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THE SELBERG TRACE FORMULA 1I:
PARTITION, REDUCTION, TRUNCATION

M. ScotT OSBORNE AND GARTH WARNER

Let G be a reductive Lie group; let I" be a non-uniform lattice in G.
Here we shall lay the analytic and geometric foundations on which the
derivation of the Selberg trace formula for the pair (G, I') will eventually
be based.
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1. Introduction. This is the second in a projected series of papers in
which we plan to come to grips with the Selberg trace formula, the
ultimate objective being a reasonably explicit expression. We shall take as
the basic reference and point of departure our memoir [3.a] to which we
refer the reader for a complete discussion of the foundations of the theory,
as well as additional background material. It will be recalled that the first
paper in this series (cf. [3.b]) was devoted to a discussion of these
questions in the special case when the rank of the ambient lattice was
unity. Philosophically heuristic, the essential plan of attack, incorporating
most of the basic ideas, can be found there already. We would not be
stretching matters much by saying that our chief concern in this paper and
its successors is to take a given point from the rank-one picture and push
it through in general, leading eventually to a grand compilation.

The theory centers on a reductive Lie group G and a non-uniform
lattice I" in G, both satisfying the usual conditions, the ultimate object of
study being L?(G/T). Since we have amply dealt with what one knows
(and what one wants to know) about L?(G,/T) elsewhere, there is nothing
to be gained by repeating this theme here. Instead, we shall content
ourselves with a brief indication of the highlights of the present paper.
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308 M. SCOTT OSBORNE AND GARTH WARNER

Section 2, while in a sense preliminary and seemingly even peripheral,
actually makes its presence felt, directly or indirectly, throughout the
entire work, the main result in this circle of ideas being the Combinatorial
Lemma of Langlands. A first application is made in §3 where we establish
an important extension of the by now classical reduction theory, focusing
on an exact partition of G/I' using all the I'-cuspidal split parabolic
subgroups of G (not just the I'-percuspidals...). §4 is technical in char-
acter, collecting a number of estimates which are used in the later going.
In §5 we introduce the definition of the truncation operator and formulate
its fundamental properties, the corresponding proofs being deferred until
§8§6-7. Additional facts about the truncation operator, somewhat formal
in nature, are to be found in §8. In §9 we obtain an inner product formula
for two truncated Eisenstein series associated with cusp forms, this
formula then providing a link to the next paper in this series but finding
application also in §10, where we use it in a characterization of the
truncation operator.

Some suggestions for reading may be helpful. To begin with, it is
definitely necessary to acquire a reasonable familiarity with §§2-3. After a
quick perusal of §4, one could then turn to §5 which contains precise
statements but no proofs, they being presented in §§6—7. Setting aside
their study, it would be possible to pass on to §8 for additional orienta-
tion, thence to §10, the latter having the character of a summary, thus
providing motivation for the role of the truncation operator in general and
for the role of the inner product formula (§9) in particular. Additional
remarks can be found at the beginning of each section.

In conclusion, we would like to acknowledge our indebtedness to the
geometric insights of Langlands [2.a] and Arthur [1.a, 1.b]. It was Lang-
lands who was the first to recognize the significance of ‘Combinatorial
Lemmata’ and Arthur who pioneered in their use.

2. Partitionings of euclidean space. The purpose of this section is
the development of a series of geometric facts, admittedly intricate, which,
however, are at the basis of everything that follows. Chief among them is
the Combinatorial Lemma of Langlands (Proposition 2.5 infra). In the
setting of parabolic subgroups alone, some of our results have been
obtained by Arthur [1.a]; the approach below, though, is frequently quite
different and, of course, the situation is more general.

The investigation centers on the following data:

(1) A finite dimensional inner product space

(7. (2.2)

of dimension /, say;
(2) A basis {A,,...,A;} of V subject to the condition

(ALA)=<0  (i#)).
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We remark that (2) is suggested by the theory of ‘root systems’; the
possibility that the A; are mutually orthogonal is not excluded, naturally.
Let {N,...,X} be the basis of V dual to {A,...,A\;} —then it is a
well-known and familiar fact that
(M, NM)=0 (i #j).

Suppose now that F is a subset of {1,...,/}. Let V(F) denote the
subspace of V spanned by the A, (i € F), P(F) the orthogonal projection
of V onto V(F); let V. be the orthogonal complement of V(F) in V, Pg
the orthogonal projection of ¥ onto V. Put

A\, ifi€F
No=23" .
i TP\, ifigF.

Then {Af,...,A} is a basis of V" with associated dual basis {A,...,N,).
One knows that

(MLNF) =0 (Np, M) (i ),

implying, therefore, a reproduction of data. In this connection, observe
that

N = {P(F)X ifieF
F .
N ifi € F.
Let
C={HeV:(\, H)>0Vi}
9= (HeV: (N, H)>0Vi}.
It is customary to refer to C as the positive chamber in ¥, to 9 as the

positive cone in V. Note that 9 D €, the inclusion being, in general, strict.
There are pointwise descriptions of € and 9, viz.:

l
G:{Z t"N:t">0Vi}

i=1

!
9= { A ti>0Vi}.
i=1

No hyperplane of the form

(H:(M,H) =0}, {H: (X, H)=0}
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meets € since

(X}, H) >0

HEG@{(XF’ H)>0.

Let S be a subset of V' — then we write Pos(&) for the interior of
(HEV:(0,H)>0Vo €S).
Plainly
" D& = Pos(&’) D Pos(S”).
It is also clear that
Pos(C) =9 and Pos(9) = C.
If again Fis a subset of {1,...,/}, then
Br.={A:iEF}U{N:i&F}
is a basis of V, the corresponding dual basis being
RF={N:igF}) U {Np:i€F}.
Claim:

© C Pos(B,) C 9
@ C Pos(%7) C 9.

Indeed, that € is contained in both Pos(%.) and Pos(B”) is a conse-
quence of a remark supra. On the other hand,

Pos(Pos(%")) = Pos(%;)

9 = Pos(C) D {POS(POS(%F)) = Pos(B").

Hence the claim.

LEMMA 2.1. Let F,, F, be subsets of {1,...,l1} — then

1 ifF,=F,

5 ol
(F: F,CFCF,) 0 ifF#F5.



THE SELBERG TRACE FORMULA II 311

Proof. Since the assertion is obvious if F; = F, or F;, £ F,, let us
assume that F, # F, and F, C F,. We have then

O — (1 — 1)#(5—Fl)
#(FZ_Fl)( #(F2 _ F])

= go
= 3 ()

(F: FCF,~F}

= 3y,

(F: F,CFCF,)

as desired. (]

)(—1)"

l

Let F, F, be subsets of {1,...,/} with F| C F,. We shall then agree to
write

XF,F
for the characteristic function of the set
(HeV:(N\,H)>0(i€F,— F)}
and, dually,

F.5

X
for the characteristic function of the set
(Hev:(Ng, H)>0(ie F,— F)}.

The abbreviations x,, or x'* will be employed when no confusion is

possible. In the special case when F;, = &, we use the notation

Xx,F,
*,5.
X%

in the special case when F, = {1,...,/}, we use the notation

XF,*
X,

Form now the following function on V,

oPR(H)= 3 ()™ P (H)-x"*(H),
{(F: FOF)

about which we can say the following.
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PROPOSITION 2.2. oFFf is the characteristic function of the set & ,ff of all
H € V such that:
@M, H)>0ViEF —F;
() (M, HY<0Vi & F,;
(1i1) (}\fFl, H)>0Vié&F,.

Proof. To begin with, observe that the
Fl

Ai
}‘I::l(iEFZ—Fl)’{N— (ing)’
F

all belong to V. The value of o 2 at a particular H depends, therefore,
only on its prOJectlon onto V. We can assume, then, without any loss of
generality, that F, = &, F, = F (say). This said, fix an H, € V. Let

Fy(H,) = KU {i & F;: (X, Hy) <0).

Thus
1 ifF D F(H,)
X" (Ho) = {0 it F 3 Fy(H,)
o\ f1g
and so
o (H,) = > (—1)#<F~E))X*,F(Ho)-
{F: FO Fy(Hy)}
Let
E)+ (Ho) = {i: (}\ia Ho) > 0}'
Thus
(H,) = 1 ifFCFOJr(HO)
X*,F 0 O lfF ¢ F(v)—f— (HO)
and so

F(H,) & Fy (Hy)
=o2(H,) =0,
Fy(H,) C Fy (H,)
=0 (H,) = 2 (-1)*R,

{F: Fy(Hy) CFCFy (Hp)}
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or still (cf. Lemma 2.1)
Fy(H,) # Fy (H,)
= 0°(H,) =0,
F\(H,) = Fy (H,)
= 6/(H,) = (1)t =R
To complete the proof, suppose first that H,, is actually in § % — then

 (R(H,)
h= {F()*(Hox

hence, by the above, of°(H,) = 1. As for the other direction, it is a
questlon of showing that H, & S = ¢/o(H,) = 0 or, equivalently, that

ofo(Hy)) #0=H, €8k Supposmg the latter to be the case, H, must
belong to the set of all H € V such that

(A,H)>0 Vi€ F(H,)
(A\,H)<0 Vi F(H,)
(N,H)>0 VigF(H,),

a subset of B, ;. which, in turn, is contained in 9. In other words:
ofo(H,) # 0= H, € 9. This implies that Fy(H,) = F, so that, in fact,
H, € §), as was to be shown. O

It is a corollary that

for all F+# {1,...,[}.

REMARK. On the basis of the preceding argument, one can see without
difficulty that

2‘7; = Xy-
F
Given H € V, write H = H(F) + Hpwhere H(F) € V(F), Hr € V}.
PROPOSITION 2.3. Let T € C. Suppose that H € T + Sf — then
(A,, HF))>0 Vi€EF.

Moreover, there exists a positive constant Cr., depending only on F, such that

NHI < Ce(1+ 1T+ IH(F)).
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The initial assertion is easy enough. For
le F:>(>\i’ H(F)) = (}\r’ H_ T) + (>\17 T) - (}\i’ HF)

and the right-hand side is certainly positive. The final assertion, however,
is a little more complicated. We shall preface its proof with a lemma.

LemMMA 2.4. Fix Hy € 9 — then
| Hyll = sup{llHIl: HE YN Hy— C}.
Proof. Since Hy € 9 N H, — @, we have
I|Hyll < sup{llHII: HE 9 N H, — C}.
On the other hand, if H € 9 N H, — C, then
|Hyll* = (Hy, Hy) = (H + (Hy,— H), H+ (H, — H))
=IHI*+ |Hy,— H|*+2(H,H,— H) = ||H|?.
Hence the lemma. O
In passing, let us note thatif H, & 9, then Y N H, — C™= &.

Now introduce, in the obvious way, the positive chamber ©,. and the
positive cone 9 in V}. Define a linear operator

Ap: V- Vg
by the rule

A(H)=3 (A, H)X (HEV).
i¢F

For all i & F, we evidently have
(A, 4p(H)) = (A, H).

To finish the proof of our proposition, suppose that H is as there, i.e.
H € T+ §f where T € C— then it follows from the definitions that for
alli & F,

(M, Hp) = (A, H=T) + (X, T) = (\,, H(F))
<(\,,T) — (A, H(F)),

(Np, He) = (N, H—=T) +(X, T)
>0,

Hp e SFO[AF(T_ H(F)) - @;]~
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Taking into account Lemma 2.4, we then find that
NHI < I1H(F)Il + | Hgl
< |H(F)Il + 1 4(T — H(F))I
<IH(F)| + 1 A(T)Il + 1 A(H(F))Il
<l ApllopI T+ (1 + I 4l op) I H(F)II
<1+ I 4pllop)(ITIL + LH(F)I)
=1+ NAllop)(A +NTHN + WH(F)I + T -1 H(F)I)
=1+ l4llop)X + UTI(1 + I H(F)I)

= Ce(1+ T + NH(F)I),
Cr being, by definition, 1 + || Al 5p. The proof is therefore complete.
Our next task will be to formulate and prove the Combinatorial

Lemma of Langlands. To this end, let F,, F,, F, be subsets of {1,...,/}
with F;, C F, and F, CF, — F. If F, C F C F,, call

TF,.F(E):?)

the characteristic function of the set I p(F,) of all H € V such that
i € Fy=(Np, H) >0
igFy=(N., H)=<0.

Note that the 7-function does not, in reality, depend on F,, it being nierely
a fixed set of reference.

PROPOSITION 2.5. For all H € V,

#(FOF
2 (-1) o O)TF,,F(FO:H)XF,2(H)
(F: F,CFCF}

is equal to

1 ifF,= 9
0 ifF,+ 9.

A result of this type was first stated without proof by Langlands [2.a],
who also introduced the term ‘Combinatorial Lemma’. Arthur [1.a] has
recently established a related version. The present formulation is simpler
and, at the same time, more general.
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We shall need two lemmas. The first is a straightforward technicality;
the second, while a formal consequence of the first, will serve to reduce
the proof of Proposition 2.5 to a special case.

LEMMA 2.6. Suppose that F, C F, — then the set
is a basis of Vi N V(F,) with associated dual basis

{Np:i€ F,— F}.

Proof. Since F, contains F,, V( F)) is contained in V(F,). Leti € F, —
F, — then, by definition, AT € V.. On the other hand, A, — ' € V(F))
C V(E),\; € V(F,), so }\F e V(F ). Therefore, by dlmen51on the set

is a basis of V. N V(F,). As for the assertion regarding the dual basis, let
againi € F, — F — then, by definition, X, € V(F,). On the other hand,
(Np, AZ2) =0 Vj€eF,.

But }\fl =\, (j € F,), the latter spanning V(F}), so Ng, € V. Therefore,
by dimension, the set

{}\iF: iEF,— F,}

is a basis of Vi N V(F,). Finally, Ng , being the orthogonal projection of
N onto V( Fz), the difference X'y, — NF is orthogonal to every A" (j € F,
— F]) (since they lie in V( E,)). Thus Vz JEFE —F,

(MG, ML) = (M, ML) =8,

lj’

proving that the bases are in fact dual to one another. O

LeEMMA 2.7. Suppose that F; C F C F, — then

(1) Vi € F — F,, the orthogonal projection of N, on span{\: j € F —
F\} is Np;

(2) Vi € F, — F, the orthogonal projection of N on the orthogonal
complement of span{\5: j € F — F\} in V. N V(F,) is A},

Proof. Making a change in the notation, it follows from the preceding
lemma that
i€EF—F =N €V, NV(F)CV, NV(E)
i€EF—F=N€eV.nV(F)CV,NV(E),
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so the relevant X' and A¥ appearing in (1) and (2) all do lie in Vi, N V(F).
Furthermore,

i€ F— F, >Ny € V; N V(F) =span{\:j € F— F}
i€EF,—F=X eV, nV(F) LV, NV(F).
There remains only to show, therefore, that
iEF—F =N, —Np L span{\7: j € F — F}
i € F,— F=>X —\i € span{Mi:j € F— F}.

We have, however,

Ne —NevV, CV,
iEF—F ={ " REF
Ne— XN E Vp,
SO
Ny, — Np € Vp L Vi, N V(F) = span{M:j € F — F},
while
N — X, € V(F)
}‘f’ -\ € V(Fl) C V(F),
SO
N —Nie V. N V(F)=span{Xi:j € F— F},
completing the proof. O

Turning back to Proposition 2.5, the preceding lemma implies that the
value of the sum in question at a particular H € V depends only on its
projection onto ¥V N V(F,). Upon making the replacement of data

V— Ve NV(E)
A:l=sisly->{\i.ieF—F},
we thereby reduce our proof to the special case when F, = &, F, =

{1,...,1}. Let us agree to write £ for the set {1,...,/}, %, for the power set
of £. Abbreviating

To ;(Fy:?) to 7y o(Fy:?),
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we must show that forall H € V),

2 (—1)#(Fﬂﬁ))7*,F(E): H)XF,*(H)
Fe%

is equal to

1 ifF=o
0 ifFy+o.

This will be done by induction on the dimension of V. The case dim(V")
=1 is clear enough. Inductively, then, we may assume that VF, C £,
F,#¢E,

FNFy). )
2 (’1)#( " )T*,F(‘Fb‘ H)XF,2(H)
(F: FCF,)

is equal to
1 fFNF,=0
0 fF,NF,+#3J.

This said, suppose that F is a proper subset of £, F, a subset of £
containing F — then

#(F,— F)+ #(L—F)= #(L— F) + 2(#(F,) — #(F)).
Accordingly,
0= (-1)""""of(H)

B_
= 3 )Py (H) xPH(H).
(F: ROF)

But, when Fis all of 2,
1= (1)* 6 (H).

These remarks make it clear that if c.(F € %) are complex numbers,
then

£—F,
2@ Cr E (‘1)#( )XF,z(H)'Xz’*(H)
FES, (F: F,DOF)

is equal to c,. Specialize and take
ep=(-)"""r, (R H).
We can then say that the sum over all F € &, of
(“1)#“0%)(‘1)#(6—5)7*,10(Fo : H)XF,z(H)’XZ'*(H)
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summed over all F, containing a given F is the same as
()", o(Fy: H).

Now reverse the order of summation, splitting off the term whose value
we are attempting to calculate, viz. the one corresponding to F, = £. In
this way, we find that

(—1)#%)7*,(3(}70: H)

is given by

2 (“1)#(}:0%)7*,]?(1:2): H)XF,*(H)
FES,

plus the sum over all F, # £ of
(-1)" Px2*(H)
times

2 (“1)#(}70%)7*,17(}:6: H)XF,z(H)a
(F: FCF)

the last sum being, thanks to the induction hypothesis, 1 or 0, depending
on whether F;, N F, = @ or F, N F, # &. There are then two possibili-
ties.

F, = @. In this case,

Y ()F 0, (Fy: H)xpa(H)
FED,

is equal to

L+ 1,0(8:H) = 3 (-1)*Py2x(H),
REY

F, # <. In this case,

FZ@ (-1)* T o (Fy: H)x px(H)
€%

is equal to

() (B H)— 3 ()T Rx(H).
{Fy: F,C2—F,}

Everything thus comes down to the following lemma.
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LEMMA 2.8. Let F, € &, — then
(-1)" "7, o(Fy: H)

and

S )T Px(H)
{F: F,CR—Fy}

are equal.

Proof. Since

#L)+ #(E-F)+ #(L-F)=#(L - F) - ) +2(#(R)),
it will be enough to show that

r(B—FiH)= 3 (-)TTRx(H).
{Fh: KRCK)

By definition, 7, (£ — F,:?) is the characteristic function of the set
Ty e(E— Fy) of all H € Vsuch that Vi € £:

iel—F=(N,H)>0
igR—F,=(N,H)=<0.
On the other hand, x** is, by definition, the characteristic function of the
set
(HEV:(N,H)>0(i & F)}.
Now fix an H, € V. Put
F,o(H,) = {i € F,: (N, Hy) =0}.
Since F, C F,, x**(H,) = 0 unless F,( H,) C F,. Therefore
Y ()T x(H,)
{F: HRCK)
. 2 (_l)#(FO—FZ){l if (N,HO) >0Vié&F,

(Fy: Fyo( Hy) CF,C Ry} 0 otherwise.

Owing to Lemma 2.1,
1 if Fz,o(Ho) =k

{(Fy: Fyo(Hy) CFCFy) 0 if Fz,o(Ho) > I5.
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In other words,

S C)TTEx(H)
(R HCFy)

is equal to the product of

{1 if (N, H))>0Vi¢F,
0 otherwise

and
{1 if (N, H)) <0Vi€F,
0 otherwise,
that is, to
'T*,B(B — F: Ho),
as desired. O
The fact that

2 'r>x<,1~‘(g : H)XF,*(H) =1
FE,

for all H € V leads to a partitioning of ¥ into disjoint subsets which will
be exploited in particular cases in the next section. Indeed,
T /(D 1 DX r.+(?) is the characteristic function of the set V{ F') of all H in
V' such that

(Ney H)<0 Vi€F
(M,H)>0 VigF.

Consequently (cf. supra)

v= [ WF).

Fe%,

Our next objective will be to obtain a decomposition of V{ F), this time
as a direct sum. Let

C(F) = positive chamber in V(F)
9(F) = positive cone in V(F);
let

Cr = positive chamber in V
9 = positive cone in V.
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The reader will recall that the second pair of entities figured earlier in the
proof of Proposition 2.3.

PROPOSITION 2.9. Let F € %, — then
V(F)= (-9(F)) ®C,.

Proof. Let H € V{F). Write H = H(F) + H. where H(F) € V(F),
Hy € V,— then we have to prove that

{H(F) € (-9(F))
H,€C,.

Leti € F— then
(Ne, H) = (P(F)N, H) = (X, H(F)).
But
H e V(F)
= (N, H) =<0
= (Np, H(F)) <0
= H(F) € (-9(F))".
Leti & F— then
(Nir» H) = (PpA,, H) = (}‘f> HF)'
But
H € V(F)
= (N, H)>0
= (N, Hp) >0
= H. € C,.
As the argument is evidently reversible, the proposition is established. [

We shall also need a description of the intersection of © with a
translate of V{ F) by an element of C.

PROPOSITION 2.10. Let H € C, say H = H(F) + Hy where H(F) €
V(F), Hp € Vy,— then
(H+WV(F))nC

is equal to

(H(F) + (-9(F))) NC(F)® (Hy +C;)  (FEF).
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There is a simple generality which must be dealt with first.

LEMMA 2.11. Fix an element H, € C. Suppose that H € V has the
following properties:
(A, HY>0ViEF,
(i) H— H, € V(F).
Then
(A\,, H)>(\,,H,)>0 Vi&F.
[In consequence, therefore: H € C.]

Proof. Suppose that i € F—then A, — A" € V(F) so there exist
constants ¢;; < 0 such that

A=A+ Y ¢; ;N

JEF
Taking into account (i) and (ii), we then find that

(A, H)= (}‘f’ H) + 2 Cij(Mv" H)

JEF

> (}‘f’ Ho) + 2 czj(A{r’ H)

JEF

= (sza Ho) + 2 Ci,’(Mr, Ho)
JEF

= (Aia HO) >0.

Hence the lemma. O

Proof of Proposition 2.10. 1t is clear that
(H+ WF))ne
is contained in
(H(F) + (-9(F))) N C(F) ® (H, + C,).
To go the other way, consider an element
H(F)+ H°(F)+ H, + H?
where
H(F) e (-9(F)), HleC,
and

H(F) + H(F) € C(F).
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Put H° = H%(F) + H? —then H° € V(F) (cf. Proposition 2.9). We
have only to show, therefore, that H + H° € C. For this purpose, we shall
use the preceding lemma. Let i € F — then

(A, H+ H°) = (\,, H(F) + H°(F)) > 0.
On the other hand, (H + H®) — H=H° € V(F),so H + H® € C, this
being the case of H. O

3. Reduction theory. The purpose of this section will be to first
establish the assumptions and notation and to recall the main points from
reduction theory. This done, we shall then have to break new ground by
formulating and proving a rather delicate refinement of the fundamental
theorem of reduction. In this connection, the Combinatorial Lemma of
Langlands plays an important role. It should be remarked that Langlands
himself had made a start on the theorem in question (cf. [2.b]) but did not
pursue the matter beyond the ‘one dimensional’ case (which is relatively
simple to deal with directly). Even so, this weak version had applications.
Langlands used it to make certain important estimates in the theory of
Eisenstein series while Harish-Chandra used it to prove the Maass-Selberg
relations. We shall need the full strength of the theorem to define and
develop the properties of the truncation operator as well as to handle
questions related to it. Let us also mention that Arthur [1.a] has obtained
an adelic analogue of our result but, as always, the setting there is, for
structural reasons, considerably less complex than the one to be found
here.

