principle.

Recall from [3] that an operation g from a set X to a set Y assigns to
each x in X an element g(x) in Y. An operation need not be a function in
that we may have xγ — x2 without g(xλ) — g(x2)

LEMMA 3.3. Let I be a cover of X(oo) and q a positive integer greater
than l/δ(/). If a> 0 is small enough, and r > q is sufficiently large, then
there is an operation g: X(r) -^ X(oo) and a cover RofX(r) such that

(a) Ifx, y G X(oo) andd(f(q)x, f(q)y) < α, then d(x, y) < δ(/).
(b) Ifx E X(r), then d(f(q)gx, f(q9 r)x) < a/4.
(c) Ifx,ye X(r) and d{x, y) < ε(R), then d(f(q9 r)x, f(q, r)y) <

a/2andd(gx,gy)<δ(I).

Proof. Choose a > 0 so that if w, v E X(q) and d(u, v) < α, then
d(f(i, q)u, /(/, q)v) < δ(I) for all / < q. Then (a) holds. Choose r large
enough so that/(#)X(oo) is α/4 dense inf(q, r)X(r). Then an operation
g satisfying (c) can be defined. Finally choose R to satisfy the first
inequality in (c). Then d(f(q)gx, f(q)gy) < a/4 + α/4 + a/2 so
d(gx9gy)<S(I) by (a). D

Note that (c) implies that gf is defined. We shall use the gf to
construct an inverse to the map Lim Hn(X(i)) -+ Hn(X(oo)). First we

show that the gf are compatible.
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LEMMA 3.4. Let I\ be a cover of X(oo), and 12 a refinement of II. Ifr3

is sufficiently large, and R3 is a sufficiently fine cover ofX(r3), then

(g\)n f(rv r3)R2 = id'iΐigiln f(r2> h)Ri

Proof. Let s = max(r,, r2) and choose θ > 0 so that if u, v G X(s)
and d(u, υ) < 2Θ, then for i — 1,2 we have

d(f(r,,s)u,f(ri,s)υ)<ε(Ri).

Choose r3 sof(s)X(oo) is 0-dense in f(s, r3)X(r3). Define h : X(r3) -> Â oo)
so that d(f(s)hx, f(s, r3)x) < θ for all x in X(r3). Let R3 be a cover of
X(r3) such that if d(x, y) < ε(R3), then d(f(s, r3)x, f(s, r3)y)< θ. If
d(x, y) < ε(R3), then d(f{s)hx, f(s, r3)y) < 2Θ, so

d(f(ri)hx,f(ri,r3)y)<ε(Ri).

Thus

d{f{qi)hx,f{qi,r3)y)<ai/2,

so

whence

d(hx,gj(ri,r3)y)<8(li).

Therefore

and

hn =

The theorem follows upon noting that hfx

3 = id̂ fΛf2

3

o/ Theorem 3.1. Let L = Lim Hn{X{i)). The maps /(/)*:

-» /ίM(X(oo)) induce a unique map φ: L -> /ίn(Z(oo)). We will
construct an inverse map ψ to φ, showing that φ is an isomoφhism. If / is
a cover of X(oo), let g and i? be as provided by Lemma 3.3. Then
(gf )* : #"(/) -> Hn(R). Lemma 3.4 shows that these maps fit together to
give a map ψ from Hn(X(oo)) to L. To show that φψ is the identity, let /
and R be as above and / a cover of X(oo) so that /(r)^ is defined. If
x G AΓ(oo), then

d(f(q)x, f(q)g(xr)) = d(f(q, r)xr, f(q)g(xr)) < a/4
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so d(x9 g(xr)) < δ(/), whence idf = (gf(r))j = gff(r)J

R. To show that ψφ
is the identity, let / be a cover of X(oc) and Q a cover of X(q) where
q > 1/8(1) and f(q)r

Q is defined. Choose α < 48(Q) and let r9 i? and g be
as provided by Lemma 3.3. If x E X(r)9 then d(f(q)gx, f(q9 r)x) < α/4
so id* = (f(q)g)*=f(qyQg*. D

4. Polyhedral approximation. We need a systematic way to approxi-
mate compact subsets of a polyhedron, and their metric complements, by
polyhedra. Let Kbe a simplicial complex. A geometric realization \K\oίK
is obtained from a map / taking the vertices of K to Euclidean space in
such a way that if {v0, υl9... 9υn) is an π-simplex of K, then
f(vo)9 /(ϋj) , . . . ,/(t)n) are affine independent. The points of | K\ are sums
Σ aΌf(v) with αw > 0 and Σ aw = 1 such that if aΌ Φ 0 for every ϋ in some
finite subset /, then / is a simplex of K.

There is a natural map Hr(K) -> i F ( | ίΓ |) defined as follows. Let / be
the cover of | K\ consisting of the sets star υ — {Σauf(u): aΌΦ 0}. Then
K and / are isomorphic simplicial complexes under the correspondence
v -» star υ. The desired map is the composite Hr(K) -» Hr(I) -> Hr(\ K\).
This map is an isomorphism between Hr(K) and Hr(\ K\) that is natural
in the sense that it commutes with simplicial maps of K and their induced
continuous maps of | K\ (see [4; IX.9]).