It will be necessary to suppose that the reader has some acquaintance
with our memoir [3.a] to which we refer for details and elaboration insofar
as the background material set forth below is concerned.

Let G be a reductive Lie group with Lie algebra g. We shall assume
that G is admissible in that it satisfies the following conditions:

(i) The adjoint group of G is contained in the adjoint group of the
complexification of g;

(ii) The analytic subgroup of G associated with the derived algebra of
g has finite center;

(ii1) The identity component of G is of finite index in G.

The above assumptions on G are, of course, those generally imposed
by Harish-Chandra. One then introduces in the usual way:

K — a maximal compact subgroup of G;

6 — an involutive automorphism of G with fixed point set K

B — a real nondegenerate symmetric bilinear form on g X g such
that:

B(Ad(x)Xl,Ad(x)Xz) =B(X,, X,) (x€G;X,X,€Eq)
B(0X1,0X2)“—“B(Xl,X2) (Xx,XZEG)
-B(X,0Xx)>0 (X €qg).
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In particular, the bilinear form
(Xsz)o:_B(Xl»aXz) (Xszeg)

equips g with the structure of a real Hilbert space.

Let now T be a lattice in G subject to the fundamental assumption
imposed by us in [3.a] — then one may associate with I' a certain
collection of split parabolic subgroups ( P, S) of G, said to be I'-cuspidal,
the minimal elements for the relation of succession then being termed
I'-percuspidal. Given a pair (P, S) with split component A and corre-
sponding centralizer L, introduce, as usual, the associated admissible
closed reductive subgroup M of G so that L = M-A4 with M N 4 = {1}.
Denoting by N the unipotent radical of P, the Langlands decomposition
of P per the split component A is given by P = M - A4 - N. In passing, recall
that S = M- N, hence that S is a closed normal subgroup of P which is
uniquely determined by P and A. M, being an admissible reductive Lie
group, has the same general properties as G, hence the symbols K,,, 8,,,
B,, are to be assigned the obvious interpretations. We shall often identify,
without specific comment, M with S/N; K,, is then identified with the
image of KNS in S/N. Put I,, =M N T'-N—then TI,, is a discrete
subgroup of M and, in fact, is actually a lattice in M which is uniform iff
P is I'-percuspidal. The pair (M, I',,) thus satisfies the same general
conditions as the pair (G, I'), a point crucial for inductive arguments. One
should also note that 4 is not uniquely determined by the pair (P, S). In
fact, the conjugates ndn~' (n € N) constitute the set of split components
of (P, S). Among the split components of (P, S) there is one and only
one which is f-stable. We shall refer to it as the special split component of
(P, S). The rank of (P, S) is, by definition, the dimension of a split
component.

Let E(G, I') be the set of I'-percuspidal split parabolic subgroups of
G — then, modulo I'-conjugacy, there are but finitely many elements of
E(G, T'). Furthermore, any two elements of E(G, I') are strongly con-
jugate, thus, in particular, have the same rank. Let (P, S) € E(G, I') with
split component 4; let W(A) be the Weyl group of 4, i.e. the quotient of
the normalizer of 4 in G by the centralizer of 4 in G — then, while the
disjoint union

U PwP
weE W(A)

need not fill out G so that the Bruhat lemma is not literally valid,
nevertheless it is true that

rc U Ppwp.
wE W(A)
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By the rank of I', we understand the rank of any element of E(G, T').
In particular: rank(I') = 0 iff T is uniform in G. Accordingly, we shall
suppose henceforth that the rank of I is not less than one.

Let (P, S) be a I'-cuspidal split parabolic subgroup of G with split
component 4 — then

{EP(SL a)

%(a,a)

stand for the roots, respectively simple roots, of (P, S; A). Given A €
2p(g, a), let £,: 4 > R™ be the associated quasi-character of 4. For any
t >0, put

A\[t] = {a€4:&(a) <1}

and then set

Alf] = N A,[1].

AEZl(g,a)
If w be a compact neighborhood of 1 in S, then
S,.,=K-A[1]-w

is called a Siegel domain in G (relative to (P, S; 4)). It is a standard
simple fact that

U awa™

a€Al1]

is relatively compact.

We shall now formulate the fundamental theorem of reduction, as
spelled out in [3.a]. Let 7, be the number of I'-inequivalent cusps. Fix an
element (P, S;) in E(G,I') —then one can choose elements k; in
K(k, = 1) such that the conjugates P, = kioPOk,.‘Ol (ip=1,...,r,) form a
complete set of representatives for the I'-conjugacy classes in E(G, I'). Let
P, = M,-A,-N, be the Langlands decomposition of P, per the special
split component 4, — then each P, admits a Langlands decomposition
P, =M, -A, N, where

M, =k, Mk
) 0 [
A, =k, Agk!
0 o 0
N, = kiONOk,‘()‘,

A, being the special split component of P, (i, = 1,...,r,). Put

— -1 _ . .
KIO_kIO, go— {KIO' l Slosro}.
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THEOREM 3.1. There exists a Siegel domain &
such that the set

, relative to (Fy, Sy; Ag)

19,

has the following properties
)&, T =¢G;

(i) #U{yET: 5,y N, # T}) < + 0.
Moreover, there exists jt < t, such that ify € T":
(111) Cgto,wo":i Y ne t, 0wy K~0 =0 (10 '—/:.]0)’

(iv) @,waox;y N @:,,w:xfo #@=yelNP,.
[Tacitly, we suppose w, is chosen in such a way that the K-conjugates
w;, = k; wok; ' contain a fundamental domain for the action of 5, N I on

S,, (ig = 1,..2,1).]

To even state our refinement of the fundamental theorem of reduction
requires a fair amount of preparation which will now be undertaken. It is
perhaps appropriate to remark that in the event that rank(I') = 1, one
need not proceed further: In that special case, the required result follows
directly from the theorem supra (cf. [3.b]).

Let (P, S) be a I'-cuspidal split parabolic subgroup of G with split
component A, P = M- A - N the corresponding Langlands decomposition
of P. Suppose that (P,, S;) is a dominated predecessor of (P, S') — then
one can associate with ( P, S,) a I,~cuspidal split parabolic group ( PJ, S§)
of M given by

P{=P,NS/N
S§ = S,/N.

The correspondence
(P, 8) < (P,’S)
where
'P=P' NS/N
'S =S’/N,
is one-to-one between the set of I'-cuspidal split parabolic subgroups of G
which are dominated predecessors of (P, S) and the set of I'y,-cuspidal

split parabolic subgroups of M. This correspondence preserves per-
cuspidality. If

(P,S; A) = (P, S; A),
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there are Langlands decompositions
P=M-A"-N, 'P='"M-"A-'N
characterized by the relations

M ='M, A='A-A, N
'‘M=M', 'A=MNA, 'N

'N-N
MNN.

o

On the other hand, one may attach to each subset F of 3%g, a) a
[-cuspidal split parabolic subgroup (Pg, Sp) of G with split component
A such that

(PFaSFa AF) >(P’ S, A)

The map
F> (Pr, Sp; Ar)

sets up a bijection between the subsets of 3%(g, a) and the dominant
successors of (P, S) per the initial link 4. Let / = rank(P, S) — then the
2!/( Py, Sp; Ap) so obtained comprise the ‘standard picture’ over (P, S; A).

Let (P}, S)), (P,, S,) be two I'-cuspidal split parabolic subgroups of
G with split components 4, and 4,. Call W(A4,, A,) the set of all
bijections w: A, - A, induced by an inner automorphism of G — then
W(A,, A)) is a finite set. (P, S;) and (P,, S,) are said to be associate if
W(A,, A)) is not empty.

The relation of association breaks up the I'-cuspidal split parabolic
subgroups of G into equivalence classes. Fix one such, say C. Let C, be a
G-conjugacy class in C. Let

(Pl’ Sy Al)
(Pz’ Sy; Az)

be members of C,. We then define an element
I(P,|4,:P,| A,) € W(A,, A,)
as follows (cf. [3.a]). Select x in G with the property that
x(Py, Sy; 4)x7 = (Py, Sy; 4,).
Put
I(Py|A;:P | 4,) = Int(x) | 4,,

a definition independent of the choice of x. There are certain elementary
properties inherent in this construction, e.g. transitivity. Less elementary
but still easy are the conditions of descent.
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SUBLEMMA. Let C,, C, be association classes of T'-cuspidal split para-
bolic subgroups of G, C, , C, G-conjugacy classes in C,, C,. Let
(P, S5 41 _ o {(Pz'»sﬁ;A'z) ce
(Py,SysAy) o |(PSysAy) T

with

(P, S7; 47) > (P3, S3; 43)
(Py, 875 A7) = (P}, 875 43).

Then
I(Py | A3 Py | dy) | Ay = I(P) | A7 - P{ | 4)).
SUBLEMMA. Let C,, C, be association classes of T-cuspidal split para-
bolic subgroups of G, C, , C, G-conjugacy classes in C,, C,. Let
(P, 53; 43)

P,S;;A)€EC,, 4
( 1 1 l) iy {(lel, Sé’; A/zl) iy

with

{(Pla Sl’ Al

) = (P3, S35 A%)
(P, S); 4,) = (

BY, 5§ 43).

Then
I(P2"1A/2':P2,|A'2)|1A2 :I(”leﬁAz:’le/Az)-

Both of these facts will be used without comment in what follows.

Let (P, S) be a I'-cuspidal split parabolic subgroup of G with split
component A —then G=K-P and P = A-S. Let x € G — then x ad-
mits a decomposition

x=k.a.s

X7TXTX

where k, € K, a, € A, s, € S. The factor a, is unique, thus determines
an element H, € a such that

a, = exp(H,).

It will sometimes be convenient to write H(x) in place of H, or even,
when P and 4 need to be emphasized, Hp,(x). If A is a linear function on
a (possibly complex valued), then A determines a quasi-character §, on A4.
We shall often write a® in place of £,(a,).
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Fix a set of representatives
{(Br=, 55)}

for the I'-conjugacy classes of maximal I'-cuspidal split parabolic sub-
groups of G. Let AT* be the special split component of ( P,)**, S;'**). Put

a= P am,
m

Given a I'-cuspidal split parabolic subgroup (P, S) of G with special split
component A4, our first task will be to define a map

Ip:a—a.
This is done as follows. Let / = rank(P, §). Denote by
(P, Si; 4,),-..,(P, S;; A)) the maximal I'-cuspidal split parabolic sub-
groups of G sitting in the standard picture over (P, S; 4). If {A,,...,A;}

are the simple roots of (P, S; A), then it can be supposed that they are
ordered in such a way that

a, = () Ker(},).

vFEp

Since

QZ@a#,
N

given H € a, I,(H) is determined when its orthogonal projection onto
each a, is specified. There exist elements vy,,...,y, in I' and indices
m(1),...,m(]) such that
-1 —
Y#P wlp = P rfﬂix)
This said, we then require that the u-component of I,(H) be the vector

1(B, | A, Py | Aex M, + Hp o (7,)-

m(p) m(p)

We explicitly observe that our definition does in fact make sense. For if
Y, Y, are two conjugators, then

() 'y eTnpcCs,
= !’ Jo— 144
Hp |A“(Y;L) = HP,JA“(Y;L )

[

Let us also note that
IP“(H) = P(H)u Vu,

that is, the p-component of I,(H) is precisely / »(H).
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There is a simple formula for I, in terms of the root data associated
with (P, S; A). Under the usual identification of a with its dual &, let
H,,...,H, be the elements corresponding to A,,...,A, — then the span of

(H,,....H,_,,H,,,,....H)

>Hp—b
is the orthogonal complement of a,. Consequently,

I.(H) = é (I,(H),\)H,  (H€Ea).

p=1

Here, of course, A,. .., N is the ambient dual basis.
Let (P, S; A) be a I'-cuspidal split parabolic subgroup of G with split
component 4 — then, as always

{ Cpla)
9p(a)
denote, respectively, the positive chamber or positive cone of (P, S; A).

We shall now introduce an important definition. Given H,, H, in a,
write

H,<H,

if for every I'-cuspidal split parabolic subgroup (P, S) of G with special
split component A it is true that
Ip(H,) € I,(H,) + Cp(a).

This relation partially orders a.

LEMMA 3.2. Let H|,H, € a — then
H, <H,iffI,(H,) € [,(H) +C,p(a,)  (ig=1.....n).

[Note: The point, therefore, is that one has only to check the partial
ordering on the fixed set of I'-percuspidals, a finite set of conditions.]

Proof. We need only show, of course, that the stated condition implies
the asserted relation. So fix a I'-cuspidal split parabolic subgroup (P, S)
of G with special split component 4 — then there is an index i and a
Y, € I such that P’ = y,Py;' D P, . If | = rank(P, S), let

{(Pla Sl; Al),---, (PI, A\YS A/)
(P, Si; 41),..., (P}, Si; 4)
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be the maximal I'-cuspidal split parabolic subgroups of G sitting in the
standard picture over (P, S; A), (P', S'; A") — then it is clear that

IP(HZ) - IP(HI) € GP(Q) iff IP’(HZ) - IP'(HI) = @P'(a')-
But
I (H,) — In(H,) € Cp(a’)

holds since, by hypothesis,
I/J,O(Hz) — IP,O(HI) € Gplo(a,o)

and, as is well-known and easy to verify, the orthogonal projection of
Cp(a,,) onto a’is exactly Cp(a’). O

The role of a in the later going will be that of a parameter space. To
say that ‘?” is true for H sufficiently regular means that there exists an H,,
such that for all H<H,, ‘? obtains. In this connection, note that a
contains a one-parameter cofinal set tending to —co, viz. {tH,: 1 <0}, H,
the element constructed in the obvious way from the pJ** canonically
attached to (P"*, S, An™).
Let
(P, S5 4,)
(Py, Sy; 4,)
be I'-cuspidal split parabolic subgroups of G with special split components
A,, A,. Assume that P, and P, are in addition I'-conjugate, say P, = yP,y™"'
(v € T'). We then define a map

In(Py:Py):a; = a,
as follows. Given H, € a,, put

I:(P,:P)(H,) = I(P,| A,: P, | 4))(H,) + HPZIAZ(Y)'

We have suppressed 4, and 4, from the notation since, being special, they
are unique. It is clear that I.(P,: P,) is well defined, that is, independent
of the choice of conjugators. One has

In(Py:P)(H] + H) = It(Py: P))(H{) + I(Py| A, : P | A,)(H]')

for all H{, H' € a,. There are also the expected elementary properties,
e.g. transitivity and descent, whose statements and proofs need not be
considered explicitly. One point, however, should be noted.
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LEMMA 3.3. Let H, € a, — then
K-exp(H,)-S,-T = K-exp(Ip(P,: P,)(H,))-S,-T.
Proof. Suppose that P, = yP,y~' (y € T'). Write
Y= kexP(HP2|A2(Y))Sz
We then have
K-exp(I-(P,:P))(H,))-S,-T
= K-exp(Ip(Py:P)(H,)) 5,8,y T
= K-exp(Ip(Py: P,)(H,)) s,y 'S, T
= K -exp(Ad(k™")H,) exp(HleAz(y))-szy“ -8,-T
= Kk -exp(Hl)-kexp( H},z'/,z(y))s2 -y7t.§,-T
= K-exp(H,)-S, T,
as desired. O

Let (P, S) be a I'-cuspidal split parabolic subgroup of G with special
split component 4 — then, as has been observed above, the map

I.:a—-a
can be written in the form
/
2 (1, (H), N ) H, (Hea).
But
IPM(H) = I(Pp | A, PJIZ% m([.l,))Hm([J.) PulA“(Yp)
or still

I,(H) = It(B,: Py H,,,,)

from which it follows that

I
IP(H g < ( m(u))HM(u)’AM>Hu

forallH € a.
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There is a small matter of consistency which should be mentioned.
Let

(P, Sy 4))
(P, 8,55 A4,)

be I'-cuspidal split parabolic subgroups of G with special split components
A, A,.If P, and P, are in addition I'-conjugate, say P, = YPy ' (y €T),
then, as can be checked without difficulty, the triangle

Ip,
a - a,

Ip N T In(Py: Py)
a

is commutative.

Let (P, S) be a I'-cuspidal split parabolic subgroup of G with special
split component 4. Let / = rank(P, S) — then / = #(2%(g, a)) or still,
I=#R),L={1,....1). If

V=4
{( 2,?) = inner product on & derived from the Killing form,

then (A;, A;) =0 (i #J), so the general set-up in §2 is realized by the
situation at hand. It will, however, be more convenient for us to work in a
rather than in its dual d, which can, of course, be achieved by making the
obvious transcriptions. To reestablish our notations, given F € %,, let
a{F) be the set of all H in a such that

(H Np)<0 Vi€F
(HN[Y>0 VigeF.

Then
a= ][ a(F),

FE%,
one of the main consequences of the Combinatorial Lemma of Langlands.
There are two other points which should be recalled (cf. Propositions 2.9
and 2.10). Fix F € %, — then:

(1) a(F)= (-9(F)) ®C;
(2) VHEC, H=H(F)+ H(H(F) €a(F), H- €qag), (H+
a({F)) N Cis equal to

(H(F) + (-9(F))) N C(F) ® (Hp + C,).
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The symbols C(F), 9(F), Cr, 9, as well as C and 9, carry the meanings
assigned to them in §2. They also admit an interpretation in terms of
parabolic subgroups. Thus:

C=Cpa)
{9 = 9,(a).

Moreover, each F € %, determines a triple ( Py, Sp; A) such that
(Pr, Sp; Ap) = (P, S; A).

Write Pr = M- Ag-N.— then the Lie algebra of A is a and, via the
daggering procedure, M, contains a parabolic subgroup P(F) =
M(F)-A(F)-N(F), the Lie algebra of A( F) being a( F). In addition,

M=M(F), A=A(F)-Ar, N=N(F)-N;.
All this implies, therefore, that

C(F) = GZP(F)(C‘(F)) = Cprr(a'r)
9(F) = S1!>(F)(C[(F)) = Dprr(alr)

Cr= @PF(GF)
9= 9PF(C‘F)

The theorem infra depends upon some choices which we shall now
make. Let

{(P,S):1=<i=<r}

be a set of representatives for the I'-conjugacy classes of I'-cuspidal split
parabolic subgroups of G. It will be supposed that the I'-percuspidal split
parabolic subgroups of G in this set are exactly the (P,, S, ) (1 =i, =r,)
appearing in the theorem supra. Given (P, S;), fix a set

{(Plil.o’ Si:to): 1 ‘<""0Srz’}

of representatives for the I' N P-conjugacy classes of I-percuspidal
split parabolic subgroups of G which are dominated predecessors of
(P;, S,). In terms of the special split components 4; and 4, ., , we have
(PWSI';Ai)?(Pi Siii Amo)-

i T

Each pair (i, t,) determines a unique index iy(i, t), 1 <iy(i, to) < 1p,
such that P,., is I'-conjugate to P, On the other hand, if 1 =i, <7,

ig(i,eg)”
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and F C 2} (g, a,), then there exist unique indices i(iy, F) and (i, F)
such that for some yeT

‘Y(Plo)py_l = Pi(lo,F)

1
YPIOY = Pi(io,F):to(io,F).

In this way there is determined a bijective map
i X, (ig, F) (i(ig, F), toligs F))

from the disjoint union of the power sets of the 3% (g, a,,) to {(i, ¢):
I=sisrl1=s=r}.
Fix anindexi, 1 <i=<r, and anindex ¢j, 1 <, <r,— then

(P SI’A)/( tip? Si:to; Ai.‘to)
determining, therefore, a parabolic subgroup

PT = MT AT NF
[T i [T

1ty

of M,. There is an orthogonal decomposition

=af  ®aq,

il ity

a

and a commutative triangle

I,

a - a

il

N Ll
a.

I3
One would also like to say that there exists a commutative triangle

IPIilO

a - ailto

Ipf \ \jr—l-

af..,
This, however, is not really a meaningful assertion since P., is not a
parabolic subgroup of G. We shall therefore simply define I Pt by the
requirement that it be the composition of the two indicated arrows.
Keeping to the preceding notations, given H € a, denote by 4,(H)
the exponentiation to 4, of the subset a,(H) of a, defined by

{HEai:)\(H)<}\(I( ))VAESS (g, a )}
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or still
a,(H) = I,(H) — @P'(a,).
Note that
H,>H, = IP,(Hz) - IP,(HI) = Gp,(ai)
=A,(H,)DA4,(H,)).

Given H, € a, H, > H, denote by 4], (H:H,) the exponentiation to
Al ., of the subset af,, (H:H,) of af., defined by

L

ity

N (IP,"_LO(HO) - @})AT.LO(GT:LO))}'

(Hea, He (L M)+, (a.,))

Note that AT (H:H,), while not compact, is at least relatively compact.

Fix a compact neighborhood w;., of 1in §;., containing a funda-
mental domain for the actionof S;.,, N 'on §;., .

There is one final convention to be made before we state the main
result of this section. Let us agree that the symbol < 0 when applied to an
element of a means that this element is sufficiently regular whereas the
symbol > 0 when applied to an element of a means that the negative of
this element is sufficiently regular.

THEOREM 3.4. Let H, € a, H; > 0 — then, for allH < H,,

¢6=U U Uk-4 H:Hy)4MH) w, -(T0P)y™"

i=1 y,€T/TNP, ;=1

Moreover, for fixed H, the outer two unions are actually disjoint provided
H <0

This theorem implies that G/T' admits a partitioning indexed by the
(P, S;). Thus let C,(H:H,) be the I'-saturation of

U K.AT:LO(H :HO)'Ai(H)'wi:LO'
=1
Then: Hy >0, H<H,H<0=

r

G/T = ]I 7(C(H:H,)),

i=1

7. G —» G /T the natural projection.
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The fact that one can select H, > 0 so as to ensure that G is covered
by the sets in question for all H < H,, is a fairly direct consequence of the
fundamental theorem of reduction (Theorem 3.1) and the corollaries to
the Combinatorial Lemma of Langlands. We shall therefore deal with it
first, postponing for the time being the disjointness argument.

Write, after Theorem 3.1,

L)

¢=U S, 0.

ig=1

I.

We then demand that H, be so chosen that

inf A(IRO(HO)) >logt, (1<iy<r,).

)\EE‘},IO(Q,Q,O)

Supposing that H < H,, fix the index i, and a subset F of 3} (g, a;).
Denote by 4, (H:H,)(F) the exponentiation to A, of the subset
a,(H:Hy)(F) of a; defined by

(H€a,:HE (I,(H) ~a(F))n(I,(H) = Cy(a,))}.

Because

a; — U ai0<F>’

L)
F
it follows that

I(Hy) = €, (a,) = U a,(H:Hy)(F),

In view of the way in which H, has been selected, it can thus be said that

A [to] © U 4, (H:Ho)(F).

Consequently, in order to establish the covering contention, we need only
show that

K-A, (H:H )(F)-w, T

is equal to
K.A?:LO(H:HO)'Ai(H)'wi:LO r
where
{i =i(i,, F)

bo = LO(iO> F)



THE SELBERG TRACE FORMULA II 339
Taking into account the definitions, Lemma 3.3, and the relation

I(P,. :P)o I, =1,

“to o [ 40’

we thereby reduce our problem to verifying that

(£ (1) + O fal,)) 0 (B (Ho) = €y (al., )
+(1,(H) = €,(a)))

is equal to
(25, (H) = a,. (F)) 0 (1, (H,) =€,

or still that the sum of

(ai:to))

T

(2 (Ho) = Iy () = 9 (af,,)) N €y (al.,,)

[T

and
(1,(H,) = I(H) + €,(a,))
is equal to
(IPHO(HO) —1I, (H)+ a,. (F)) N Cp. (a0,)-
To this end, put

H= IP.,.O(HO) - IPHO(H) S GPmo

so that, in the notations of Proposition 2.10,

H(F) = P,T',O(HO) — Ipt LO(H)
Hp= IP,(HO) - IP,.(H)'

There remains only to cite the proposition itself.
As for the assertion of separation, it is somewhat more difficult. We
shall return to it after establishing the necessary preparation.

LEMMA 3.5. Let

(P, 8" 4)
(P", S//; A//)
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be T'-percuspidal split parabolic subgroups of G with split components A’, A”.
Let

G .= K-A'(t]- o’

@;:wn = K 'A“[t] * w”

be Siegel domains in G associated with P’. .., P".... Suppose that {x,} is a
sequence in

e, TNne,,
say
x, = kja,spy, = kjla}s).
Let
F= (N €3%.(g,0"): &y (a)) # 0}
Then

v, Piy;' D P Vn>0.

Proof. The proof is a variant on a theme which has been employed
frequently in [3.a,§2]. Accordingly, there is nothing to be gained by
setting down every detail of the present argument which, in brief, runs as
follows. Any element of 2,,(g, ay) is the restriction to a of an element
of 2,.(g, a”) whose expression, as a linear combination of elements from
>%.(g, a”), must contain some A" & F in a nontrivial manner. Therefore

: "ot 11=1 — 7” ’”
lim a/n¥a,” =1 Vnj € N{.

n
n— oo

Let now yf/ € Nf N I' — then

: 11 -1 —
lim a)yfa,”” =1
n->o00
=
: 1t Nt I Attty
nlgg) (knansn )YF knansn) =1
=
: r oo 17.,~1 ooyl
hngo(knansn)anFYn (knansn) =1
n—
=

lim @', (v, vy, )a, " = 1.
n—o0

From this it follows that y,y/y, ' is eventually in N’ (see [3.a]). Due to the
arbitrariness of y;/, upon taking a set of generators for N/ N I', we then
conclude that

Y,N/v;' CN Vn>0
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which in turn implies that
Y, PFv;' D P ¥Yn>0,

as was to be shown. O

PROPOSITION 3.6. Let

(P, 5's )
{(P", S5 4)
be T'-percuspidal split parabolic subgroups of G with split components A, A”.
Let
&, =K A
{@;;w,, = K-A"[1]- o

be Siegel domains in G associated with P’ ..., P".... Suppose that {x,} is a
sequence in

G, I'n&y,,
say
x, = kjalsiy, = kjals!.
Let F denote either
(N €3%(g, a): &(a)) » 0)
or

(N e20.(g,a”): &x(a)) »0}.
Then there exists an index n such that

(er 28 e,
Y, Prv, 2 P
Moreover,
Pr 0y, PRY,
is a U-cuspidal parabolic subgroup of G having the property that
Yo = 8,7, (n = ny) =8, € Pr0 v, Py,

Proof. The first assertion is an immediate consequence of the preced-
ing lemma. This said, let

P=P/Ny, Py,
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Pr
P C o
YnOPF Ynol’

Since

P is T-cuspidal (cf. [3.a]). If n = n, then v,Pi'y, ", v,, ;’yn‘ol both contain
P’, are conjugate, hence equal. Therefore 8, normalizes v, P;'v,), thus
belongs to ynOP,f-’yn‘o‘, the latter being self-normalizing. For similar reasons,
8, also belongs to P, completing the proof of the proposition. a

We are now in a position to finish the proof of our theorem. If we
deny the disjointness contention, then there is overlap in the outer two
unions no matter how much < 0 the parameter H is. It therefore follows
that one can choose indices i’, t; and i”, ¢;; and a sequence {x,} in

K'Ai':t’o'wi’:tg.r N K‘Ai":tb’ Ty

0,

say

p— AP e — 1 117
x,=k,a,s,y, =k, a,s

n n>

where either
i"#i"ori’=i" and vy, €& P,=P,

and
(1:1 € AT’ Ty (Hn :HO)'Ai’(Hn) - Ai’:t{,[t]
17 ¥ (t > O)
a, € Ai":L{)' (Hn :HO)'Ai”(Hn) - Ai" :L},’[t]
with

H, > —oo.

From all this, we shall derive a contradiction.
Let F’ or F”’ denote the subset of

(I)’.',.'O(g’ ai’:cz,) or E(I)’,'Q,ﬁ(g’ az":t{)’)

determining

that is,
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Then
& (al)-0 VN @F

H, - -
n 0 =>{£>\”(a;,) >0 VYN & F".

Owing to Proposition 3.6, it can be supposed that
Yn = 6nYO’ 6n € Pi' N YOPi"Y()—l

provided, of course, that the sequence be restricted to beyond a certain
point. Put

P =Y P LoYo
Py = YoP,v5'-

Let F, denote the subset of EO (g, a,,) corresponding to F,. Proceeding as
in the proof of Lemma 3.3, fix the mdex n and write

kyays, = koagsovo
€ K'Aio(Hn tHo)(F) -« - T.

We have then
k)a,s8, = kyays,.

nnnn

For brevity, set P = P, N y,P,y;' — then P is a I'-cuspidal parabolic
subgroup of G (cf. Proposition 3.6). Let A be its special split component
— then the sought for contradiction will arise from consideration of the
A-components of k,a,s,8, and kya,s, which, a priori, must be the same.

nnnn

To this end, we first remark that
Si’ Y - S

as follows from Proposition 3.6 (S having the customary connotation per
P). Because

5, eTNP=TnNS,

we conclude that the A-component of kja,s,0, is the same as the
A-component of a,, alone; similarly, the 4-component of k,a,s, is that of
a, alone. We can assume that i” # i”. For the other possibility, viz. i’ =
and vy, € P, = P,,, is immediately untenable implying, as it does, that yn
must normahze P = P,., an evident contradiction. The supposition that
i’ # i” carries W1th it the consequence that P, and P,. are not I'-conjugate,
hence that P, # P,. Let

H, = IP,"% (H,) —loga, € a; . (F)

H) = IP,O(Hn) —loga, € a,(F).
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Then both H, and H? have the same projection onto a, call it H,. We
shall force a contradiction by showing that H, lies, of necessity, in two
mutually disjoint subsets of a. For the purpose of keeping things straight,
it may be helpful to note that

PO
N
+ PDP..,.
o)
P,

1

Because H, € a,,.,( F’) we have, in the notations of §2,
To p(8  H))xp «(H,) = 1.

Choose F so that

P=(P,.,),
Then
P.DOP=FDOF
=1 p (8 Hy )X p s(Hy) = 1
Write

P, = Prp,-
Thanks to Lemma 2.7 and subsequent remarks, we can thus say that H,
being the projection of H, onto a, lies in a{ F(P,)). For entirely analo-
gous reasons, if

Py = Pr(py»

then H,, being the projection of H? onto a, lies in a{ F( P,)). But
P.# P,= F(P,) # F(P,)
=a(F(P,))Na(F(P))= 2.

The contradiction is therefore manifest.

There is an extension of Theorem 3.4 which will eventually be needed.
In essence, the problem is this. Given a I'-cuspidal split parabolic sub-
group ( P, S) of G with special split component 4, obtain a decomposition
of G/I' N P from that of M /T,,, the latter being provided for already by
the theorem itself (applied to (M, T',)).

Fix a set {(P,,S,)} of I'-cuspidal split parabolic subgroups of G
which are dominated predecessors of (P, S) and with the property that
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{(PI,S!)} is a set of representatives for the I')-conjugacy classes of
maximal I',-cuspidal split parabolic subgroups of M. In terms of the
special split components 4 and 4,,, we have

(P,S;4) = (P,,S,; 4,,).

In addition, there is an orthogonal decomposition
a, =af ®a.

According to our notational principles, we now put
a,, = @ al,.
m

Then it is the elements of a,, which figure as parameters in the partition
of Mor M/T,,.
Let

{((P/,S]): 1 <i=<ry,)
be a set of I'-cuspidal split parabolic subgroups of G which are dominated
predecessors of (P, S') and with the property that

{(P,’S): 1=i<ry}

is a set of representatives for the I'-conjugacy classes of I';,-cuspidal split
parabolic subgroups of M. Agreeing to employ self-explanatory notations,
the parabolic data reads:

POP/DP,,
M>'PO'P,,.

Here we had best remind ourselves that the correspondence ? < '?
preserves percuspidality. The associated Euclidean data is then:
{a’. =al , ®a
l: ‘0 < lo I

a;="a,®a,

a,., ='al., ®'a,.

’ —_
C[i:LO__ ai:toeBa
1: LO l ZLO
In particular, therefore,

at . =rqf .

ity it
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These points settled, Theorem 3.4 can be stated in terms of (M, I',) in the
following way. Let Hy(M),H(M) € a,,— then Hy(M) >0, H(M) <
H, (M), H(M) < 0 imply that

M=) U UK, dl. (H(M):Hy(M))4,(H(M))

i=1 8,€Ty /TP, p=1

(T NP8,

lLO

the outer two unions being disjoint. Our objective will be to pull this
decomposition back to G, so to speak.

Fix a compact neighborhood w, of 1 in N/ containing a fundamental
domain for the action of N/ N I" on N/.

ProposITION 3.7. If

M=U) U UK,-Al (H(M):Hy(M))-"A,(H( 1))

i=1 8,E€Ty/TyN"P, 1,=1

(T, NP8,

ILO

then

FeMm

6=U U UK-A-al (H(M):Hy (M) 4,H(M))

i=1 y,&€TNP/TNP/ (=1

Ve, w0l (TN Py

ity
Furthermore, if the outer two unions giving M are disjoint, then the outer two

unions giving G are disjoint.

Proof. We shall first show that the putative union does in fact cover
G. Let x € G. Write x = k man. Using our hypothesis, write in turn

m=k,’'al 'as;. 8, s ery,.

tg 1Py

Sincel), =M NI-N,§ =yn(y €l N P,n € N). Therefore

x = k man
=k amn

= (k kM)(ala—zr LO' 1) z ,0'}’7)"

= (kkM)(a a-lr lglal) 1 LO(YnnY )Y
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But
yeElNP=>ymy'ENCN =w,-TNN/

=ynny™ = sfy,.

As it is a question of special split components, K,, C K. Thus
x=(k kM)(a ‘af :Lo/ai)(’si:tolsi)(YiYL

proving that we have covered G. Supposing now that the outer two unions
giving M are disjoint, assume, to get a contradiction, that the outer two
unions giving G are not disjoint. The indices determining the M-union are
in a canonical one-to-one correspondence with the indices determining the
G-union. If there exists an element x of G belonging to the sets associated
with (i,v;) and (j,v,), say, then the M-component of x, viewed in
K\ M, belongs to the sets associated with (i, §;) and (j, §,), an impossi-
bility. O

In order to establish a connection with the corresponding parameters
on G, that is the elements of a, we need to define a map

I:ia—ay,.

There is a commutative triangle

Ip,
a - a,,
IP};\ l1

a,

if, as before, we agree that I, is the composition of the other two arrows.
This said, we then define I, by requiring that

PI'ij o IM = Pis
where Proj,,: a,, — a,, is the orthogonal projection onto the mth compo-
nent. I,, possesses the usual elementary properties, e.g. descent. In addi-
tion:

LemMA 3.8. 1,, is (£ 00)-cofinal, i.e.,

H(M) <1I,,(H")

VH(M)€a,,dH" ,H € ast
(M) € ay “S{H(M)>IM(H-),

and order preserving, i.e.,

VH,,H, €a:H,<H,=1I,(H,) <I,(H,).
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[Both properties follow by descent. For instance consider the first.
Since p” = 'p + p always, I},(H,) = H, ---.Incidentally, it can be shown
by example that I,, need not be surjective.]

On the basis of this lemma, we can therefore say that if Hy,,H € a
with H, > 0, H < H,, H <0, then

4%} ToM

¢=U U UK-4-4],, (H:H,)-"4,(1,,(H))
i=1 y,€TNP/TNP/ 1,=1

Yo w (TN Py

Lt
Lest there be a misunderstanding, let us explicitly note that

A?;LO(H H,) ='4f ., (I),(H):I,,(H,)).

iy

It is now a simple matter to obtain a partitioning of G/I' N P
indexed by the (P/, S’). Thus let C/(H:H,)) be the I' N P-saturation of

oM

U K-A .AI:LO(H:HO)' ,AI(IM(H)).'wiZLO "W).

1
tg=1

ThenH; >0, H<H, H<0=
™
G/T'NP= []n(C/(H:H,)),
i=1
7p: G = G/I' N P the natural projection.

For technical reasons, to be spelled out in detail later on, it will be
necessary to establish an alternative description of the partitionings in-
volving characteristic functions.

As a prelude to this, let us first make a few simple observations.
Suppose that (P, S) is a I'-cuspidal split parabolic subgroup of G with
special split component A. Fix a I'-percuspidal split parabolic subgroup
(P,, S,) of G with special split component A4, such that

(P, S; 4) = (Py, Sp; 4p)-
Assigning to the symbols
ANH:H,), AH), o,
the obvious interpretation, consider
K-Aj(H:Hy)-AH)-w,- (I N P).

Since
() K,, CK,
(2) Ky - AH) = AH) - K,
(3) A{(H:H,) - A(H) = A(H)- Aj(H:H,),
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our expression can be rewritten as
K-AH)-K,,-AJ(H:H;) - w,- (I N P).
But
w,- (TN P)
=w,- (TNP)(CNP)
=8,- (TN P)
=M,-N/-N-(I'nP)
= Mo-NJTM-N,
leading, therefore, to
K-AH)-K,,-A}(H:H,)-S{ -T,,-N.
Thanks to Lemma 3.3, the set
Ky - A§(H:H,)- 7 - T,

is invariant under T';,-conjugacy, i.e., is unchanged if P{ is replaced by a
T',,~conjugate, or still, if P, is replaced by a I' N P-conjugate. On the other
hand,lety € T'/T' N P. Put

P, =yPy™, P, =yPy™".

Decomposing y according to G = K- P, and using definitions, we then
find that

K-A{(H:H,)-AH)-S,- (T N P)y™!
= K-4},(H:H,)-4,(H)-S,,- (T N P,),
exhibiting, thereby, the variance of our data with I'-conjugacy. Finally,
write
M(H:H,)
for the union over all P, < P, P, I'-percuspidal, of the
Ky - AN(H:H,)- S - Ty,

the union being effectively finite in that it can be taken over a set of
representatives for the I' N P-conjugacy classes of I'-percuspidal split
parabolic subgroups of G which are dominated predecessors of (P, S). We
may thus attach to P the set

K-A(H)-M(H:H,)- N,

the role of which will be explicated momentarily.
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In the notations of Theorem 3.4, we have

r

6= U Ukl H:H)AMH) w.  (T0PEN"

i=1 y€l'/TOP ,=1

The outer two unions are actually disjoint provided that H < 0, as we
suppose. Let C. be the set of all I'-cuspidal split parabolic subgroups of G
— then

r

Cr= U U {YiPiYi_l}’

i=1 y,€l/TNP,
implying that the remarks above can be translated to read

G= ]I K-A(H)-M(H:H,)-N.

Pee;,

This is the ‘G /I'-decomposition’.
To obtain a ‘G/I' N P-decomposition’, we start from

M= 1l K,-'A(H(M))- 'M(H(M):Hy(M))- N,
'PECr,,

the immediately preceding result applied to the pair (M, I',,). To pass
from M to G, multiply

Ky "A(H(M))- "M(H(M): Hy(M))- 'N

on the left by K- A4 and on the right by N (cf. Proposition 3.7). Denoting
by

Dom(P)

the set of all I'-cuspidal split parabolic subgroups of G which are dominated
predecessors of (P, S), so that

Crp, = {'P: P’ € Dom(P)},
we get, correspondingly,

G= [ K-A-"AH(M))"MH(M):H(M))-N’
P’€Domp(P)

or still, in terms of the a-parameters rather than the a,-parameters (cf.
supra),

G= I K-4-'4(1,,(H))-M’'(H:H,)-N’,
P'e€Domp(P)

it being the case that
M'(H:H,) ="M(H(M):Hy(M)).
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Given x € G, write, with G = K-P' (P'=M'-A"-N'), x =
k m'.a’.n’ — then m’,, while not unique in M’, is unique in K,,\ M’. Let

1 ifm, € M'(H:H,)

Fp(H:H,:x) = {0 it m, & M'(H:H,).

Per the domination
(P,S; A)= (P, S"; A),

determine F’ by P = P;, — then (cf. §2) x,  is the characteristic function
of the set

(H €a’: (H,\,)>0(i € F)}.
LEmMMA 3.9. The characteristic function of
K-A-"A(I,(H))-M'(H:H,)-N’
is
Fp(H:Hg: )Xo po(Ip(H) = Hpyo(7))
Proof. An element x of G belongs to
K-A-"A(1,,(H))- M’ (H:H,)- N’
iff
{mx e M'(H:H,)
a, €A4-'A(1,,(H)).
But
a, € 4-'A(I),(H))
iff the projection onto ‘a of Hp(x) is in
Lp(1y(H)) = C,p("a)

which is true iff the projection onto ‘a of Ip(H) — Hpy,(x) is in Cp('a),
that is, iff

X*,F’(IP’(H) - HP”A'(X)) =1
Hence the lemma. |

There is therefore a corollary, viz.:
vPe(C, IH,,H,E€a, Hy,<H,,
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such that
VH <H,,

lg = 2 Fp(H:H,: ?)'X*,F’(IP’(H) - HP’|A'(?)>3
P’€Domp(P)

1; the characteristic function of G.
Ostensibly, H, and H, depend on the choice of P. That a uniform
selection is possible is contained in the following reinforcement of the

corollary.

PROPOSITION 3.10. There exist Hy,Hy, € a, Hyy < H,, such that for
all P € Cy

H < H,,

o= 2 Fp(H:Hg:?)-xy (1 (H) = Hppy (7).
P’€Domp(P)

=

Here is the point. There are finitely many I'-conjugacy classes of
I'-cuspidal split parabolic subgroups of G. So, if we can show that H, and
H,, depend only on the particular I'-conjugacy class to which a given
P € Cr. belongs, then the proof will be complete.

Fix P € C}:

P=P, (P € Domp(P)).

Lety € I. Put P, = yPy~' — then

Domp(P,) = yDomp(P)y"  (P;=yPy"'),
say
P, = P},

LEMMA 3.11. In the above notations,
X*,F’(IP’(H) - HP’]A'(XY)) = X*,F;(IP;(H) — Hpyy, (x))
for all x € G.
LEMMA 3.12. In the above notations,
Fp(H:Hg:xv) = Fp, (H:Hg:x)

for all x € G.
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Admit these conclusions — then we would have

lg= 2 Fp(H:Hy: x)'X*,F’(]P’(H) - HP’|A’(x))
P’eDomr(P)
= 2 Fp(H:Hy: xY)’X*,F'(IP'(H) - HP’]A'(XY))
P’'€Domyp(P)
= 2 FP;(H ‘Hy: x)'X*,F;(IPy’(H) — Hpya, (x)),
Py’eDomr(Py)
as desired.

Proof of Lemma 3.11. The K-component of y per the decomposition
G = K- P’ takes the special split component A" of P’ to the special split
component 4/, of P|. Noting that

HP'|A'(XY) = I (P’ 3P;)(HP;;A;(X)),
the definitions then imply that
X Ip(H) = Hpyp(x))
= o (1P P)(1(8) = (P P)( Hyg ()
= Xe.p 1P 472 P, |A;)[1,,Y,(H) — Hpy (x)])
= X ( Iy (H) = Hpg, ()
the contention of the lemma. O

Proof of Lemma 3.12. There is evidently no loss of generality in
supposing for our proof that P’ = P. It is then a question of showing that

Fp(H:Hgy:xy) = Fp(H:H;:x)
forall x € G. Let
y=kman, (G=K-P(P=M-A-N))
x=kman, (G=K-P(P,=M,-A,-N)).

Then

xy = kk,(k3'm kom ) (kla k. a)n

XYY
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where
n=ma;'(k;'nk )a,mn, €N,
the M-component of xy being, therefore,
k}'m k.m..
We must prove, accordingly, that
k}'m k.m, € M(H:H,)
“m, € M,(H:H,).

For reasons of symmetry, we need only deal explicitly with ‘< ’. So
assume that

m, € M (H:H,).
Then there exists a I'-percuspidal P, < P such that
m, € Ky A} (H:H,)-S{, - Lo
with the understanding, of course, that
Py, = yPyy ™.
We claim that
k)'mk om, € K, - Aj(H:H,)- 8] - Ty,

Let us begin the verification by decomposing m, into a product of four
terms,

to get

where

ko= ki's k.0 = k' k

Y-
Because k, conjugates K, to K, and S{ to S{,,

st e s].
Next, write

y=kim%aln® (G =K-Py(P,= M,-A4,-N,)).
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Then
ad=dla, (4,=4}-4)
nd=nin, (N, = N{-N),
hence
y = kImSadn
= kimdala nin,
= k%(m%aint)an, € K-M-A-N,

implying that we can take
— 0 F
m v myayn ye

To recapitulate, we now have

-1 = k. alsts mOatnt
k. 'm k.,m, = kqahsidymialn!

I

-1
Tstmatnt (mCat nt 0,4t ut
kOaOsOmYavnv(mvavny) 80(myavny)

kol @hal) (a5 shmSalnt ) (mSalnt )5, (man ).