Given a geometric realization \K\ of K and a subcomplex L of ϋΓ, we
get a geometric realization | L \ of L in the obvious way. We get a
geometric realization of the derived complex K{1) by mapping each point
of K(l\ which is a simplex of K, into the barycenter of its image in \K\j_
Clearly | K | = | K(l) | as point sets. If L is a subcomplex of K, then we let L
denote the full subcomplex of K{1) whose vertices consist of those vertices
of K{λ) that are not in L.

THEOREM 4.1. Let K be a simplicial complex and \K\ a geometric
realization of K. Let Tbe a totally boundedsubspace of\K\ . Then there is a
sequence of subcomplexes Lι of K^ such that for each i > 0

(a)ΓC|LJ.
(b) Any subset of \K\ bounded away from T is contained in | Lt \ for

some i.

Proof. We may assume that | K\ has diameter one. Choose L, C Lγ2ι

inductively so that if σ is a simplex in L/? then d(\ σ | , T) < 1/2/, while if
σ is a simplex of K(n that is not in Ln then d(\σ\9T)> 1/3/. Note that
if X is a subset of | K | such that

then X d\L\. D
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5. Alexander-Poincare duality. Let K be an abstract simplicial com-
plex which is a combinatorial oriented J-manifold. Let CA T be the set of
pairs (L, M) where L is a subcomplex of the ith derived complex K{i) of
K for some i > 0, and M is a subcomplex of L. Partially order CAT by
setting (Lj, Λfj) < (L 2, M2) if L(/} is a subcomplex of L(

2^ and AfJ 7** is a
subcomplex of M^ } for some j and /:. We shall consider the partially
ordered set CA T to be a category in the usual way. Define a contravariant
functor from CAT to CAT by assigning to each pair (L, M) the pair
(M, L), where L consists of those simplices of K0+λ) which have no
vertex in common with L(1). Let h: ^ ( / + 1 ) -> K0) be a simplicial map
taking a vertex of # ( z + 1 ) , that is, a simplex of K{i\ to one of its vertices.
Let φ be the subdivision chain map. Define Hr(Lλ, Mx) -» Hr(L2, M2)
and # r ( L 2 , M2) -> // r(L1? MJ by Λ*φ> and (Λ^Φy)* respectively. As h*φ
and φΛ̂  are chain homotopic to the identity [4; VI.7.1], it is straightfor-
ward to verify that Hr and Hr are functors from CA T to the category of
finitely presented abelian groups.

THEOREM 5.1. There is a natural isomorphism

If K is the d-skeleton of a d + 1 simplex, then for 0 < r < d there is a
natural isomorphism between the reduced groups

Proof. Let z be the </-chain that is the sum of the oriented ύf-simpϋces
of K. Note that z is a generator of Hd(K). Let Π denote the cap product
from σ(K) ® Cd(K) to Cd_r(K). Define D mapping H\U M) to
Hd_r{M, L) by D(x) = Λ*x_Π <£+1z where L is a subcomplex of K{i\ The
proof that D(x) is in Hd_r(M, L), and that Z> is an isomorphism, may be
found in [5; 5.3.13]. The naturality of D follows from the naturality of Π
and the fact that h*φ and φh* are chain homotopic to the identity.
Specifically, one can verify that if s is an r-cocycle in K(ι\ and z is a
d-cycle in K(i\ then φ(s (1 z) = h*s Π φz and h*(s Π z) = φ*s Π h*z.

To prove the last assertion of the theorem consider the exact se-
quences

Hd.r{K) - Hd.r(K,L) - Hd-r

Hr(K) -» i/ r(L) -• ^ r ( L ) -» 0.

By Theorem 5.1 the first two terms of the sequences are naturally
isomorphic, whence so are the third terms. D
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THEOREM 5.2. Let K be the d-skeleton of a d + 1 simplex, and \K\ a
geometric realization of K. Let Tbe a compact subspace of\K\ . Then there
is a sequence Pi such that

(1) Pi is a subcomplex ofK{i+λ\
(2) P^λ) is a subcomplex of Pi+ι,
(3) I Pj 115 bounded away from T,
(4) every subset of \K\ that is bounded away from T is contained in

some \P(\,

(5) ί Γ ( Γ ) - l i m # , _ ,

Proof. Set P. = L, as constructed in Theorem 4.1. Part b of that
theorem guarantees that T is δ-dense in | Li | if i is sufficiently large, so
Hr{T) = lim H'QLil) by Theorem 3.1. Now Hr(\Lj\) is naturally iso^

morphic to /Γ(Ly) because Hr on compact pairs satisfies the Eilenberg-
Steenrod axioms. Thus Hr{T) = lim H'iL^. Finally, Hr(Lg) is naturally

isomorphic to Hd_ r_ x( Pt) by Theorem 5.1. D

6. The Jordan-Brouwer theorem. We are now ready to prove the
Jordan-Brouwer theorem. First we state a few obvious facts about the
subgroups of free groups that arise as zero-dimensional reduced cohomol-
ogy groups.