Since

{ko €K,,

“tstmOatnt € St
a,'stmyain’ € Sy

it remains only to show that
afal € A}(H:H,)
and

(mbal '8, (maint) € T,

The demonstration of the first point being quite analogous to that of the
preceding lemma, pass to the second. With
= mOatnt
mY — myayny,

we shall establish that

-17.-1
mk Ty k,m, C Ly
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which will more than do it. Recalling that
ry=MnTI-N
Ly, =M,NT-N,
let 8* € I‘My, say 8* = y*n* — then
*eM,
m 'k 8%k m, € M
m;,'k;‘S"‘kymy
= a;'m}'k;'0* ,m a;'
or still
m'k8*k m,
= ( Simk, y*kmeaY)(a m'k'n*k m a )

n3'ay'mk; y*kman)n

( -1
X (a m'k'n*k m a )
=n (y'y*y)n;!(a;'m ik n*k m_a. ).
It is clear that
a;'mk 'n*k m a, € N.

In addition

y*elNne,

-

yly*y €T N P.

But

n (v y)nst = (V) {(v ) (v iy eyt €T
It therefore follows that
m}'k}'8*k,m, € MNT-N=T,,
completing the proof of the lemma. O
4. Estimates. The purpose of this section will be to formulate and

prove a series of estimates which will then find application in the next
section when we come to the truncation operator. Certain, more or less
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immediate, consequences of these estimates will, however, be given here,
this being the place where they belong so to speak.

Let (P, S) be a I'-cuspidal split parabolic subgroup of G with split
component A — then, as before,

Cp(a)
{SP(‘I)

denote, respectively, the positive chamber or positive cone of ( P, S; A),

][@P(a)
9,(d)

being the corresponding objects viewed in the dual d of a. We shall agree
to write

{XP,A:@ {XP,A:@

Xp.a:o Xpoay

for the associated characteristic functions.
Recall that one may attach to any A in @ + y-1 & an Eisenstein series

E(P|A:1:A:x)= % a4,
yer'/TNnp

p being as always. It is well- known that the series defining E(P |A4:1:A:x)
is absolutely-uniformly convergent on compact subsets of the Cartesian
product

(- (o +Cp(a)) +-1a) X G.
LEMMA 4.1. Let x € G — then, for every H € a,
#({yeT/TNP:H—-H(xy) € 9,(a)})
is majorized by
e E(P|A:1:-2p:x),

thus, in particular, is a finite set.

Proof. Suppose that H — H(xy) € 9,(a) — then we can write
H(xy) = H — H},
where H € 9,(a). Consequently,
-3p(H(xy)) = -3p(H) + 3p(H},) = -3p(H),
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SO

e—3P(H(XY)) > 6_3”(}”.
It therefore follows that
E(P|A:1:-2p:x)
= 3 e
yeET/TNP

2 e~3p(H)

yel'/TNP
H—H(xY)E€% p(a)

=e . #({yel/TNP:H—H(xy) €9p(a)})

\%

which is equivalent to our assertion. O

LEMMA 4.2. Let H € a — then, for every compact set C in G,
#({yeT/TNP:H—H(xy) € 9p(a)(x € C)}) < + 0.

Proof. Suppose not — then we can find infinitely many distinct
elements vy, in the set in question and elements x, in C such that
H — H(x,v,) € 9p(a) for all n. By passing to a subsequence if necessary,
it can be assumed with no loss of generality that x, — x, say. Now fix an
element H, € 9,(a). Since

H(x,y,) — H(xv,) - 0,
there exists an index N with the property that if n > N, then
H(x,y,) = H(xv,) € 95(a) — H,
or still
H+ Hy— H(xy,) € 95(a).
As the number of vy, for which this relation is true is infinite, we have

contradicted the preceding lemma. O

Let f be a complex valued locally bounded (measurable) function on
G /T — then, as usual, we write

ff(x) = fN/Nmrf(xn)dN(n) (x €G),

the compact quotient N/N N I' having total mass one. Given H € a, put

Tpu(H:f)(x) = F% Pxp,A;a(H— H(xy))-f"(xy)  (x€G).
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For fixed x in G, Lemma 4.1 implies that the sum defining7}, ,(H:f)(x)
is actually finite. The assignment

TPlA(H:f)’ X TP|A(H:f)(x),
thus defines a function (on G/T'). As such it is locally bounded. Indeed,

this is the case for f, so one need only quote Lemma 4.2.

PROPOSITION 4.3. Suppose that f has compact support — then the same
is true of Tp,(H:f).

Proof. Choose a compact subset C of G such thatspt(f) C C-T /T —
then, in view of Lemma 4.2, we can find a finite subset F;, of I'/T' N P
with the property that

H—H(xy) € 9,(a)(x €C) =y EF,.

Choose a finite subset F of I' such that F;, C F-T' N P/I' N P and let
C(N) be a compact subset of N containing a fundamental domain for the
action of NN I' on N — then (C-F-C(N))-T /T is a compact subset of
G /T and we claim that

spt(Tp(H :f)) € (C-F-C(N))-T/T.
In fact, if
TP|A(H3f)(x) # 0,
then there exists a y € I such that
H— H(xy) € 95(a) and f"(xy) #0,

thus an n € N such that

f(xyn) #0,
and finally a € I such that

xynd € C.

Puty = xyn8 — then
H— H(y8"') = H — H(xyn)

= H — H(xy) € 9,(a)

6 1=¢§8" (6’ € F,8”" €T NnP).
Therefore

Xy = y8/8/;n—l — y8’(8”n“’8”“)8”.
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Now write
8"n18" 1 = uy
whereu € C(N)andn € I' N P — then
xy = y&'und”

x =y8u(nd”y') e C-F-C(N)-T,

which settles the claim and, thereby, the proposition. O

If fis a cusp form, then
TPIA(H:f)ZO (P #G).
In general, some control can be gained by insisting that H be large and

negative. More precisely:

PROPOSITION 4.4. Let C be a compact subset of G. Supposing that
P # G, let H € a be such that

p(H) < —%log{ sup E(P|A4:1 :—2p:x)}.

xeC
Then

T,,M(H:f) |C=0.
Proof. The hypotheses at hand imply that
1>e*M.E(P|A:1:-2p:x) (Vx€C).
Therefore, thanks to the estimate provided by Lemma 4.1,
{(yeT/TNP:H—H(xy) €9p(a)} = & (Vx eC).
Since an empty sum is conventionally null,
TPSA(H:f) l C = 0’
as desired. 0O
The raison d’&tre for the introduction of Tp4(H:f) will become clear
in the next section: There it will be seen that the truncation operator is an
alternating linear combination of such entities, one for each element in a
fixed set of representatives for the I'-conjugacy classes of I'-cuspidal split
parabolic subgroups of G. The fact that the sum is alternating leads to

certain analytical and combinatorial subtleties. By focusing on a generic
term, these points will not arise in the present discussion.
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There are two questions of equivariance which should be dealt with.
Let us first consider the dependence of our definition on the split
component A. Suppose that » € N — then it is immediate that

TPlnAn"(n H:f)= TP|A(H3f)-

In other words, the definition of Tp,(H:f) is as independent of the
choice of split component as can be expected. If now y € I, x € yP, then
a direct application of the definition gives

TyPy"pch-'(x -(H - H(y)):f) = TP{A(H:f)'
Lety = kp (k € K, p € P) — then it follows in particular that
TyPy-'(kAk-'(k‘ (H—H(y)):f) = TP|A(H3f)-

In this connection, note that were A the special split component of (P, S),
then

k- (H— H(y)) = I(yPy™" : P)(H),

the I-map being that from the preceding section. Accordingly, when we
are working with special split components only, we shall write

To(H:f)
in place of
TP;A(H :f)-

So, for example, we have

Tp (I (YPY™ :P)(H):f) = T(H:f).

Before taking up our next result, we shall recall some definitions (cf.
[3.a]) and a lemma of Langlands (cf. [2.b]). Let still (P, S') be a I'-cuspidal
split parabolic subgroup of G with split component A — then

Ep4:G-R
stands for the function defined by the rule
Ep4(x)= inf a4t (x€QG).
’ A€3%g, a)

Since any two split components of (P,S) are N-conjugate, X, , is
independent of the choice of A4. It is thus permissible to write =, in place
of =, ,.

Let f be a complex valued (measurable) function on G/T". Then:

(SI) f is said to be slowly increasing if there exists a real number r
such that for every Siegel domain © associated with a I'-percuspidal
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parabolic subgroup P of G there is a positive constant C such that
|[f(x)|=C-Ep(x)”  (x€©).

(RD) fis said to be rapidly decreasing if for every real number r and
for every Siegel domain & associated with a I'-percuspidal parabolic
subgroup P of G there is a positive constant C such that

/(x)|=C-5(x)  (xe@).

In either case, r is called an exponent of growth.

LemMA 4.5. Let P,,...,P, be I'-percuspidal parabolic subgroups of G
with associated Siegel domains ©,,...,S, having the property that
¢=Ug,T.

ig=1

Let f be a complex valued function on G/I' — then f is slowly increasing (or
rapidly decreasing) iff the requisite growth condition is met on the S, alone.

[The proof, while not difficult, is not entirely obvious either; see
Langlands [2.b].]

The T, ,-operation respects the slowly increasing functions on G /T in
the following sense.

PROPOSITION 4.6. Let f be a slowly increasing function on G /T — then
TP|A(H:f) (H €a)

is also a slowly increasing function on G/T'.

We shall preface the proof with some comments of a general nature
and a preliminary estimate. Let S,(G/I") be the set of slowly increasing
functions f on G/I' with exponent of growth r— then S(G/T) is a
Banach space under the norm

I/, = max  sup Ep,(x)"|f(x)].

1=<i15=r
0510 x€S | 4,

Here the notation is as in the fundamental theorem of reduction (Theorem
3.1). If S(G/T) is the set of all slowly increasing functions on G/T’, then

S(G/T) = U S(G/T).
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In passing, note that the union can be taken over all r less than some fixed
r, e.g. —1. This said, we shall actually establish a somewhat more precise
result, namely:

PROPOSITION 4.6. (bis) For every r < —1 there exists an r’ << r such that
Tpu(S(G/T)) € S,(G/T).
Moreover, the (linear) operator
Ty S,(G/T) - S,(G/T)

is bounded.

LEmMMA 4.7. Let f be a slowly increasing function on G/I" with exponent
of growth r < —1. Fix the index i, — then there exists a positive constant
C,(f) such that

[f(x)]|= C,.O(f)-E(Pi0 |4, :1: 2r+ l)p,o:x)
forallx € ©
[Note: Observe that

to.00fig*

r<-1=Q2r+1)p, € - (p,.o + el’,o(dio))’
hence the FEisenstein series on the right-hand side of our estimate is
convergent.]
Proof. Write P, = M, - A, - N, so that
0 0 0 [
G pwfic = K-A,.o[to] ;.

Decompose a given x € &,  k, accordingly — then

tg,wo i

AH,) <logt, (V?\ € 2(},_0(9, aio)).
Put
2p,, = Sy,
A
the n, being certain positive integers. Fix, for the moment, a A,. Since
mJA(H,) ZrAo(H,) + (n>\0 — 1)rlogt,,

we have

2rp, (H,) Z rAo(H,) + (En)\ - l)rlog t
A
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from which it follows that

2rp, o aTA
a;?o=C, -are
where

log C, = ( Dny, — l)rlog ty-
A
Taking inf’s then gives

azrp,-o > Cio . EP,O(x)r-

But now, from
1f(x)|SC-Ep (%) (x €S, uks)s
we may infer that
[f(x)|=(c/C,)-ai®o

=(¢/c,) I ae
yEI/TNP,

=(C/C,)-E(P,|4,:1: (2r + 1)p, :x)

forallx € &, ,k,.Taking C,(f) = C/C, finishes the proof. g

g, wg

With this preparation, we are in a position to broach the proof of
Proposition 4.6 in the refined form indicated above (Proposition 4.6 (bis)).
We can, of course, assume that f has exponent of growth » < —1. Bearing
in mind that

o
¢=U S0,

ig=1

L,

io

on the basis of the preceding lemma, for any x € G, we have
I TP[A(H:f)(x) |
= 2 XP,A:"-J(H'”H(XY))'VP(XY)!

YyET/TNP

)

= 2 G(f)

ig=1

X % Xpao(H—H(xy))-E?(P, |4, :1: 2r + 1)p, :xv).
yeT/TNP
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This makes it clear that we need only deal with
To H:E(P, |4, :1: (2r + 1)p, :7))
for some fixed value of the index i,,. The function
E(P, |A;,:1: (2r+1)p, :7)
is an automorphic form on G/I'. Therefore, thanks to a well-known
principle (cf. [3.a]), one has
E"’(P,.O[A,0 1: (2r + 1p, :k man)

= 2<I>,(k:m)pi(H)eAv(”) (H =loga)

where

®, is an automorphic form onK X M/ {1} X T,
D, is a polynomial function on a
A, is a linear function on a,

the summation being finite. [Note: EF(...) isN-invariant] Fix a set
{(P,S,)} of I'percuspidal split parabolic subgroups of G which are
dominated predecessors of (P, §) and with the property that {( P}, 5)} is
a set of representatives for the I',-conjugacy classes of I‘Mpercuspldal
split parabolic subgroups of M. Specifically:

(P,S; 4)= (P, S,; 4,,)-

Because there exist Siegel domains &} per (P}, S; Af ) with the property
that
M= U el-T,
Lo

Lemma 4.7 (applied to the pair (M, I,,)) implies that

|@,(k:m)|=2C (@) E(PI|Af :1: 2r + 1)g] :m)

for appropriate positive constants C, (®,) if only r¥ < ~1. Here we had
perhaps remind ourselves that as @, 1s an automorphic form it is neces-
sarily a slowly increasing function on K X M /{1} X I, or, equivalently,
on M/T,,. All told, then, for the purpose of ascertaining the slow growth

of

TP|A(H3f),
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it suffices to prove that VA € d, 3 r, < -1 such that for all indices ¢, and
all ' < r,, the function

> XP,A:S‘(H - H(xy))-a;\yE(PLilAfO: 1: (2rf + l)pfozmxy)
yer/TNP

is slowly increasing on G/T'. [Needless to say, m . is the M-component of
xv.] To this end, choose r, < -1 in such a way as to force

Suppose that r < r, — then
A =2rTp= (A= 2rp) +2(r, — rf)p € Cp(d).

Thus
H — H(xy) € 9p(a)
0= <H — H(xy), A — 2r*p>
A(H(xy)) = (A —2r'%)(H) + 2rfo(H(xv))

A (A=2rTp)(H) ,2rtp
ay, <e ac, .

Our function is thereby seen to admit the majorization

e(A—2rTo)(H)

times

t 1. .
Ergmpaﬁy PE(P,“A}(O. Lo @rt + 1)pf im,, ).
,

But the last expression is, by the lemma of descent for Eisenstein series
(cf. [3.a]), precisely

E(P, |4, :1: 2rf + 1)p, :x).

1y :
The slow increase of
TP|A(H :f)

is now apparent. Furthermore, our estimates make it plain that for every
r < -1 there exists an r’ < r such that

Tna(S,(G/T)) C §.(G/T).
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Indeed, a quick perusal of the discussion supra leads at once to the
conclusion that

|A(x)|= € Ep(x)

| Tou(H:f)(x) |= CC-Ep (%) (x € &, s,

C’ a positive constant depending on r but not on f (or i,). This remark
proves that

Tpu(5,(G/T)) € 5,(G/T)

and, at the same time, exhibits the boundedness of the operation.
The next step in our investigation hinges upon an elementary formal
computation.

PROPOSITION 4.8. Let f, g be bounded measurable compactly supported
functions on G/T" — then

(TP|A(H:f)’ g) = (fa TP[A(H:g))'

Proof. The left-hand side of the putative equality, i.e.

[ Toa(H:f)(x)g(x)dg (),
G/T

is equal to
Lo 3 XUl = HO)) 170e0) g3 do(x)
G/T\yer/rnp
or still
f XP,A;S(H - H(X))'fP(X)WdG(X)
G/TNP
or still

[ Xpus(H = H(x))f(xn)g(x)dy(n) dg(x)
G/TNPYN/NNT
or still
'[G/I‘nP/N/NmI‘fN/Nnr

of

Xp,a: S\(H - H(xnl))f(xnlnz)g(xnl)
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or still

-[c;/rmp-/;\f/Nmrv/;\r/Nnr

of
XP,A:B(H - H(x))f(xnz)g(xn,).

Now switch the order of integration in n, and n, (legitimate because of
our hypotheses) — then f and g are interchanged, so, by symmetry, we
recover

(fs TP|A(H:g))s
serving, therefore, to establish the desired equality. O

Inspection of the foregoing argument enables one to assert the valid-
ity of its conclusion under a weaker set of hypotheses, viz: f, g locally
bounded measurable functions on G/T', one of which alone with compact
support. For then either

(Tou(H:1fD):1gl) or (If], Tnu(H:|g])

is finite and this allows the Fubini-type manipulations.
Looking back over what has been obtained so far, we see that the
T 4-0peration possesses a number of characteristic attributes. Let

Q= EriTP,]A,(Hi:?) (r,€R)
be a real finite linear combination of such entities. Then

Q: 8(G/T) - S(G/T)

is a linear map having the property that for every r < —1 there exists an
r’ < r such that

0(s,(6/T)) € 5,(6/T),

Q|S/(G/T) being continuous. Moreover, for all bounded measurable
compactly supported functions f, g on G/T,

(0f, g) = (£, Qg),

this relation actually holding under the less stringent conditions indicated
above.
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PROPOSITION 4.9. Assume that
Q.0=0.
Then
0(s(G/T) N L*(G/T)) € L*(G/T)
and the closure of
Q|5(G6/T) n L*(G/T)

is an orthogonal projection on L*(G/T).

Of course, the key new point is the hypothesis of idempotence:
QoQ=Q. Tp,(H:?) will generally not have this property but what is
remarkable and, as it turns out, of crucial importance, certain real finite
linear combinations Q of such entities will. This question will in fact be a
central topic of the next section.

As for the proposition, the proof is easy enough. Suppose to begin
with that f is a bounded measurable compactly supported function on
G /T — then we have

(0f.f) =(Q-0 1)
= (0f, 0f)
loF i <17l

Consequently, Q, restricted to the bounded measurable compactly sup-
ported functions on G/T', extends to a bounded self-adjoint idempotent
operator on L*(G/T), that is, to an orthogonal projection on L*(G/T).
Call this extension Q. To complete our proof, we need only show that Q
and Q agree on

S(G/T) N L*(G/T).

Take a function f in this set. Let C be any compact subset of G/T', x - its
characteristic function —then

(gf, Xc) = (fa Q—Xc)
= (f’ QXC) = (Qf’ XC)

50, by inner regularity, Of = Qf a.e. on G /T.
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It will eventually be necessary to employ some estimates of a char-
acter quite different from those encountered supra. What we have in mind
here are variants on well-known themes of Harish-Chandra and Lang-
lands. But what they have is not exactly what we need so it will be safer to
proceed from first principles.

Let S°(G/T') be the space of slowly increasing differentiable func-
tions f on G/I" with exponent of growth r such that for every right
invariant differential operator D on G, Df is also slowly increasing with
exponent of growth r — then the semi-norms

o= max sup E, (x| Df(x)]

1<ig=r, XES, ki
serve to equip S®(G/T") with the structure of a Fréchet space. The
discussion in the remainder of this section will center on the estimation
theory of S*(G/T).
Let (P, S) be a I'-cuspidal split parabolic subgroup of G with special
split component A4; assume, in addition, that P # G. Let F, F’ be subsets
of 3%(g, a); assume, in addition, that F # @, F’ C F.

LEMMA 4.10. There exist normal subgroups
(Nio1=sp=d+1)}
of Ng. such that
()N =N,DN,D...DN,D N, | =N,
(2) dim(N,/N, ) = 1,
(3) N, is A-stable,
(4) I' 0 N, is a lattice in N,.

Proof. Fix a I'-percuspidal split parabolic subgroup P, of G with
special split component 4, such that
(P, S; A) > (P, Sp; 4)-

The roots A in 2,(g, a,) can be arranged in a lexicographic order so as to
guarantee that if

M, = 2 s Ny, = eXP(nAO),
A=A,

then I' N N, is alattice in Ny (cf. [3.a]). There is no loss of generality in
supposing that

N.=N,
N, =N,
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where A’ < A. Then

np=ng® 2 -
(A: A’=A<A}

List the elements of {A: A’ <A < A} in increasing order: A" = A; <A,....
Fix, as is possible, a subgroup I'z. of I' N N, with the property that

log( FF’)

is a lattice in n .. Put

(1) = 5,0 (o) + 3 g,

A=\

() = 0y, 0 (log(Tp) + 3 g,

A=A,

Choose a basis { X|,...,X,} of

2 aa

(A: A’=A<A}

such that

the first dim(g, ) come from T (1)

the second dim(g, ) come from I'(2)
Finally, set

n, =n,®span{X,,....X,}.
Then the
N, = exp(n,)

satisfy all the requirements of our lemma. O

Keeping to the preceding notations and assumptions, let

bp.F= 2 (—l)rank(PF')'fPF',

(F': F CF}

f a complex valued locally bounded (measurable) function on G/T. It is
the estimation of ¢,  which is now our primary concern. Of course,
functions of this type arise in the theory of Eisenstein series so it should
not be unexpected that they will also play a role here.
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Let us agree to write

7e(f)
for f7r — then it is clear that

Mg © Tpn = Tpinpr-
Accordingly,
Sp F = Z (—1)#(1:()7717’(/1)

(F': FFCF)

= H (e — me)(f).

(F': F'CF, #(F—F)=1}

On the face of it, therefore, one might reasonably attempt to estimate ¢,
by first estimating

(7 — WF)(f)

in a uniform manner and then taking products. This is indeed sufficient
for many applications but, as it turns out, our situation is more delicate,
so we shall have to proceed somewhat differently.

Upon writing

(PF’ SF’ AF) = (PF’a SF’; AF’)’

we determine a Iy, -cuspidal split parabolic subgroup (PL, Si) of M,
with special split component 4%.. One has

Np = N} - Ny
or still
N = Np /N,
hence
NinNT, = (NzNT) Ny/Ng.

This said, it then follows that

/NF, JNeNT YN /(NeOT) - NF/( NeNT) - Np/NpNT

NE/NENT Y, Ne/NpNT
or still

= qf
M = T © g
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We can thus rewrite ¢ 5, namely

Spr= H (lF" W;‘)(WF(/‘))

(F': F'CF, #(F—F)=1}
The thrust of this remark lies in the observation that any partial product

I;I’(IF - WF')(WF(f)),

qua a function on G, is invariant to the right under (N N I') - N,..

The next thing to do is to set the stage for an application of Lemma
4.10. As there, we have normal subgroups N,, Np C N, C Ng, with the
properties (1)—(4). Put

()= [ f(n,)dy(n,).

N,/N,NT

Then
d
T = Tp = 2 (Wpﬁ-l - Wu)-
n=1
On the other hand, if we write

Nf for N,/N,

then an integral manipulation entirely analogous to the one carried out
above gives

=qfo
M, = M, © Tp.

Consequently,
(IF— .”;r_) omp= (W;L-l - 77,” ° M.

The quotient
N,LT/NJ+1 = N;L/N;L-Fl

is one dimensional. Pick an element X, € n,/n such that exp(X,)- N, ,
generates

(NF N rM,‘,)-N,)“+l /Nf,=NinT, /N, NT, .

If, in a general way, for r € R,

(I)‘L(t) :f (D(exp(tXu)np.-Fl) d/\/,,+,(n;¢+|)a

NJ+I/NJ+ 10Ty,
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then the difference
(1) — fo‘oﬁ(s) ds
computes
(W;I-i—l - "’J)(@) |-
LemMA 4.11. Let f € C®(R/Z). Put

o= (x) dx.

Then, for every non-negative integer k,

1f = fOl, =271 f Dl
Proof. We shall give two proofs.

Method 1. Write
f(x) = f(0) = 3 f(n)e2mV1n=

n#*0

where
fn) = [ x)er T ax.
0

Then

x) — £(0) = -1 k_Ak n e-zm/-—lnx
f(x) = 1(0) ,,Z‘o(zwﬁfn) f®(n)

implying, therefore, that

|f(x) —/0) = X (ﬁ;)k.m(k)(n),

1 k e ] 1 1/2
=1 . - . k
<2 ()" £ ) e,

1/2

<o ([l

=271 /P,
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or still

I f=FO)l, 27511 f P,

as was to be shown.
Method 2. Write
f(x) = 0) = £(x) = fO) = [ (#(») = J(0) v

=7 ((0) = 70)) = () ~ fO)) &
= (f) =1 &

:f‘_l(/yxf'(z)dt)dy
| (fxt_lf'(t)dy)dt
J

il

x—1
X

(1 =(x = 1))f(2) dr.

x—1

Consequently,
) = fO) = (['ear)- 171, = 27071
Because f is periodic with period 1,
j()‘f(“(x) dx=0 (k=1).
It thus follows by induction that

|f(x) = f(0) |= 27511 f P,
or still
I f= O, <2751 f®@Il,

as was to be shown.
Hence the lemma. O

To be able to apply estimates of the foregoing type, we need to
impose conditions of differentiability on f. Since there is nothing to be
gained by striving for maximum generality, we shall simply assume that f
is C* — then

frr=m(f) € COO(G/(N N F)'NF)-
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Let {A,} be an enumeration of the elements of F. Put F, = F — {A}}
— then

(F: #(F~ F) = 1) = {F).
In these notations, with p = #(F),

Sp.r= ﬁl (7 — WF)(f)

=

or still
p

Sp.r= H (lF - WIT)(WF(f))

i=1

where, for simplicity, 7 = vr,i‘.
Given a subset S of {1,...,p}, put

®(P:F:S:f) = I[ (1= = )= f)).

ies
Then it is clear that
®(P:F:S:f) € C*(G/(NNT) Ny)
with
DO(P:F:S:f)=®(P:F:S:Df)

for any right invariant differential operator D on G.
We can now describe the basic idea behind the estimation of ¢, ;. For
any i between 1 and p, let

&, = {1,...,i}.

Write
b= (1p— 7} )(®(P:F:S,_,:f)).

It will then we shown that ¢, can be estimated in terms of certain
derivatives D of

@(P:F:SP_, :f).
Since

®(P:F:5, :Df) = (1,—af_)(®(P:F:5, ,:Df)),
the argument proceeds via iteration on a step-by-step basis.
Before taking up the details, we had best establish a convention or
two.
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Let
® e C°(G/(NN T) N.).

In what follows, it will sometimes be necessary to view ® as a function on
G X N:

®(x:n) = d(xn).

When this is done, we then employ without comment the usual tensor
product formalism for differential operators on product spaces.

Given F’ C F, #(F — F’) = 1, let w}. be a compact neighborhood of
1 in N1 with the property that

wh - (N,,ir N I‘MF) = Nj.
Write
21
for the sup norm calculated on w}.. If @ is per supra, then
1915 = supy | ],

® being, in particular, right invariant under N} N T, .

LeEMMA 4.12. Let F' C F, #(F — F’) = 1 — then, for every non-nega-
tive integer k, and any

® e C*(G/(NNT)-N,),
Vx€eEQaG,
| (1 — 7L ) (7 (@))(x) < 27%-d- lmaxdll(l ® XK@ (x: ).
=p=

Proof. Write
d
(1F - '”}1;) ° Mg = 2 (WJ—H - '”J) ° M.
p=1
Because
(@) = @,

we have only to estimate

| (lF - 77;)((1))(36) |

or still, the individual

|(7h,, — 7! )(®)(x)] .
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In turn, thanks to Lemma 4.11 and the remarks prefacing its formulation,

[ (mfer = 70 )(@)(x) |

can be estimated vis-a-vis
CI)(x eXp(tXp)”uH)dN“,(an)

/N,L /Nl Ty,

and the corresponding ‘constant term’, i.e., the associated integral from 0
to 1. In this way, we find that

(7}, — 7f)(@)(x)|

is majorized by 2% times
L [7]
su 11,
p| w '

[?] being the z-dependent integral above. As the latter cannot exceed
(1 ® X*)@(x: )%,

an application of the triangle inequality completes the proof. O

In passing, let us observe that
(1 ® X:)CI)(x:n) = (Ad(x)Xf-@)(xn).
To set up the statement of the main result in this circle of ideas, make
the following replacements in the data:

F' - F,
(.0;; s wf
d—d,
X, - X,.

PROPOSITION 4.13. Let f € C*(G/T') — then for every p-tuple k =

k,...,k, ) of non-negative integers k. there exists a positive constant C
1 j4 8 g i D k
such that

| dp p(x) |
is majorized by C, times the maximum over all

1<p =d,
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of the supremum over all
nl € ol
it € o
of the absolute value of
Ad(xn}f,. . .n’;)X:" . Ad(xn;. . .n’g)X:;
.- Ad(xn,) X1 - Ad(x) X7 - a( f)(xnf...n}).

The importance (and therefore the significance) of this estimate will
become clear in due course. At first glance, one might think that it would
be awkward to use in actual practice. But this is not the case at all. For in
the applications, x, which is a priori arbitrary, will be restricted in a
certain way. Since

oo

is compact, something specific can then be said.
For instance, suppose that f € S*°(G/T'). There is a strictly positive
function E, on G, a linear combination of Eisenstein series, such that VD

| Df(x)|= C(f, D)-|E(x)| (x€G),

C(f, D) a positive constant. [Note: The existence of E, is ensured by
Lemma 4.7; E, does not, of course, depend on f.] Now suppose that we
confine x to a compact subset & of G — then the differential operators
figuring in our proposition stay within a compact subset of all the right
invariant differential operators on G (equipped with the usual LF-topol-
ogy), so, ignoring positive constants,

sup ' ¢P,F(x) I
xEQ

is no more than

sup sup | m(E,)(xn")],

xER nfewf. . o

an inequality which is indeed fundamental.

Proof of Proposition 4.13. In view of the preparation which has been
already undertaken, the proof itself is virtually obvious. One simply writes
(cf. supra)

bp p = (1F~ 77;)((1)(P:F:8P_1 :f))
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and then, to be completely formal about it, utilizes downward induc-
tion. O

We shall close this section with some remarks which stand by them-
selves although they will not be fully exploited until subsequent papers in
this series.

Put

E(P

i

1) = E(P, |4, :1: (2r + 1)p, :?).
Then (cf. Lemma 4.7)
o

E = 3 E(P, :?).

r 110}
ig=1

The role of the E, on G/T is that of providing universal majorants for
slowly increasing functions, a point of obvious technical value. It is then
only natural to ask: Can one find analogues of the E, for rapidly
decreasing functions? We shall now take up this question.

Let g be a real parameter. Introduce

"o
§q = 2 g‘q(Pio 9)
iy=1
where, by definition,

((Pyix) = 3 exp(-q-llHy, (xMI)  (x€G).

to
yel'/TNP,

Convergence can be secured by assuming that, e.g., ¢ > 2llp, ll, in which
case the corresponding function is slowly increasing.

LEMMA 4.14. 1)) V¢, 3 q,, Q. such that

§chQc'E§’,O on © K

to,wo  fo”
() Vgq,3c,, C, such that

=l < .
Ep =G, §,6 on &, k.

This result carries with it the immediate consequence that the {, are
universal majorants for rapidly decreasing functions on G/T. Indeed, any
such f has the property that V g(> 2l|p, Il) there exists a positive constant
C;(q) such that

|f]= Cf(‘])'fq

and conversely.
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To prove Lemma 4.14 we shall need an estimate on the E, which itself
depends on still another estimate, the proof of which will be given later
on.

LeEMMA 4.15. Let 1 < i, j, =< ry— then 3 C, > 0 such that

Vxea
E(P, :x) = C,-exp(—2rC0 : ”HROIA,O(X)”)'

[Note: C, is a positive constant which does not depend on r.]

Proof. Take, in the notations of Sublemma 4 (§7) infra,

C'=K
C’=w,.

0
Given x € G, write
x=k, CXP(HaogA,O(x))stx
per
G=K-A4,-w,-(S, NT).
Then that result implies that for everyy € T,
<Hz;.0;A,0( kyexp( Hy, 4 (x))s,y ). 0, >
= (Hp, 4 (koY) 0,) = Co- 1 Hp 4y (x)I = Cog
for certain positive constants C,, Cy,. It therefore follows that
E(P, :x)= E,(Pjoz k, exp(HP,OM,O(x))sxﬁx)
= E,( P : kxexp(HPIOMlo(x))sx)
<E(P,:k,)
Xexp(—2r(C00 + G, - “HROIA,(,(x)”))
= G, -exp(-2rCy - | Hp, 1 (%))
where

C, = E,(P, :1)-exp(-2rCy).

Jo

Hence the lemma. O
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Proof of Lemma 4.14(1). There is no loss of generality in supposing
that ¢ > 1. Fix jj,, 1 <jj, = r, — then it will be enough to show that, up to

a positive constant,
$(P 7

is majorized on © by = ...P for some g, > 0. We have (cf. supra)

twoj

1< C,-E,(Pjozx)_ CXP(—z”Co'“HP,O[A,O(X)“)~

Therefore, for any q,

[(Pyix) = CE(P:x) (P, %)
where
q(r) = q+2rG,.
Let now
xXEG, K-

There is a constant ¢, < -1 such that
Saipg (Pry1x) = G- Ep ().

On the other hand, as can be seen from the proof of Lemma 4.7, there is a
constant r < —1 with the property that

E(P, :x)=C -Ep(x)% "

Jo
Put
q. = 3llp; Il = 2rG,.

Then,on &, _k , we have

o, w0 Jo?
(P ix)
<G E(P;:x) ¥ l $guin(Piy i)
<G E(P,:x) l§3||;>,0||(P :x)
=CCClE 0(x)c,
from which our assertion follows. O

Proof of Lemma 4.14(ii). Given g, set
¢, = q/max|IAll,
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A running through 2% (8, a;) Using definitions only, we then find that

on® toriogig)

El’,o(x)c" =C,- exp(_q Al HP,otAio(x)ll)’
C, a positive constant which need not be explicated. Since

exP(‘q ) ”HP,O]A,O(X)”) = gq(Pio :x) = fq(x),
we are done. O

5. The truncation operator. The purpose of this section is to define
and study the truncation operator. The idea behind its introduction can be
traced to the works of Langlands (especially [2.a]) who, however, only
proceeded on an ad hoc basis in certain special cases. It was Arthur [1.b]
who gave, in the adelic setting, a general definition and, in that situation,
established its essential properties. We considered in [3.b] the case of
I'-rank one lattices. Here we shall deal with the general case. If it were
only a question of one cusp, then the present discussion could be modeled,
to some extent at least, after that of Arthur. But, of course, I' will
ordinarily possess more than one cusp, a point which causes a number of
complications thereby necessitating a treatment which differs radically
from Arthur’s. The definition itself will be easy enough. From then on,
though, there will be a host of difficulties to overcome. For this reason, we
shall content ourselves initially with precise statements only, deferring the
proofs to subsequent sections.

We begin by recasting the definition of

TP[A(H :f)

from the preceding section. So, as there, let (P, S) be a I'-cuspidal split
parabolic subgroup of G with split component 4 which we take now to be
special. Recall that in this situation we write

Tp(H:f)
in place of
TP]A(H :f).
Given H € a, define
Tp(H:f)

by
Tp(I(H):f).
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It is then the case that

T,y (H:f) = T,(H:f)

forally €T.

Fix y €T; put P, = yPy™' — then the K-component of y per the
decomposition G = K- P takes the special split component A of P to the
special split component 4, of P,. Noting that

HP|A(XY) = IF(P5P«/)(HPY1AY(X)),
the definitions then imply that
XP,A:‘J(IP(H) - HP]A(XY))
= XP,A:%(IF(P:Py)(IP.,(H)) - II“(P:Py)(HPYMY(x)))
= XP,A:%(I(PIA :Py’Ay),:IPy(H) - HPVJAY(X)])

= XP,4,:9 ( IP,(H) - HPY)AY(X)) .
Furthermore,
fH(x) = fA(xv).
Let C(P) be the I'-conjugacy class of P — then it follows that

TP(H: f)(x) = 2 XP,A:S)(IP(H) - HP;A(XY))'fP(xY)

yET/TNP

= 2 Xpoa.olIpH) = Hyp(x))f(x)
yeTr/TNP

= 2 XPy,AY:S(IP_,(H) - HPY[AY(X))'ny(xL
P,ECL(P)

an expression which turns out to be of considerable utility.
As before, let

{(P,S): 1=<i=<r}

be a set of representatives for the I'-conjugacy classes of I'-cuspidal split
parabolic subgroups of G. Given H € a, put, for any complex valued
locally bounded (measurable) function fon G/T’,

Off= 3 (-1)"™ M1, (H:f),
i=1

QM then being the so-called truncation operator with which we shall be
occupied for the remainder of this section.
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There are a number of elementary observations which should be made
immediately. In the first place, it is clear that the definition of Q¥ is
independent of the choice of the representatives P,. Next, QFf is a locally
bounded function on G/T" which is even slowly increasing provided that f
is so (cf. Proposition 4.6). If f has compact support, then Q¥f does too (cf.
Proposition 4.3). On cusp forms, Q" is the identity. Finally, while Q™ will
not ordinarily respect the continuity or differentiability of a function, it is
nevertheless always true that

. off=f

uniformly on compacta, as can be seen from Proposition 4.4.

It is a point of some importance that QM can also be written in terms
of all the T'-cuspidals. Thus let C. be the set of all T-cuspidal split
parabolic subgroups of G (cf. §3) — then, taking into account what was
said above, we have

0"f(x) = 3 (1™ xp 4o I(H) — Hpy(x))-f7(x)

PeCr

or still

flx) + 2 (”'l)rank(P)XP,A:S(IP(H) - HP|A(X))'fP(x)~

PeCr

P#G
We shall see that this alternative representation of Q™ is, from a technical
point of view, decisive.

Our objective now will be to show that, under certain conditions, Q!
can be regarded as an orthogonal projection on L*(G/T). Owing to
Proposition 4.9 (and supporting discussion), it all comes down to a
question of idempotence. Ideally, one would like to say: If H is suffi-
ciently regular, then QY (or rather its closure Q™) is an orthogonal
projection on L?(G/T'). Unfortunately, due to the presence of several
cusps, things are not quite so simple as this. Instead, our statements will
have to be phrased in terms of a new ordering on a, an unexpected
development.

Given H,,H, in a, write

H, <H,
if there exists an H,, € Cp(a,) such that
I(POIAO: PiolAio)(IP,o(H2) - IP,O(H])) = H,

for all iy =1,...,r,. This relation partially orders a. Obviously (cf.
Lemma 3.2):
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Moreover, the two relations coincide if I' possesses a single cusp but, as
can be seen by example, this is not true in general.

THEOREM 5.1. Fix H, in a — then there exists Hy, < H, such that for
allH< H,,
Qo QM = M.
Consequently, under the hypotheses at hand, the closure Q" of
QM| S(G/T) N L*(G/T)

is an orthogonal projection on L*(G/T). Notationally, it will usually be
unnecessary to distinguish between Q™ and QY.

The proof of Theorem 5.1 is by no means a simple exercise. Let us
isolate the main issue. Fix a [-cuspidal split parabolic subgroup (P, S) of
G with special split component A(P # G). Consider

XP,A:S(IP(H) - HP|A(x))' (QHf)P(x)-

Then idempotence would be established if it could be shown that, inde-
pendently of P, for all H per supra

I,(H) — HP|A(x) € 9p(a)

P
(Q%7) (x) =0.
In reality, we shall actually prove somewhat more than this. Call, as usual,
9p(a)”
the closure of 9,(a) — then
~9,(a) NYp(a) = 2.
LEMMA. Let H be as above — then, independently of P,
I,(H) — HP]A(X) & -9,(a)

P
(Q%f)"(x) = 0.

This result will be established in the next section. Here is a corollary.
Take H,H” € a per supra with H” < H'— then H” < H’, thus, by
definition,

L,(H) € LH") + €,(a).
Suppose now that
I,(H") — HP{A(x) € 9p(a),
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SO
I,(H') — HP|A(x) € 9p(a) + Cpla) C 9p(a).

In view of the lemma, we then have

(0%f1) (x) = 0.

It therefore follows that

QH” ° QH’ — QH’.
REMARK. There is a small item of detail present. We have
g o Q" = gV,

so, upon taking adjoints,
g o g = gV

The point to be made now is that one cannot assert that necessarily
QY o QH" = QW'

Fortunately, this is not really serious. Claim: Let f be a complex valued
locally bounded (measurable) function on G/I" — then

oW o QW= 0o"f ae. (onG/T).

Indeed, if C be any compact subset of G/TI', x cits characteristic function,
then

(0" e "7, xc) = (@™, 0"xc)
(7.0 0"xc)
(f,2%xc)
(@7, xc)

Il

[(e"-0r—omr) =0,
so, by inner regularity,

oW o QW'f=Q"f ae. (onG/T).

It is worth observing that the formula

QH” ° QH’ — QH’
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retains its validity under cicumstances less restrictive than those above. To
this end, let a, be the set of H € a such that, independently of P,

I,(H) — HP[A(x) & 9p(a)

(Q¥f)"(x) =o.

The thrust of the main lemma, then, lies in describing conditions suffcient
to ensure that H € a,. Plainly,

HeEq,=Q"-0"=0"

Accordingly, take H’, H” € a subject to the following requirements: (1)
H” <H’; (2) H € a,. As can be seen from the preceding argument, this
is all that is needed to ensure that

QH" ° QH' — QH’.
In passing, let us note that
li H=1ID
H—I}’{loo Q

in the strong operator topology, the approach to —oco being through q,
vis-a-vis < . For purposes of calculation, we remark that one may
associate with each pair (H,,H,,) per Theorem 5.1 a cofinal subset of
(ap, <),namely {H € a: H < H,}, < and < agreeing there.

We mentioned earlier that for any H € a,

0"(s(G/T)) C S(G/T).

Now fix anew an element H, € a — then it follows from the proof of
Proposition 4.6 (bis) that for every r < —1 there exists an r’ < r such that

0¥(5.(G/T)) € S.(G/T)  (VH<H,).
Moreover,
Q": 5,(G/T) - 5,(G/T)
is not only continuous but
{Q": H<H,}

is equicontinuous.
Suppose that we replace S(G/T') by

R(G/T),
the space of rapidly decreasing functions on G /T Is it true that
Q"(R(G/T)) C R(G/T)?



THE SELBERG TRACE FORMULA II 389

The answer is ‘yes’ provided the parameter H is suitably restricted (cf.
infra). Although this fact is certainly of some independent interest, it turns
out that in the actual applications a result of a rather different nature is
the proper object of focus.

In what follows, let Hy, H, € a, Hy, < H, be parameters such that
H < H, forces the conclusion of Proposition 3.10.

THEOREM 5.2. Fix Hyin a. Let f € S°(G/T') — then, for all H < Hy,
OMYf is rapidly decreasing.

The proof of Theorem 5.2 is far from obvious; it depends in an
essential way on a suitable specialization of the estimate from Proposition
4.13. We shall defer the details until two sections hence.

In conclusion, we emphasize that the theorems formulated in this
section capture the crucial properties of the truncation operator. On the
other hand, it may come as a bit of a surprise that their proofs are quite
different in both concept and execution. Additional comments may be
found in §§8, 10 infra.

6. Idempotence of Q™. The purpose of this section will be to prove
that the truncation operator Q™ is idempotent, as formulated in Theorem
5.1. In those notations, recall that, with H as there, the question is to
show, independently of P, that

I,(H) — HP]A(x) & -9p(a)

(Q"f)"(x) = 0.

We shall start off with some structural preliminaries. Let
(P, S),(P*, S*) be I'-cuspidal split parabolic subgroups of G with uni-
potent radicals N, N*. It will be supposed throughout that P* # G.

PROPOSITION 6.1. There exists one and only one I'-cuspidal parabolic
subgroup T*( P) of G such that:

(i) ™*(P) < P;

(i) R (7*(P)) = (P N N*)-N.

[Note: R, stands for unipotent radical.]

Since a parabolic subgroup is the normalizer of its unipotent radical,
it is the existence of 7*( P) with which we shall be concerned. Of course, it
will have to turn out that

™(P) = N;((P N N*)-N),
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a recipe not depending on the various choices which will be made in the
actual construction of 7*( P).
Choose I'-percuspidals P,, P such that

P>P,
P* = P¥.

We can and will suppose that P, P have split components 4,, A} in
common. To justify this, simply remark that P,, P} are G-conjugate by
some element from

U PywP,,
weE W(Ay)

as was shown in [3.a]. Observe that A, = A need not be §-stable, thus
may very well be non-special. Select split components A, A* of
(P, S),(P*, §*) with the property that 4 C 4, A* C A — then

(P,S; A) = (P,, Sy; 4y)
(P*, S*; A*) = (Pg, Sx; A%).

The argument now falls into a number of steps.

Step 1. We claim that
PN N*=(MnNN*- (NN N*).

It suffices to prove that the left-hand side is contained in the right-hand
side, the opposite inclusion being obvious. For this purpose, note first that
P N N* consists entirely of unipotent elements, so the determinant of its
action on n is + 1. Accordingly,

PNANN*CS=M-N.

Let p = mn(m € M, n € N) be an arbitrary element of P N N* — then it
must be shown thatm € M N N*, n € N N N*. Fix a sequence {a,} C 4
such that a, — —oo relative to P. Since a, € 4, a, pa;' € P(V k). On the
other hand,

a, €A C A, = A% C P} C P*,
s0 a, pa;' € N*(V k). Therefore

a,pa;' € PN N*
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for all k. Because P N N* is closed, we have
m=m- lim a,na;’'
k— o0

— 1 -1
= lim ma,na;
k-0

— 1 -1
= lim a,mna;
k— o0

= lim a, pa;' € P N N*
k— 00

=

meMN N*.

But then n € N N N*, completing the discussion.