LEMMA 6.1. For V a set, let G(V) denote the subgroup of the free group
on V whose coefficients sum to zero. Any function f:V-> W induces
/* : G(V) -> G(W% and G(f(V)) =/*((?(K)). ///* is one-to-one, then f is
one-to-one. If V is a nonempty finite set, then the number of elements in V is
1 + rank G(V). D

THEOREM 6.2. Let T be a totally bounded subset of the d-sphere with
nonempty metric complement. If Hd~\T) ^Zp, then the metric comple-
ment of T can be written as C° U U Cp where Ck is nonempty and
polygonally connected away from T, and any path from Ck to Cm with
k T^ m comes arbitrarily close to T.

Proof. We may replace the <i-sρhere by a geometric realization [ K\ of
the ^-skeleton K of a d + 1 simplex. Let Pλ, P2,... be as in Theorem 5.2.
Taking r = d - 1 in Theorem 5.2 we have lim HQ(Pi) = Zp. By Theorem

1.2 we may reindex so that H0(Pj) is isomorphic to Ax @ Mi9 where Mt

goes to zero in i/ 0(P / + 1) and At is mapped isomorphically onto Ai+λ, so
each At is isomorphic to Zp. Referring to Lemma 6.1 let Kbe the set of
components of | Pλ \ and Wt the set of components of | Pz | for / > 2. Let
/ ( / ) : V ^ Wt be induced by the inclusion | P 1 | c | Pf | . Then G(V) =
HO(PX) and G{Wt) = # 0(/>) and /(/)„ is the map HO(PX) -, H0(Pt). By
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Lemma 6.1 we have At = f(i)jG(V) = G(f(i)V) and card/(i)K = 1 +
rank(?(/(/)F) = 1 + rank At = 1 + p. Moreover the map /(/)K->
f(i + \)V induced by the inclusion | Pt | C | Pι+X | is one-to-one since At -»
At+X is one-to-one. Thus we can write f(i)V= {CX,...,CX} where C( C
C/+! and I P, IC Q^.! U U C&. x and, if j φ k, then C{ is bounded away
from C* by the minimum length of a one-simplex in | K^i+2) \ . Let Cj =

Let x Gj AT I be such that d(x, T) > 0. Choose / so that x G| Pi | .
Then x E C/+, C CJ for somey. If * and y are in C7, then x and jμ are in
C/ for some / and can be joined within C( by a polygonal path, which is
necessarily bounded away from T. Finally, suppose Q is a path from Ck to
Cm. Since β and T are totally bounded, we can compute the distance r
from Q to Γ. If r > 0, then β C| P} \ for some 7, so Q joins C/ to CJ1,
whence k — m. Thus if k ψ m, then r = 0 so Q comes arbitrarily close to
Γ. •

The sets C1' need not be located. Let T be the polygonal path (0,0),
(1,1), (1, a\ (2,0), (0,0) with a > 0. Then T is a compact subset of R2 and
H\T) = Z. However if we could measure the distance from (3,0) to that
component of the complement of T that contains (1/2,1/4) then we
could determine whether a > 0.

A constructive theory of covering dimension for totally bounded
spaces is developed in [7] and [2]. All we need here is that Cov X < n
implies that there are arbitrarily fine covers / of X with no n + 1
simplices.

COROLLARY 6.3. Let T be a totally bounded subset of the d-sphere. If
Cov T < d — 2, then the metric complement of T is nonempty and polygo-
nally connected away from T.

Proof. As Cov T < d — 2, we can find arbitrarily fine covers of T that
have nod- 1 or d simplices. Hence Hd~ \T) and Hd{T) are zero. If Sd is
the d-sphere, then we have the exact sequence Hd(Sd, T) -> Hd(Sd) ->
i/ J(Γ), so i ϊ^S^, Γ) Φ 0 whence, by Theorem 2.6, the metric comple-
ment of T in S"* is nonempty. The corollary now follows from Theorem
6.2 with p = 0. D

To illustrate the connection between algebraic and metric information
consider the polygonal path T given by (a, 1), (1,0), (0,0), (0,1), (0,0)
where 0 < a < 1/2. From a classical point of view T is either the triangle
(0,0) (0,1) (1,0), or is homotopic to the triangle (0,0) (0,1) (α,0), so
H\T) is infinite cyclic. If H\T) were infinite cyclic from a constructive
point of view, then the Jordan-Brouwer theorem would allow us to decide
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whether (1/2,1/4) can be joined to (0,2), and hence determine whether
a > 0. But this cannot be done for arbitrary a in [0,1/2]. In fact HX(T)
cannot be shown to be infinite cyclic from a constructive point of view.
Indeed H\T) is the direct limit of infinite cyclic groups where all the
maps are isomorphisms with the possible exception that one map might be
zero. If all the maps are isomorphisms, then we've got our hands on a
generator. However if one of the maps down the line is zero, then our
putative generator is zero, and the real generator appears beyond that
point. As we have no way of determining which case we are in, we cannot
get hold of a generator.
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