Let us consider M N N*, the centralizer of 4 in N*. It is more or less
direct that M N N* is connected with Lie algebra a sum of root spaces
with respect to a, = af, the relevant roots being those whose restriction
to a is null. This suggests that M N N* may very well be the unipotent
radical of a parabolic subgroup of M. We will in fact confirm this in the
lines below. There would then remain the problem of I, -cuspidality.

Step 2. We claim that
MNN*NT,

is a uniform lattice in M N N*. On general grounds, that I' N S is a lattice
in S and I' N N* is a uniform lattice in N* both combine to imply that

rnsnn*

is a uniform lattice in § N N*(= P N N*). This said, let {x,} be a
sequence in M N N* — then the uniformity of

MNON*NT,
in M N N* will follow provided that it can be shown that {x,} contains a
subsequence convergent mod
M N N*NT,,.
But it is certainly true that {x,} contains a subsequence convergent mod
'nsnn*

so the desired conclusion results by projection.

The following criterion was established in [3.a]: Let P be a parabolic
subgroup of G such that N N T is a lattice in N — then there exists S
(necessarily unique) such that the split parabolic subgroup (P, S) is
T'-cuspidal.
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Admitting still the fact that M N N* really is the unipotent radical of
a parabolic subgroup of M, the aforementioned criterion (applied to the
pair (M, I',,)), in conjunction with what has been said above, imply that
the putative parabolic is I'j-cuspidal with unipotent radical M N N*.
Noting that
(PN N*)-N=(MNN*-N,

the proof of our proposition is then finished via production of 7*( P) by

undaggering.
We have yet to exhibit a parabolic subgroup of M whose unipotent
radical is M N N*. Because

(P9 S; A) > (Poa So; Ao),

we determine, in the usual way, a I'),-cuspidal split parabolic subgroup
(P}, S§) of M with split component Aj. Furthermore, PJ is I,-per-
cuspidal.

Step 3. Fix H* € Cp,(a*). Let
a¥ = exp(tH*).

Then
n*={Xeg: lim Ad(a})X =0},
t— —00

hence

mNn* = {XE m: lim Ad(e*)X = O}.

t—-00
Relative to the orthogonal decomposition
a,=al®a,
let H' be the projection of H* onto af,. Put
al = exp(tH').

Taking into account the fact that m and a commute, we have still

m N n* = {XE m: lim Ad(a})X = O}.
t——-00
These considerations serve to reduce our problem to an essentially
familiar fact from the theory of parabolic subgroups. Working with (G, I')
instead of (M, I,,), let A, be a split component of a I'-percuspidal split
parabolic subgroup of G. Let P(A4,) be the set of all split parabolic
subgroups of G with A4, as split component. [Note: Not every element of
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%P(A,) need be I'-percuspidal] If by C(A4,) we understand the set of
chambers of a, then, as is well-known (see, e.g., [3.a]), the map

GJ)(AO) - @(Ao)
{(Po’ So; 4g) b @Po(ao)

sets up a bijection between P(A,) and C(A4,).

SUBLEMMA. Let H, € a . Set
n={Xeq: lim Ad(exp(tH,))X =0}.
- -0

Then n is the Lie algebra of the unipotent radical of a parabolic subgroup P
of G which is a dominant successor of any P, € P(A,) such that H, €

@PO(QO)_'

[The proof is, of course, canonical. Write

a=U @Po(ao)—-
Py

Take any P, € P(A,) with H, € @Po(ao)‘. Enumerate the elements A; of
29(8, a,) by requiring

Then

determines a dominant successor of P, associated withn.]
We may view 7* as a map

™*: Cr - Cr

characterized by conditions (i) and (ii) of the proposition supra. It is clear
that

T (yPy7) =y (P)y (yET NNY).
Slightly less obvious is:

LEMMA 6.2. Suppose that
™(P)<P'<P.
Then
*(P) = v*(P’).
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Proof. The a priori containments
(PN N*)-N) N N*
D PN N*
D P N N*
D r*(P) N N*
DR, (7*(P)) N N*
O ((PNN*)-N)N N*
are actually equalities, hence, in particular
P N N*=P N N*

But then
R(r*(P)) = (P N N*)-N
C (P N N*)-N’
= (P’ N N*)-N’
= R, (T*(P)).
However,

™(P)< P =R, (m(P)) DN’
= R, (m*(P)) D (P N N*)-N’
=R, (7*(P")).
So, altogether,
R (7*(P)) = R, (7*(P")),
implying, therefore, that
r(P) = (P,
as was to be shown. O

A corollary to this lemma is the fact that 7* viewed as a map
Cr - Cr, is idempotent, i.e.

Let
C¥ = Ran(7*).

Then a given P € Cr. belongs to C% iff 7*(P) = P or, equivalently, iff
P N N* C N. This being so, our next task will be to investigate the fiber
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(7*)7(P) over a given P € C%. There is an immediate global character-
ization, viz.

P e () (P) (P NN*)-N =N
or, in infinitesimal terms,
P e () (P)=(p’ Nn*) +n =n.

The point we wish to make now is that p’ can be replaced by p here, that
is,

P e() ' (P)e(pnun*) +n =n.
Indeed, if P’ € (7*)7( P), then necessarily
P’NN*=PNN*
p’Nn*=pNn*
(pNn*)+n" =n.
On the other hand, the equality and the containment

{(pﬂn*)+n’=n

p’Dp
=
(p’Nn*)+n"Dn
=
R,(m*(P")) D R,(P)
=
™(PYCPCP
=
*(P)<P<P’
=

*(P') =1*(P) =P

by Lemma 6.2. [We explicitly observe that we have used the fact that
containment is equivalent to domination on the set Cp (cf. [3.a]).] In
root-theoretic terms, it can then be said that

P’ e (m*)(P)
g\Cn

VAEZ,(g,a)st =g, Cn’.
aa Zpnn*
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To exploit this remark, fix H* € C,.(a*) — then
VAE EPO(ga ag)
gy Cn* < A(H*) > 0.

It can be supposed that the elements A, of E%O(g, a,) have been so
arranged that

p
a= ) Ker(}A)).
=1
Neither g, nor g_, is contained in n*, so
A(H¥)=0 (1=i=<p).
There is no loss of generality in assuming that

A(H¥) >0 (p<i=p™¥)
N(H*) =0 (p*<i=<l,).

Call P~* the dominant successor of P, corresponding to
0 P 24

p*
a™* = () Ker(})).

i=1
LEMMA 6.3. Let P € C¥ — then
(r*)(P) = (P €ECL: P< P < P7*).

Proof. If P’ € (7*)7(P), then, as has been seen above, P < P’. To
establish the opposite domination, simply note that in the representation
of a’ as the intersection of certain Ker(A,) any such index i must, of
necessity, lie between 1 and p~* implying, therefore, that P’ < P~*. So, to
complete our proof, we have only to show that 7*(P~*) = P, i.e., that P~*
is on the fiber over P. For this purpose, it will be convenient to utilize the
root-theoretic criterion set forth supra. Thus take a A € X P0(9> a,) such

that

gy Cn

g\ Z b nNn*
The claim then is that g, C n™*. Write A = Z¢;A,. Since g, C 1, there
exists an i, >p such that ¢; > 0. If, additionally, i, >p~*, then, of
course, g, C n~* and we are done. Otherwise, p < i, = p™, hence A, (H*)
> (. But

[()

g ZbNnun*=>ANH*= 3 c\(H*)=<0.
1=p+1
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Because
cto>\ io( H *)

is positive, there must exist another index j, such that ¢, >0 and
A, (H*) <0. Such a j, must be > p™*, hence once again g, C n™*. O

Now where are we? Starting with the I'-cuspidal parabolic subgroup
P* # G, we produce a map 7*: G — C and the associated set C%. We
shall consistently write P* > Pgf, Py some I'-percuspidal which has been
and will remain fixed. The reader must realize, however, that the ambient
split components can vary, the choice being dictated by the context. There
is undoubtedly some potential for confusion here so we shall make every
effort to be completely precise in order to minimize it.

In terms of canonical data associated with (P, S§; 4y), A% any split
component of (P, S§), the set C% admits a decomposition, the descrip-
tion of which may be formulated in the following way. Fix a finite subset
F} of G with the property that

{xoPgxy': x, € Fy)

is a set of representatives for the I'-percuspidal parabolic subgroups of G.
Given

w, € W(A%)
x, € Ff,
put
A(wy:x9) = Ixg N PEw Py
Then

= U U U U {8P8'} NCx.

WoE W(AY) xoEFF P=PF 8y€A(wy : xg)

A natural question thus suggests itself. If P > P§, when is it true that
8,P8;' € Cx? Naturally, this is entirely equivalent to determining when

(8, P8;') = 8,P8;".

Since we wish to discuss 7*(8,P8;'), P = Pg¥, the situation changes
slightly in that P is not the generic I'-cuspidal (as it was in Proposition
6.1) but rather this time &, P§;" is. Using the fact that

8, € A(wy:x,) C Piw, P,

write
60'—_"(80)“’017(80) ("(80) ENSK’P(‘SO) EPSK)-
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Then in the picture

8, P8y = 8, P3d;!
P* > P0*7

the split component shared by 8, P8, and Py is
n(8,)A5n(8;)"".
Supposing that
(P,S: 4) = (P, 5§ AF),
we have, accordingly,

m*(8,P8;") = 8,P8;"

8,P8;' N N* C §,N§;"

" Ad(8,)p N n* C Ad(8,)n
Ad(n(8,))woAd(n(8))™')- Ad(n(8;))p N n*
C Ad(n(8))woAd(n(8,)")- Ad(n(8;))n

Ad(n(8,))w,Ad(n(8,)7")- Ad(n(8,))m N n* = {0}

- Ad(n(8,))wym N n* = {0}
Ad(n(8,))(wym N n*) = {0}

wym N n* = {0}.

Observe that this Lie algebra-theoretic condition involves §, only through
wy, the shifted data entering in the verification but not in the final
conclusion. Write

(P*, §*; A4%) = (P§, S§; A%).

We remark that the split component A* is the same as the one figuring in
the earlier constructions vis-a-vis

P=Py
‘A, A* C A%

P* > P()*
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Because wym N n* is a sum of root spaces with respect to a§, a given root
occurring only if its negative appears simultaneously,

wym N n* = {0}

VAstg, Cm:wA|la*=0.

Represent P per Py, i.e. write
P = (Pf).
Then

wom N n* = {0}
o
VA €F,wA,|a*=0.

In recapitulation, therefore,

7 (8,P8;") = 8, P5;"
VA, € F,w,|a*=0.

Let us assume now that §,P8;' € C%, Lemma 6.3 then providing a
characterization of the fiber over §,P8;'. Thanks to what has just been
learned, it is not difficult to describe

(8,P8;") ™",

Indeed, if
F*=FU {A;: woA; > 0and wyA, | a* # 0},
then
(8,P85") ™ = 8y(Pg) rz85 ",

as can be readily seen by transporting the question to w, PFw,"' and using
the definitions.

The preceding structural facts will all play a role in due course.
Setting them aside for the time being, we are at last ready to come to grips
with the purported idempotence of QM. It will be best to restate our
objective.

MAIN LEMMA. Fix H in a — then there exists Hy, << H, such that for
all H < Hy,, independently of P* #+ G,
IP&(H) - Hp*lA*(x) E - SP*( a*)—

=

(%) (x) =o.
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We hasten to stress that here, of course, A* is the special split
component of (P*, §%*).

By way of explanation, recall that the definition of Q"f was initially
given in terms of the P, that is,

QHf= 3 (-1)™™ T, (H:f),
i=1

it then being observed that still

O =3 ()™ Pxp 4o (Ip(H) — Hp (7)1,

PECL

the latter formulation making it clear that the role of P is that of a
running variable. [Note: Again, all split components are special.]
Our immediate intention is to discuss

(o"r)".

Because the terms in the sum defining Q¥f are not I' N N*-invariant, it
will first be necessary to split C. into I' N N* conjugacy classes. Denoting
by C(N*) a set of representatives for these, the diagram

Cr - Cr
\ !
Cr(N9) e Cp(NY)

can be rendered commutative provided the dotted arrow is defined
according to the relation

m*(yPy~') = yr*(P)y™! (y €T N N*).

We then have

o'f(x)= X 2

PECK(N*) yETNN*/TNN*NP

X (—l)rank(P)XPy,A,:'a(Ipy(H) - HPYMY(X))'fPY(x)
or still

p) )

PECL(N*) yE[ON*/TON*NP

X (‘l)rank(P)XP,A:a(IP(H) - HP|A(XY))'fP(xY)-



THE SELBERG TRACE FORMULA II 369

PROPOSITION 4.9. Assume that
QoQ=0.
Then
0(5(G/T) N L*(G/T)) € L(G/T)
and the closure of
Q|8(G/T) N L*(G/T)
is an orthogonal projection on L*(G/T).

Of course, the key new point is the hypothesis of idempotence:
Qo Q= 0. Tp,(H:?) will generally not have this property but what is
remarkable and, as it turns out, of crucial importance, certain real finite
linear combinations Q of such entities will. This question will in fact be a
central topic of the next section.

As for the proposition, the proof is easy enough. Suppose to begin
with that f is a bounded measurable compactly supported function on
G /T — then we have

(0f.f) =(0°0f f)
=(¢/. 0f)

ofi=1fI.

Consequently, Q, restricted to the bounded measurable compactly sup-
ported functions on G/T', extends to a bounded self-adjoint idempotent
operator on L*(G/TI), that is, to an orthogonal projection on L*(G/T).
Call this extension Q. To complete our proof, we need only show that Q
and Q agree on

S(G/T) N L*(G/T).

Take a function f in this set. Let C be any compact subset of G/T, x . its
characteristic function —then

(0f.xc) =(f.0xc)
= (f’ QXC) = (va XC)

50, by inner regularity, Of = Of a.e. on G/T.
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It will eventually be necessary to employ some estimates of a char-
acter quite different from those encountered supra. What we have in mind
here are variants on well-known themes of Harish-Chandra and Lang-
lands. But what they have is not exactly what we need so it will be safer to
proceed from first principles.

Let S*(G/T) be the space of slowly increasing differentiable func-
tions f on G/I' with exponent of growth r such that for every right
invariant differential operator D on G, Df is also slowly increasing with
exponent of growth » — then the semi-norms

/o= max  sup  Z,(x)7|Df(x)]

1=ip=rn, Xegzo,uo"lo
serve to equip S®(G/T") with the structure of a Fréchet space. The
discussion in the remainder of this section will center on the estimation
theory of S*(G/T).
Let (P, S) be a I'-cuspidal split parabolic subgroup of G with special
split component A; assume, in addition, that P # G. Let F, F’ be subsets
of 2%(g, a); assume, in addition, that F # @, F’ C F.

LEMMA 4.10. There exist normal subgroups
{N’L: lsp=<d+1}
of Ny such that
()N =N, DN, D...DON, DN, |, =N,
(2) dim(N,/N,. ) = 1,
(3) N, is A-stable,
(4) T' N N, is a lattice in N,.

Proof. Fix a I'-percuspidal split parabolic subgroup P, of G with
special split component A4, such that
(Pa S> A) > (Pos S09 AO)

The roots A in Z,(g, a,) can be arranged in a lexicographic order so as to
guarantee that if

Mp, = 2 9 Ny, = CXP(HAO)’
A=A,

then I' N N, is alattice in Ny _(cf. [3.a]). There is no loss of generality in
supposing that

Np = N,
N = N,,
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where A’ < A. Then

np=n;® 2 G-
(A: A’=A<A)

List the elements of {A: A’ <A < A} inincreasing order: A’ = A; <A,....
Fix, as is possible, a subgroup I'z. of I' N Ny, with the property that

log(T)
is a lattice in n .. Put

T =y, 0 (log(T) + 3 0,

A,

T(2) = gy, N (log(rpf) + 2 Qx)
ASA,

Choose a basis { X|,...,X,} of

ga
(A: A’SA<A)

such that
the first dim(g, ) come from Iz (1)

the second dim(g, ) come from I'.(2)

Finally, set
n,=n,®span{X,,...,X,}.
Then the
N, = exp(n,)

satisfy all the requirements of our lemma. O

Keeping to the preceding notations and assumptions, let

Sp.F = 2 (“l)rm(PP)'fPF',

(F': FCF)

f a complex valued locally bounded (measurable) function on G/T. It is
the estimation of ¢,  which is now our primary concern. Of course,
functions of this type arise in the theory of Eisenstein series so it should
not be unexpected that they will also play a role here.
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Let us agree to write

7e(f)
for f7r — then it is clear that

Mg © Tpr = Tprapre
Accordingly,
Pp.r= 2 (_1)#(F)7TF’(f)

{(F': F'CF}

= H (mp — 7 )(f).

(F': F'CF,#(F—F)=1}

On the face of it, therefore, one might reasonably attempt to estimate ¢,
by first estimating

(me = 7p)(f)

in a uniform manner and then taking products. This is indeed sufficient
for many applications but, as it turns out, our situation is more delicate,
so we shall have to proceed somewhat differently.

Upon writing

(PF’ Sr; AF) s (PF’7 Ay AF'),

we determine a Iy, -cuspidal split parabolic subgroup (PL., Sf) of M,
with special split component A%.. One has

N = N} - N,
or still
N} = Np/Ng,
hence
Ni N T, = (Ne N T) Np/Ng.

This said, it then follows that

—/;VF,/NFnr Np/(NeNT) - NF'[(NF,mF) - Ng/NpNT

Ni/NEOTy, I Np/NenT
or still

S
Mgy = T © T,
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We can thus rewrite ¢ , namely

Op.F = H (IF—_ W;“)(”F(f))

(F': FFCF, #(F—F)=1}
The thrust of this remark lies in the observation that any partial product

g(lp - WF’)(WF(f))’

qua a function on G, is invariant to the right under (N N I') - N,..

The next thing to do is to set the stage for an application of Lemma
4.10. As there, we have normal subgroups N,, Np C N, C N, with the
properties (1)—(4). Put

m(f) = /WN mrf(?n”) dy (n,).

Then
d
T — T = 2 (W,L+1 - W,L)'
p=1

On the other hand, if we write

Nf for N,/Np,

@

then an integral manipulation entirely analogous to the one carried out
above gives

77” = 77: ° M.
Consequently,

d
(lF - 77;) ° Mg = 2 (WJ+1 - 77:{) ° M.
p=1
The quotient
MLT/N;LT-I—] = Np/Np,-f-l

is one dimensional. Pick an element X, € n,/n such that exp( X,) -NJH
generates

(NfNT, )N /NL, =NfnT, /N N Ty,

If, in a general way, for ¢t € R,

CI)u(t) :f q)(exp(tXu)nMH) dNM+|(nu+l)’

NI /NE L NTy,
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then the difference
®,(t) —j:(bﬂ(s)ds
computes
(7 = 7 )(@) .-
Lemma 4.11. Let f € C*(R/Z). Put

ﬂm=£Wwdm

Then, for every non-negative integer k,

I f = 7O, =275 f A,
Proof. We shall give two proofs.

Method 1. Write
f(x) = f0) =3 f(n)e2m1m

n#0

where
fn) = [ fx)em T .
0

Then

implying, therefore, that

10) = F0) 1= 3 (50 ) 17w

0
< ('zolﬁ,zk)l/z' (,Eolf(k)(n) lz)l/z

1 \% © 1/2
S2-(§;) ( ;2—1:) AR,

n=1

<9k, (/0'|f(k)(x)|zdx)l/2

=275 %1,
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or still

=), <27 f®q,

as was to be shown.
Method 2. Write
f(x) = 7(0) = 1(x) = F0) = [ (£(») = F(©0)) &y

x—1

x—1

Consequently,
1) =0 |= ([rai)171, =2
Because f 1s periodic with period 1,
fo‘fm(x) dx=0 (k=1).
It thus follows by induction that

|f(x) = F(0) = 27511 f 1,
or still
1= fO)l,, = 27511 f P,

as was to be shown.
Hence the lemma. |

To be able to apply estimates of the foregoing type, we need to
impose conditions of differentiability on f. Since there is nothing to be
gained by striving for maximum generality, we shall simply assume that f
is C® — then

frr=m(f) € C*(G/ (N NT)-Ng).
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Let {A,} be an enumeration of the elements of F. Put F, = F — {A }
— then

(F: #(F—F)=1) = (E).
In these notations, with p = #(F),

Spr = f[l (7 — ’”F,)(f)
or still
or= 11 (1= 1))

where, for simplicity, 7} = f.
Given a subset S of {1,...,p}, put

®(P:F:S:f) =[] (1 — 7t)(7(£)).

ies
Then it is clear that
®(P:F:S:f) € C®(G/(NNT) N;)
with
DO®(P:F:S:f)=®(P:F:5:Df)

for any right invariant differential operator D on G.
We can now describe the basic idea behind the estimation of ¢, . For
any i between 1 and p, let

S = {1,....i}.

4

Write
$pFr= (lF - W;)((D(P:F:gp—l f))

It will then we shown that ¢, » can be estimated in terms of certain
derivatives D of

<I)(P:F:5p_] :f).
Since
®(P:F:5, ,:Df) = (1,—af_,)(®(P:F:§,_,:Df)),

the argument proceeds via iteration on a step-by-step basis.
Before taking up the details, we had best establish a convention or
two.
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Let
®eC*(G/(NN I‘)~NF).

In what follows, it will sometimes be necessary to view @ as a function on
G X N:

®(x:n) = ®(xn).

When this is done, we then employ without comment the usual tensor
product formalism for differential operators on product spaces.

Given F' C F, #(F — F’) = 1, let v}, be a compact neighborhood of
1 in N/, with the property that

o - (NL N, ) =N
Write
21
for the sup norm calculated on w}.. If ® is per supra, then
@11} = supyy | @],

® being, in particular, right invariant under N, N T M-

LEMMA 4.12. Let F' C F, #(F — F’) = 1 — then, for every non-nega-
tive integer k, and any

® e C*(G/(NNT)-Ng),
Vx €EQa,
| (1, — #f ) (7:(®@))(x) |<27%-d- lmaxdll(l ® X4)0(x: )}
=u=

Proof. Write
(IF - 77;) ° Mg = g (WJ—H - '”J) ° ME.

Because

we have only to estimate

| (1 = 7 )(@)(x) |

or still, the individual

| (il — mf )(@)(x) |-
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In turn, thanks to Lemma 4.11 and the remarks prefacing its formulation,

l (Wj+l - J)(@)(x) ‘

can be estimated vis-a-vis

fi\/iH/N’anrM:D(x exp(tXu)nuﬁ-l)dNuﬂ(nwl)

M

and the corresponding ‘constant term’, i.e., the associated integral from 0
to 1. In this way, we find that

(e — 7 )(@)(x) |
is majorized by 27* times
dk
[

SuPld—t"—' 211,

[?] being the 7-dependent integral above. As the latter cannot exceed
(1 ® XK@ (x: )%,

an application of the triangle inequality completes the proof. O

In passing, let us observe that
(1® X)@(x:n) = (Ad(x)X*-®)(xn).
To set up the statement of the main result in this circle of ideas, make
the following replacements in the data:

F' - F
wTFI - wf
d—-d,
X, - X, .

PROPOSITION 4.13. Let f € C®(G/I') — then for every p-tuple k =

(kys-...k,) of non-negative integers k; there exists a positive constant Cy
such that

‘ ¢P,F(X) |
is majorized by C, times the maximum over all

1 =p,=d,
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of the supremum over all
nl € ol
" €
of the absolute value of
Ad(xnb...nb) X5 - Ad(xnl. . .nt) X
.. .Ad(xnp)X‘f‘:_'I' -Ad(x)X:: 'wp(f)(xn;. ..nt).

The importance (and therefore the significance) of this estimate will
become clear in due course. At first glance, one might think that it would
be awkward to use in actual practice. But this is not the case at all. For in
the applications, x, which is a priori arbitrary, will be restricted in a
certain way. Since

1l i
wh. .. @

is compact, something specific can then be said.
For instance, suppose that f € S*°(G/T"). There is a strictly positive
function E, on G, a linear combination of Eisenstein series, such that VD

| Df(x)|= C(f, D)-|E(x)] (x€G),

C(f, D) a positive constant. [Note: The existence of E, is ensured by
Lemma 4.7; E, does not, of course, depend on f.] Now suppose that we
confine x to a compact subset £ of G — then the differential operators
figuring in our proposition stay within a compact subset of all the right
invariant differential operators on G (equipped with the usual LF-topol-
ogy), so, ignoring positive constants,

Sup I‘PP,F(X) |

xEQ

is no more than

Sup Sup IWF(Er)(an) l )

x€Q nwa;...w,

an inequality which is indeed fundamental.
Proof of Proposition 4.13. In view of the preparation which has been

already undertaken, the proof itself is virtually obvious. One simply writes
(cf. supra)

bpr= (17— w})(@(P:F:SP_l :f))
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and then, to be completely formal about it, utilizes downward induc-
tion. O

We shall close this section with some remarks which stand by them-
selves although they will not be fully exploited until subsequent papers in
this series.

Put

E(P

io

:7) =E(P,|4,:1: 2r+ 1)p, :7).
Then (cf. Lemma 4.7)

o
Er = 2 Er(Pio:?)'

ip=1

The role of the E, on G/T' is that of providing universal majorants for
slowly increasing functions, a point of obvious technical value. It is then
only natural to ask: Can one find analogues of the E, for rapidly
decreasing functions? We shall now take up this question.

Let g be a real parameter. Introduce

o
{q = 2 g’q(Pio ?)
=1
where, by definition,
G(Pix)= 3 exp(-q-llHyy (x1)l)  (x€G).
YyET/TNP,

Convergence can be secured by assuming that, e.g., ¢ > 2llp, Il, in which
case the corresponding function is slowly increasing.

Lemma 4.14. 1)) V¢, 3 q,., Q, such that

=
quSQc"-P,O on &, kK. .

() Vvg,3 ¢, C, such that
Ef,jOSCq-fq on &, K

to,wo  ip°

This result carries with it the immediate consequence that the {, are
universal majorants for rapidly decreasing functions on G/T. Indeed, any
such f has the property that V g(> 2[|p, Il) there exists a positive constant
C,(q) such that

’fls Cf(Q)‘fq

and conversely.
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To prove Lemma 4.14 we shall need an estimate on the E, which itself
depends on still another estimate, the proof of which will be given later
on.

LEMMA 4.15. Let 1 =iy, j, < ry— then 3 C, > 0 such that

Vx€eG
E,(P,:x) = G, -exp(-2rCy - I Hp 1y ()1

[Note: G, is a positive constant which does not depend on r.]

Proof. Take, in the notations of Sublemma 4 (§7) infra,

C’'=K
C"=w,.

0
Given x € G, write
x=k, exP(HEOIA,O(x»stx
per
G=K-A, -w-(S NT).
Then that result implies that for everyy € T,
<HPjojAm( k. CXP( HROM,O(X))SxY) s Pj, >
= (Hp 0 (k¥), 0,) = Co- Il Hp 0 ()1l = Coo
for certain positive constants C,, Cy,. It therefore follows that
E(P,:x)= E,(Pjoz k., CXP(HP,OM,O(X))%Sx)
= E,(Pjo k, eXP(HP,O‘A,.O(X))Sx)
= E,(Pjo: k)
Xexp(—2r(C00 + G, - ”HP.OIA,-O(X)“))
< C,-exp(-2rC, - ”HP,OM,O(X)”)
where

C. = E,(P_:1) -exp(-2rCy).

r Jo

Hence the lemma. O
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Proof of Lemma 4.14(i). There is no loss of generality in supposing
that ¢ > 1. Fix j,, 1 =<jj, = r, — then it will be enough to show that, up to

a positive constant,

§q(P,. :?)

c

is majorized on © by _.;,j . for some g, > 0. We have (cf. supra)

twj

1<GC-E(P, :x)” exp(—ZrCO-IIH,,,O,AIO(x)H).

Therefore, for any ¢,

(P, :x) = CE(P,:x) ¢y (P,:x)
where
q(r) = q + 2rC,.
Let now
xXE€ES, K.

There is a constant ¢, < -1 such that
§3||p,0|i(on ix) = Cg‘Ef;O(X) -

On the other hand, as can be seen from the proof of Lemma 4.7, there is a
constant r < —1 with the property that

Er(})jo:x) 4 ‘EPJO(X)C§ ‘

Put

q. = 3llp; Il = 2rG,.
Then,on &, , K, . we have

$o( Py x)
SCr'Er(Pjo:'X) g‘q(r)(P X)
-1

<G E/(P,:x) §3;1p,0c!(on3x)

= C,C§Cj.0“l ~E,,/0(x)",
from which our assertion follows. O

Proof of Lemma 4.14(ii). Given g, set
¢, = q/mflxllMl,
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A running through E% O(g, a; ). Using definitions only, we then find that
onS, kK

to,wg Ig?

EPIO(x)C" =C, exp(—q - |l HP.OIA,O(X)”)’
C, a positive constant which need not be explicated. Since

CXP(—‘I : “HP,O]A,O('x)”) = fq(Pio 3x) = fq(x),
we are done. O

5. The truncation operator. The purpose of this section is to define
and study the truncation operator. The idea behind its introduction can be
traced to the works of Langlands (especially [2.a]) who, however, only
proceeded on an ad hoc basis in certain special cases. It was Arthur [1.b]
who gave, in the adelic setting, a general definition and, in that situation,
established its essential properties. We considered in [3.b] the case of
I'-rank one lattices. Here we shall deal with the general case. If it were
only a question of one cusp, then the present discussion could be modeled,
to some extent at least, after that of Arthur. But, of course, I' will
ordinarily possess more than one cusp, a point which causes a number of
complications thereby necessitating a treatment which differs radically
from Arthur’s. The definition itself will be easy enough. From then on,
though, there will be a host of difficulties to overcome. For this reason, we
shall content ourselves initially with precise statements only, deferring the
proofs to subsequent sections.

We begin by recasting the definition of

TP]A(H:f)

from the preceding section. So, as there, let (P, S) be a I'-cuspidal split
parabolic subgroup of G with split component 4 which we take now to be
special. Recall that in this situation we write

Tp(H:f)
in place of
TP|A(H :f).
Given H € a, define
T(H:f)

by
Tp(1,(H):f).
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It is then the case that
T‘{P'y‘l(H:f) = TP(Hf)

forally €T.

Fix y € I'; put P, = yPy ' — then the K-component of y per the
decomposition G = K- P takes the special split component A of P to the
special split component 4, of P,. Noting that

HP]A(XY) = IF(P:Py)(HPy{AY(X))’
the definitions then imply that
XP,A:"J(IP(H) - HP|A(XY))
= XP,A:@(IF(P3Py)(1P,(H)) - II‘(P:Py)(HPyIAY(x)))
= XP,A:%(I(PlA :PyiAy)[IPY(H) - HPY\AY(X)])

= XP, 4,9 ( IPY(H) - HP,(AY(X))-
Furthermore,
fH(x) = "(xv).
Let C(P) be the I'-conjugacy class of P — then it follows that

T,(H: f)(x) = 2 XP,A:S(IP(H) - HP|A(XY))'fP(xY)

yET/TNP

= 2 XPy,A,:a(IPy(H) - HP,,‘AY(X))'fPY(x)
yeET/TNP

= 2 XPWAYIE')(IPY(H) - HPY]AY(X))'ny(x)a
P,ECK(P)

an expression which turns out to be of considerable utility.
As before, let

{(P,S):1=<i=<r)

be a set of representatives for the I'-conjugacy classes of I'-cuspidal split
parabolic subgroups of G. Given H € a, put, for any complex valued
locally bounded (measurable) function f on G /T,
Q"= 3 ()T, (H ),
1=1
QO then being the so-called truncation operator with which we shall be
occupied for the remainder of this section.
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There are a number of elementary observations which should be made
immediately. In the first place, it is clear that the definition of QY is
independent of the choice of the representatives P,. Next, Q¥f is a locally
bounded function on G/I" which is even slowly increasing provided that f
is so (cf. Proposition 4.6). If f has compact support, then Q¥f does too (cf.
Proposition 4.3). On cusp forms, Q" is the identity. Finally, while Q™ will
not ordinarily respect the continuity or differentiability of a function, it is
nevertheless always true that

Jim OFf=f

uniformly on compacta, as can be seen from Proposition 4.4.

It is a point of some importance that Q¥ can also be written in terms
of all the T-cuspidals. Thus let C be the set of all I'-cuspidal split
parabolic subgroups of G (cf. §3) — then, taking into account what was
said above, we have

Q"f(x) = 2 (_l)rank(P)XP,A:E)(IP(H) - HP|A(X))'fP(x)

PeCr

or still

f(x) + 2 (_l)mnk(P)XP,A:S(IP(H) - HP|A(x))'fP(x).

PECL

P£G
We shall see that this alternative representation of QM is, from a technical
point of view, decisive.

Our objective now will be to show that, under certain conditions, Q!
can be regarded as an orthogonal projection on L*(G/T). Owing to
Proposition 4.9 (and supporting discussion), it all comes down to a
question of idempotence. Ideally, one would like to say: If H is suffi-
ciently regular, then QM (or rather its closure QM) is an orthogonal
projection on L*(G/T). Unfortunately, due to the presence of several
cusps, things are not quite so simple as this. Instead, our statements will
have to be phrased in terms of a new ordering on a, an unexpected
development.

Given H|,H, in a, write

H,<H,
if there exists an H, € Cp(a,) such that
I(POIAO: PiolAio)(IP,o(Hz) - IP,O(Hl)) = H,

for all i, =1,...,r,. This relation partially orders a. Obviously (cf.
Lemma 3.2):

H, <H,=H, <H,.
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Moreover, the two relations coincide if I' possesses a single cusp but, as
can be seen by example, this is not true in general.

THEOREM 5.1. Fix H, in a — then there exists Hy, < H,, such that for
allH< Hy,

Q"o QM = QM.
Consequently, under the hypotheses at hand, the closure
Q"|S(G/T) N L¥(G/T)

is an orthogonal projection on L*(G/T). Notationally, it will usually be
unnecessary to distinguish between Q™ and Q™.

The proof of Theorem 5.1 is by no means a simple exercise. Let us
isolate the main issue. Fix a I'-cuspidal split parabolic subgroup (P, S) of
G with special split component A(P # G). Consider

XP,A:E)(IP(H) - HP|A(X))‘ (QHf)P(x)-

Then idempotence would be established if it could be shown that, inde-
pendently of P, for all H per supra

I,(H) — HP|A(x) € 9p(a)

oM of

(Q%f)"(x) = 0.
In reality, we shall actually prove somewhat more than this. Call, as usual,
9p(a)
the closure of 9,(a) — then
-9p(a) N9p(a) = 2.
LEMMA. Let H be as above — then, independently of P,
I,(H) — HP}A(x) & -9p(a)

(0"f)"(x) = 0.

This result will be established in the next section. Here is a corollary.
Take H',H” € a per supra with H” < H'— then H” < H’, thus, by
definition,

I,(H') € I,(H") + Cp(a).
Suppose now that
I,(H") — HP;A(X) € 9p(a),
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SO
I,(H) — HP]A(x) € 9p(a) + Cpla) C 9p(a).
In view of the lemma, we then have
(Q%f)"(x) = 0.

It therefore follows that

Q" o QW = QW
REMARK. There is a small item of detail present. We have
QW' o QW = Q¥
so, upon taking adjoints,
g e 0" = 0¥

The point to be made now is that one cannot assert that necessarily
Q" o QW = Q.

Fortunately, this is not really serious. Claim: Let f be a complex valued
locally bounded (measurable) function on G/I' — then

oW o o"'f=0"f ae. (onG/T).

Indeed, if C be any compact subset of G/T', xcits characteristic function,
then

(0" o 0™f, xc) = (@™, 0"xc)
(f> QHN ° QH(XC)
(f.0"xc)
(Q"F, xc)

Il

I

[(e" e 0"r—0"r) =0,
so, by inner regularity,

O o OW'f=0o%f ae. (onG/T).

It is worth observing that the formula

QH" ° QH' — QH’
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retains its validity under cicumstances less restrictive than those above. To
this end, let a, be the set of H € a such that, independently of P,

I,(H) — HP]A(X) & 9p(a)

(0%)"(x) =o.

The thrust of the main lemma, then, lies in describing conditions suffcient
to ensure that H € a,. Plainly,

HEa,= Q"o o= 0"

Accordingly, take H', H” € a subject to the following requirements: (1)
H” <H’; (2) H' € a,. As can be seen from the preceding argument, this
is all that is needed to ensure that

QoM o QW = QW'
In passing, let us note that
li H=1D
H—{I?oo Q

in the strong operator topology, the approach to —oco being through a,
vis-a-vis <. For purposes of calculation, we remark that one may
associate with each pair (H,, H,) per Theorem 5.1 a cofinal subset of
(ap, <),namely {H € a: H< H,}, < and < agreeing there.

We mentioned earlier that for any H € a,

0"(8(G/T)) C S(G/T).

Now fix anew an element H; € a — then it follows from the proof of
Proposition 4.6 (bis) that for every r < -1 there exists an r’ < r such that

QH(5,(G/T)) € 8,(G/T)  (VH<H,).
Moreover,
o": §(G/T) - S,(G/T)
is not only continuous but
{O": H <H,}

is equicontinuous.
Suppose that we replace S(G/T') by

R(G/T),
the space of rapidly decreasing functions on G /T'. Is it true that

Q"(R(G/T)) C R(G/T)?
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The answer is ‘yes’ provided the parameter H is suitably restricted (cf.
infra). Although this fact is certainly of some independent interest, it turns
out that in the actual applications a result of a rather different nature is
the proper object of focus.

In what follows, let Hy, H, € a, Hy, < H,,, be parameters such that
H < H, forces the conclusion of Proposition 3.10.

THEOREM 5.2. Fix Hyin a. Let f € S°(G/T") — then, for all H < H ,,
Q" is rapidly decreasing.

The proof of Theorem 5.2 is far from obvious; it depends in an
essential way on a suitable specialization of the estimate from Proposition
4.13. We shall defer the details until two sections hence.

In conclusion, we emphasize that the theorems formulated in this
section capture the crucial properties of the truncation operator. On the
other hand, it may come as a bit of a surprise that their proofs are quite
different in both concept and execution. Additional comments may be
found in §§8, 10 infra.

6. Idempotence of Q. The purpose of this section will be to prove
that the truncation operator Q™ is idempotent, as formulated in Theorem
5.1. In those notations, recall that, with H as there, the question is to
show, independently of P, that

I,(H) — HP]A(x) & -9p(a)

(Q"f)"(x) = 0.

We shall start off with some structural preliminaries. Let
(P, S),(P* S*) be I'-cuspidal split parabolic subgroups of G with uni-
potent radicals N, N*. It will be supposed throughout that P* #* G.

PROPOSITION 6.1. There exists one and only one I'-cuspidal parabolic
subgroup 7*( P) of G such that:

@ T (P) < P;

(i) R (7*(P)) = (P N N*)-N.

[Note: R, stands for unipotent radical.]

Since a parabolic subgroup is the normalizer of its unipotent radical,
it is the existence of 7*( P) with which we shall be concerned. Of course, it
will have to turn out that

m(P) = N;((P N N*)-N),
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a recipe not depending on the various choices which will be made in the
actual construction of 7*( P).
Choose I'-percuspidals P,, P§ such that

P> P,
P* = Py,

We can and will suppose that P,, P have split components 4,, 4§ in
common. To justify this, simply remark that P, P} are G-conjugate by
some element from

U PwP,,
weE W(Ag)

as was shown in [3.a]. Observe that 4, = A{ need not be §-stable, thus
may very well be non-special. Select split components A, A* of
(P, S),(P*, S*) with the property that 4 C 4,, A* C A} — then

(P,S; A) = (P, S,; 4,)
(P*, 5% 4%) = (B3, 53 48).

The argument now falls into a number of steps.

Step 1. We claim that
PN N*=(MnN N*)- (NN N*.

It suffices to prove that the left-hand side is contained in the right-hand
side, the opposite inclusion being obvious. For this purpose, note first that
P N N* consists entirely of unipotent elements, so the determinant of its
action on n is + 1. Accordingly,

PAN*CS=M-N.

Let p = mn(m € M, n € N) be an arbitrary element of P N N* — then it
must be shown thatm € M N N*, n € N N N*. Fix a sequence {a,} C 4
such that a, —» —oo relative to P. Since a, € 4, a, pa;' € P(V k). On the
other hand,

a, €A C A, = A% C Py C P*,
so a, pa;' € N*(V k). Therefore

a.pa;' € PN N*
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for all k. Because P N N* is closed, we have
m=m- lim a,na;'
k— o0

— 14 -1
= lim ma,nay
k— oo

— 1 -1
= lim a,mna;
k— o0

= lim @, pa;' € PN N*
k- oo

=

meMN N*.

But then n € N N N*, completing the discussion.

Let us consider M N N*, the centralizer of A4 in N*. It is more or less
direct that M N N* is connected with Lie algebra a sum of root spaces
with respect to a, = af, the relevant roots being those whose restriction
to a is null. This suggests that M N N* may very well be the unipotent
radical of a parabolic subgroup of M. We will in fact confirm this in the
lines below. There would then remain the problem of I',,~cuspidality.

Step 2. We claim that
MNN*NT,

is a uniform lattice in M N N*. On general grounds, that I' N S is a lattice
in S and I' N N* is a uniform lattice in N* both combine to imply that

rnsnn*

is a uniform lattice in § N N*(= P N N*). This said, let {x,} be a
sequence in M N N* — then the uniformity of

MNN*NT,
in M N N* will follow provided that it can be shown that {x,} contains a
subsequence convergent mod
M N N*NT,,.
But it is certainly true that {x,} contains a subsequence convergent mod
rnsSnn*

so the desired conclusion results by projection.

The following criterion was established in [3.a]: Let P be a parabolic
subgroup of G such that N N T is a lattice in N — then there exists S
(necessarily unique) such that the split parabolic subgroup (P, S) is
I'-cuspidal.
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Admitting still the fact that M N N* really is the unipotent radical of
a parabolic subgroup of M, the aforementioned criterion (applied to the
pair (M, I';,)), in conjunction with what has been said above, imply that
the putative parabolic is I'y,-cuspidal with unipotent radical M N N*,
Noting that

(P N N*)-N = (M N N*)-N,

the proof of our proposition is then finished via production of 7*(P) by

undaggering.
We have yet to exhibit a parabolic subgroup of M whose unipotent
radical is M N N*. Because

(P, S; A) = (Py, Sy; 4p)»

we determine, in the usual way, a I',,-cuspidal split parabolic subgroup
(PJ, S§) of M with split component Aj. Furthermore, P} is T,-per-
cuspidal.

Step 3. Fix H* € Cp,(a*). Let
a* = exp(tH*).

Then
n* = {X€q: lim Ad(a?)X =0},

t— -0

hence

mNn*={X€m: lim Ad(a})X=0]}.

11— —-00
Relative to the orthogonal decomposition
a,=al ®a,
let H' be the projection of H* onto af,. Put
al = exp(tHT).

Taking into account the fact that m and a commute, we have still

m N n*= {XG m: lim Ad(af)X = O}.
t— -00
These considerations serve to reduce our problem to an essentially
familiar fact from the theory of parabolic subgroups. Working with (G, I')
instead of (M, T'),), let 4, be a split component of a I'-percuspidal split
parabolic subgroup of G. Let P(A4,) be the set of all split parabolic
subgroups of G with A4, as split component. [Note: Not every element of
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P(A,) need be TI-percuspidal] If by C(A4,) we understand the set of
chambers of a, then, as is well-known (see, e.g., [3.a]), the map

@(Ao) - @(Ao)
{(PO» So3 Ao) P> Gpo(ao)

sets up a bijection between P(A4,) and C(4,).

SUBLEMMA. Let H, € a,. Set
n={Xeq: lim Ad(exp(tH,))X =0].
t— -00

Then n is the Lie algebra of the unipotent radical of a parabolic subgroup P
of G which is a dominant successor of any Py € P(A,) such that H, €

GPO( ag) "

[The proof is, of course, canonical. Write

a,= U G1'>0(C‘0)~-
Po

Take any P, € P(A4,) with H, € C p{@o)”- Enumerate the elements A; of
2?;0( g, a,) by requiring

N(Hy) =0 (1=i=<p)
MN(HY) >0 (p<i=sly).
Then
a= ﬁ Ker(A,)

determines a dominant successor of P, associated withm.]
We may view 7* as a map

T*: @r - @F

characterized by conditions (i) and (ii) of the proposition supra. It is clear
that

*(yPy™") = yr*(P)y™! (y €T N N*).
Slightly less obvious is:

LEmMMA 6.2. Suppose that
*(P)< P <P,
Then
T*(P) = *(P’).
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Proof. The a priori containments
(PN N*)-N)NN*
D PN N*
D PN N*
D 7*(P) N N*
5 R, (v*(P)) N N*
D (PN N*)-N)N N*
are actually equalities, hence, in particular
PN N*=P N N*

But then
R (7*(P)) = (P N N*)-N
C (PN N*)-N
=(P' N N*)-N’
= R, (m*(P")).
However,

™(P)< P =R (*(P)) DN’
—~ R (t*(P)) D (P N N*)-N’
=R (T*(P)).
So, altogether,
R (*(P)) = R,(7*(P")),
implying, therefore, that
rH(P) = 75(P'),

as was to be shown.

O

A corollary to this lemma is the fact that 7* viewed as a map

Cr = G, is idempotent, i.e.
T* o ¥ = ¥,

Let
C% = Ran(7*).

Then a given P € C. belongs to Cf iff 7*(P) = P or, equivalently, iff
P N N* C N. This being so, our next task will be to investigate the fiber
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(7*)7'(P) over a given P € C%. There is an immediate global character-
ization, Viz.

P e () (P)=(P'NN*)-N =N
or, in infinitesimal terms,
P e () (P)o(p’ Nn*) +n =n.

The point we wish to make now is that p’ can be replaced by p here, that
is,

P e(m)(P)e(pNn*)+n’ =n.
Indeed, if P’ € (7*)7'(P), then necessarily
P'N N*=P N N*
p Nn*=pNn*
(pNun*)+n =n.
On the other hand, the equality and the containment

pNn*)+n"=n
{( )

p’Dp
=
(p’Nn*)+n"DOn
=>
R, (*(P")) D R(P)
=
™ P)CPCP
=
™(P) <P <P’
=

*(P’) =1*(P)=P

by Lemma 6.2. [We explicitly observe that we have used the fact that
containment is equivalent to domination on the set Cp (cf. [3.a]).] In
root-theoretic terms, it can then be said that

P’ e (m)'(P)
g\Cn

VAEZ,(g,ag)st =g, Cn'.
ga ZpnNn*



396 M. SCOTT OSBORNE AND GARTH WARNER

To exploit this remark, fix H* € C,.(a*) — then
VAe EPO(Q’ ag)
g, C n* < A(H*) > 0.

It can be supposed that the elements A; of E(}.O(g, a,) have been so
arranged that

a= ﬁ Ker(A,).

i=1

Neither g A, DOT Gy is contained in n*, so
N(H*)=0 (1=i=p).

There is no loss of generality in assuming that

AN(H*)>0 (p<isp™)
NH*) <0 (p*<isl).

Call P~* the dominant successor of P, corresponding to
p*
a* = ) Ker(}A,).
i=1
LEMMA 6.3. Let P € C¥ — then
() (P)= (P’ €C: P< P <P}

Proof. If P’ € (7*)7!(P), then, as has been seen above, P < P’. To
establish the opposite domination, simply note that in the representation
of a’ as the intersection of certain Ker(A;) any such index i must, of
necessity, lie between 1 and p~™* implying, therefore, that P” < P~*. So, to
complete our proof, we have only to show that 7*(P~*) = P, i.e., that P™*
is on the fiber over P. For this purpose, it will be convenient to utilize the
root-theoretic criterion set forth supra. Thus take a A € 2p(g, a,) such
that

g, Cn
gy ZpNn*.

The claim then is that g, C n™*. Write A = Z¢;A;. Since g, C n, there
exists an i, > p such that ¢, > 0. If, additionally, i, > p~*, then, of
course, g, C n™* and we are done. Otherwise, p < i, < p™*, hence A, (H*)
> (. But
lo
g ZpNn*=>AH*= 3 c\(H*) <0.

i=p+1
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Because
CIO}\ io( H*)

is positive, there must exist another index j, such that ¢, >0 and
A (H*) < 0. Such a j, must be > p~*, hence once again g, C n™*. ]

Now where are we? Starting with the I'-cuspidal parabolic subgroup
P* # G, we produce a map 7*: C — C. and the associated set C}. We
shall consistently write P* > P, P} some I'-percuspidal which has been
and will remain fixed. The reader must realize, however, that the ambient
split components can vary, the choice being dictated by the context. There
is undoubtedly some potential for confusion here so we shall make every
effort to be completely precise in order to minimize it.

In terms of canonical data associated with ( Py, S§; A%), A% any split
component of (P, S¢), the set C¥ admits a decomposition, the descrip-
tion of which may be formulated in the following way. Fix a finite subset
F} of G with the property that

{xoPdxg's xo € )

is a set of representatives for the I'-percuspidal parabolic subgroups of G.
Given

wy € W(AY)
x, € Ff,

put
Alwy:xq) = Txy N Pwy P
Then
k= U U U U (&P§")nCt

wo € W(AE) xoEFF P=PE 8y€A(wy : X)

A natural question thus suggests itself. If P = P, when 1is it true that
8, Pd;' € C¥? Naturally, this is entirely equivalent to determining when

m*(8,P8;") = 8,P8;".

Since we wish to discuss 7*(8,P8;"), P = Py, the situation changes
slightly in that P is not the generic I'-cuspidal (as it was in Proposition
6.1) but rather this time 8, P8; " is. Using the fact that

8 € A(wy:x,) C P§w, P,

write
30:”(80)‘4’01’(30) (”(80) EN(;",P(SO) EPO*)'
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Then in the picture

8,P8;' = 8, Pdy!

P* > PO*’
the split component shared by §,P;8;' and Pj* is

n(8,)43n(8,)".
Supposing that

(P, S; A) = (P, S5 45),

we have, accordingly,

*(8,P8;") = 8, P8;!

=

8,P8;' N N* C §,N&;!
=

Ad(8,)p N n* C Ad(8,)n
=1

Ad(n(60))w0Ad(n(60)—l)-Ad(n(SO))p Nn*
C Ad(n(8,))wyAd(n(8,)")- Ad(n(8))n

Ad(n(8,))woAd(n(8,)™")- Ad(n(8,))m N n* = {0}
Ad(n(8,))wym N n* = {0}
Ad(n(8,))(wom N n*) = {0}

wom N n* = {0}.

Observe that this Lie algebra-theoretic condition involves §, only through
wy, the shifted data entering in the verification but not in the final
conclusion. Write

(P*, S*; A%) = (P§, S§; AY).

We remark that the split component 4* is the same as the one figuring in
the earlier constructions vis-a-vis

DA, A* C A%,

P> P}
P*> P}



THE SELBERG TRACE FORMULA II 399

Because wym N n* is a sum of root spaces with respect to af, a given root
occurring only if its negative appears simultaneously,
wom N n* = {0}
i
VAstgy, Cm:wyA|a* =0.
Represent P per P, i.e. write
P = (P
Then
wom N n* = {0}
54
VA, €EF,wA, |a*=0.

In recapitulation, therefore,

(8, P8;") = 8,P8;"
i
VA, € F,wA,|a* = 0.
Let us assume now that §,P8;' € C%, Lemma 6.3 then providing a

characterization of the fiber over 8,P3;'. Thanks to what has just been
learned, it is not difficult to describe

(8,P3") "
Indeed, if
F;*=FU {A:wA,>0and wA, |a* # 0},
then
(8,P85") ™ = 8o( Pgt) ka5

as can be readily seen by transporting the question to w, Pjw, "' and using
the definitions.

The preceding structural facts will all play a role in due course.
Setting them aside for the time being, we are at last ready to come to grips
with the purported idempotence of QM. It will be best to restate our
objective.

MaAIN LEMMA. Fix H in a — then there exists Hy, << H, such that for
all H < Hy, independently of P* # G,
IP*(H) - HP*\A*(X) % '_E)P*(CL*)_

=

Q") (x) =o.



400 M. SCOTT OSBORNE AND GARTH WARNER

We hasten to stress that here, of course, A* is the special split
component of (P*, $*).

By way of explanation, recall that the definition of Q"f was initially
given in terms of the P, that is,

of= 3 (-1)*™ "1, (H:/),
i=1

it then being observed that still

Q" = Z (_I)IM(P)XP.A:B(IP(H) - HP|A(?))'fP’

PEC,

the latter formulation making it clear that the role of P is that of a
running variable. [Note: Again, all split components are special.]
Our immediate intention is to discuss

(0"f)".

Because the terms in the sum defining Q*f are not I' N N*-invariant, it
will first be necessary to split C. into I' N N* conjugacy classes. Denoting
by C(N*) a set of representatives for these, the diagram

Cr . Cr
) l
@I‘(N*) """ > @r(N*)

can be rendered commutative provided the dotted arrow is defined
according to the relation

™(yPy™) = yr*(P)y' (v €T N N*).

We then have

of(x) = X 2

PECL(N*) yETNN*/TNN*NP

X (*l)rank(P)XPy,A,:'a(IPY(H) - HPY{AY(X))'ny(-x)
or still

2 )

PECK(N*) yETNN*/TOAN*NP

X (‘l)rank(P)Xp,A:s(Ip(H) - HP]A(XY))‘fP(XY)~
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SUBLEMMA. There exists a positive constant K, and a positive integer k
such that

VHEa

NH(F)Il <K, — kq- é ANi(H).

i=1
Proof. We begin by reminding ourselves that
a=a(F)®ay,.
This said, put

120 = 2|< P

Since
M=cN.  (3¢,>0),
1?1l zis a norm on a( F). The fact that
of(H, — H) #0
implies that
Hy(F) — H(F) € Cppy(a(F)).

Accordingly,
WH(F)Il < |Hy(F)ll g + | Hy(F) — H(F)ll

< |Hy(F)ll » + 2 (H)(F) — H(F), \T")

i=1

= || Hy(F)ll s + é (Hy(F),Ni)— é (H(F), ).

i=1
By equivalence of norms, there exists a positive integer k, such that
20 < ko - 11 £.
Because

{<H0(F)’ A?>: Ni(H,)
(H(F), Nj )= Ni(H),
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choosing

p
Ko = ko |1H(F)ll p + 2 }‘I:'(Ho)

i=1

serves to complete the proof. O

To deal with Lemma 7.2, we have only to take
H, = I,(H)

in the preceding considerations. As for Lemma 7.3, it is clearly a conse-
quence of the following more general statement which, in and of itself,
will be needed in order to achieve our goal.

LEMMA 7.3. (bis) There exists a positive constant k, and a positive
integer K, such that
Vyecagc
FP(H:HO 5}’)'(’:(1P(H) - HPiA(y)) #0

|E(y)|= k,-exp(K, - | Hp(¥)Il).
We shall proceed via a series of sublemmas.

SUBLEMMA 1. Let T € gl(n, C) — then
exp(ITllop) = lle™ Il op-

Proof. Let v be a non-zero vector — then

(e ¢] 1 [e o]
le™oll = E ;— 2 IT"v!I
el 1
: O
= exp(HTHop)Ilvll,
which is clearly equivalent to our assertion. O

Let us agree to denote by
A, — No

generic (simple) roots — dual roots attached to (P, , S,; 4, )-
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SUBLEMMA 2. There exists a positive constant C, such that

inf (G, 1K1+ (Hyp fexp(X)), X0 ) | =0,

[Note: [|?ll, is the Euclidean norm on g canonically associated with
the bilinear form B (cf. §3).]

Proof. Choose, as is possible, a finite dimensional representation 7, of
G° (the identity component of G) on a complex Hilbert space E
positive real number r, , and a unit vector v; such that

I (Yo, = exp( (Hyo (). n )| (x € 6.
Let X € g — then

Il 7, (exp( X)) v;, | = llm, (exp(-X))ll Gp

<HE0!A,0(eXp( X)), NO>

= - log 7, {exp(~X))ll op -

ip
There is a positive constant C, not depending on X, with the property that
lldm, (~Xlop = C- 11 X1l4.

Consequently, if

Cio = C/ri07
then
X+ (Hyy (exp(X)), X )
= [lldm (X))l op — log{Im,{exp(-X))lop)]
But

m, (exp(-X)) = exp(dm,(-X)).

Therefore, thanks to Sublemma 1, the quantity inside [...] is non-nega-
tive, so the inf over all X € g of our expression is bounded below by zero,
as desired. O
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SUBLEMMA 3. Let C’, C" be compact subsets of G — then there exists a
positive constant C(i) such that

inf {C(i0)~ VH 1+ (Hpy (¢ exp(H)e), xo>} > oo,

ceC,c"eC”";HE

Proof. Write

<H poa, (¢ exp(H )e”), X0 > - <HP,01A,0( c'c” exp(Ad(¢”) ' H)), No>

= <H,,,0Mlo(c’c”k), No > + <H,,'_0M'0(exp(Ad(c”)—lH)), }\i°>,
k the K-component of
exp(Ad(c”)"H)
per G = K- P, . Owing to Sublemma 2,
<HE0|A,0(exp(Ad(c”)_1H)), N°>Z -C,, - lad(c”) " Hll,.
Since

IAd(c”) " HIl, < sup IAd(?) 1l op - I H I,
pe

it follows that with

C(ip) = C,,- sup IAA(?) ™ Nl op,
Ul

we have
C(i,)-IHIl + <HP'0|A:O(C, exp(H)c"), Xo>
= inf <H 7, ’0>> —00,
o8 \Hrga () N0 )= =0
thereby finishing the proof. ]

Assign to the symbol p; the customary interpretation.

SUBLEMMA 4. Let C',C" be compact subsets of G — then there exist
positive constants C,, Cy, such that

VxeG, VHEa, VEC, V" e,
(Hypa (¢ exp(H)e"), p,,)

v

<HP.OIA,0(C'X), P,-0>— Co-IH|I — Cy-
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Proof. Because p; can be written as a positive linear combination of
the N'o, we need only produce C, and Cy, with the property that

< PioIAio(c exp(H)c"x), N°>

> <HP,0,A‘O(c’x), N°>— o e
Now, on the one hand,

<HP'OIA:O( ¢’ exp(H)c”x), No >

= <HPIOIA:‘0(C, exp(H)c"k,), >\i°>+ < P Ja,\ (x), >\l°>
while, on the other,
<HROM.0(C’X)’ }‘i°>: <HP.0IA,0(c,kx)’ >\i°>+ <HP,O|A,.0(x), N°>.

This means that it is enough to establish the existence of C,, C,, such that
VkeK, VHea, VIEC, V' EC,

<H,,,_0|Alo(c'k), )\‘0>S Coo+ Cy- I|HIl + <HR0|AW(C/ exp(H)c"k), No>.

Since the left-hand side stays bounded, Sublemma 3 guarantees the
validity of our inequality. |

Proof of Lemma 7.3. (bis) By definition (cf. Lemma 4.7), E, is a
positive linear combination of the
E(P |4, :1: (2r + 1)p, :7).
Accordingly, we need only make our estimate for the latter. In turn,

thanks to the usual invariances, there is no loss of generality in supposing
that

y=cexp(H)e”  (H=Hpy(y))

where ¢’, ¢”’ are confined to certain compact sets C’, C”, say. This being
SO, We have

E( P |4, :1:@2r+ l)pio:y) = E(Pi0|Aiozlz (2r + )p, :c"exp(H)c")

= 3 exp( <HP,0|A,0(C, exp(H)c"y), 2’”P,~0>)
YET/TNPF,

< exp(-2r(Cy- 1 H Il + Cyp))

X Y eXp(<HEDIA,O(C’Y)’2rpio>)'

yel/TNP,



438 M. SCOTT OSBORNE AND GARTH WARNER

Here, of course, Sublemma 4 has been invoked. In this connection, let us
also recall that r is negative (in fact < -1; cf. Lemma 4.7). Since

> exp( <HP.OIA,O(CI'Y)72rpi0>)
YyET/TNP,

=E(P,|4,:1: (@2r+ p, :¢'),
the supremum

sup > eXp(<H1°,01A,0(C’7)’2rpio>)

¢€C’ yeT/TNP,
is finite. Bearing in mind that H = Hp ,(y), the existence of k, and K, is

therefore clear. ad

All the preparation which is needed to prove Theorem 5.2 has now
been completed, i.e., at this point we are in a position to dispense with:

Proof of Objective. (bis) We can and will suppose that the purported
exponent of growth ¢ is > 1. It is then a question of establishing the
existence of a positive constant C, and a positive integer K_ such that

vxesg, .k, VYeT

0,%o o’

Fp(H:H, 3x7)'05(IP(H) - HP|A(XY)) #0

exp(—KC ’ IIHP|A(XY)|[) = Cc : EP,O(x)C'

Indeed, if this be done, we would have

2 FP(H:H03XY)'°£(IP(H) - HP|A(xY))
yelr/TNnpP

Xexp(—KC . IIHP|A(xy)[|)

=C,- EP,O(X)C' 2 XP,A:S(IP(H) - HP|A(XY))
yET/TNP

= €, Ep (%) Ty(H:1)(x),
so it would only be necessary to absorb the exponent of growth of the

slowly increasing function T,(H:1) into c. Put r = —¢(< ~1) — then, as
can be seen from the proof of Lemma 4.7,

E(P, |4, :1: 2r+1)p,:x)=C, - Zp (%),
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C,, as there. But, from the proof of Lemma 7.3 (bis) supra,
E(P,.0|A,0: 1: (2r + l)piozx) = E(P,.OiA,O: 1: 2r + 1)p,0:xy)
<k,-exp(K,- lal|A(xY)”)-

Take

Then it follows that
exp(~K, - | Hpy(x7)I) <k, -E(P, |4, :1: (2r + )p, :x)"
= (k,/C,) Ep(x)" = C.-Ep(x)",
the sought for conclusion. O

We shall close by justifying a comment made in § 5, namely that

O"(R(G/T)) C R(G/T)

so long as the parameter H is subject to the assumptions set forth in
Proposition 3.10. Naturally, the preceding argument is not immediately
applicable: The elements of R(G/T") need not even be differentiable. It is
easy to see, however, what needs to be done. Thus fix f € R(G/T") — then,
in view of what has gone before, to ascertain that

Q"f € R(G/T)
we have only to prove that

VFES®, (F#@), VK>0, 3C,>0

such that
Vyea
Fp(H:H,:y)-of(I,(H) — HP}A(y)) #0

|6p,r(¥) | = Cx-exp(—K - | Hp,()1]).-

Remembering that

bp = 2 (‘I)IM(PP)'fPF',

(F': FCF}
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it is clearly enough to prove that
VFe¥ (F#8), VK>0, 3C>0
such that
VyedaGg
FP(H:HO 3)’)'0£(]P(H) - HP[A(y)) # 0

|f(»)|= C-exp(-K - 1| Hp ( y)]]).

LeEMMA 7.4. For every positive integer K> O there exists a positive
constant Cy such that for all x € G

|f(x)]=< CK-exp(K- <HPM(x), p>)

Admit this result for the moment — then our verification can be
completed as follows. To begin with, note that

Ui(IP(H) - HP!A(y)) #0

1,(H) — HP]A(y) € Yp(a).

This being the case, write

!
p= Ec;}\’ (c:)>0).

i=1
Put
/

120, = X et (7, N)].

1=1

Then [1?ll,, is a norm on a, thus, by equivalence of norms, there exists a
positive constant C, such that

12l =<c,- 121,
We have now

<HPfA(y > <IP(H) P> <I (H) - HP|A()’)a P>

= <IP(H)’ > g < I,(H) — P;A(y)’}\l>

= (I,(H),p)— 21 ¢ <IP(H) = Hpa(y), N>|

= (I,(H), p)— Il1,(H) — Hp (D),
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from which we derive the estimate
1 Hpa (2 < C, -l Hpy (91,

< C,- (IIp(H) = Hpy(p)Il, + I I,(HD)I1,)

= G, (I(E)ll, + (I,(H), ) = (Hp(¥), ).
Let K be a large positive integer — then

-K - | Hp(y)Il = Ky + CK- <HP|A(y)’ P>

where

Ky = KG,- (“IP(H)”p + <IP(H)> P>)
Hence

1f(y) = Cick 'eXP([CpK]‘ <HP;A()’)a P>)
< Cigr exp(GK - (Hpu(7). ) = Cic-exp(=K - | Hp(»)),
Cy being, by definition,
Cicx) -exp(Ky).

The desired majorization of fis therefore established
There remains the proof of Lemma 7.4. It will be recalled that E, is a
positive linear combination of the

E(P |4,:1: 2r+1Dp,:?)  (r<-1).
Since fis rapidly decreasing, there exists a positive constant C, such that
[f(x)|I= G E(x)"  (x€6).
Let K > 0 — then

E(P|A:1: (-K+ 1)p:x) = F;rm)exp(—lk'- (Hpa(x7), 0))

Zexp(—K-<HP|A(x),p>) (x € G).
But
E(P|A:1: (=K + 1)p:?)

is a slowly increasing function so, in view of Lemma 4.7, there exists an
r < -1 and a positive constant Cy , such that

E(P|A:1: (-K+ 1)p:x) < Cx,-E(x)
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for all x in G. Consequently,
f(X)|=C E(x)" =(CCx,) E(P|A:1: (<K + 1)p:x)”"
= (CCk.,) exp(K- <HP|A(x)a P>)

Setting
CK = CrCK,r

completes the proof.

8. Additional properties of the truncation operator. The purpose of
this section will be to carry the study of the truncation operator Q™ a little
further. In contradistinction to Theorems 5.1 and 5.2 which, undoubtedly,
are the main results, the properties appearing here lie less deep, being
considerably more elementary and formal in character. Nevertheless, they
all will play a role in due course.

We begin with some functorial remarks which are most easily ex-
pressed via certain commutative diagrams.

The parameter space a depends on I'. When this needs to be em-
phasized, we append a subscript: ar.

Suppose that F is a finite subgroup of I', normal in G — then
ar = ar,r and, for any H, the diagram

S(G/T) U L¥G/T)==58((G/F)/(T/F)) U L*(G/F)/(T/F))
QHl lQH

S(G/T) U LYG/T)==sS((G/F)/(T/F)) U L*(G/F)/(T/F))

commutes.

Suppose that I'” is a lattice in G, satisfying the usual assumption, such
that I O I' — then there is a canonical arrow of injection

ap = ap.
Given H” € ar, call Hits image in a . — then the diagram

S(G/T) u L} G/T) = S(G/T) U L¥G/T)
QH’ l/ »]rQH
S(G/T) u L} G/T") = S(G/T) U L*G/T)
commutes.
Suppose that G’ is an open subgroup of G, I' a lattice in G’,

satisfying the usual assumption. Put I' = I'" — then a = a.. There is a
canonical morphism of extension

Ext: Fnc(G'/T’) » Fne(G/T)
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and a canonical morphism of restriction
Res: Fnc(G/T) — Fne(G'/T).

Let H = H’ € a; = ap — then there are commutative diagrams

s(G/T) U INGT) = S(G/T) U IAG/T)

QHll« LQH
S(G'/T)y U L¥G'/T) - S(G/T) U L¥G/T)

S(G/T) U IXG/T) S s(G/T) U LG/

QHJ/ ¢QH’
S(G/T) U L*G/T) o S@/r) v L3(G'/T).

Suppose that

G=G,XG,
=T, XTI,

so that

ar=ap ®ar,.

Write H = (H,, H,) — then the diagram

($(6/T) ULHG/T)) X (85(Go/T) U L(Gy/Ty))
S(G/T) U L*(G/T)
QM x gt L QUHIHS)
S(G/T) U L*(G/T)
(S(G/T) ULHGT)) % (S(Gy/Ty) U L*(Gy/Ty))

commutes.

One can view the discussion heretofore of the truncation operator as
reflecting the ‘G/T'-picture’. In anticipation of the inductive arguments
which will arise eventually, we shall also need the ‘G/I" N P-picture’, to
which we now direct our attention.

Let (P, S) be a I'-cuspidal split parabolic subgroup of G — then a
complex valued (measurable) function f on G/T N P is said to be slowly
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increasing provided the following condition is met. Given

a I'-percuspidal P, dominated by P
a Langlands decomposition M - 4 - N of P

a Siegel domain & in M per P{,

there exist constants C, ¢, 7§ such that
VkEK, YVmed], YVacd, VneEN,
If(kman) |< C- ecllogall .= (m)"g

We shall agree to write
S(G/T N P)
for the set of all such f.

LemMMma 8.1. Let
%p: Fne(G/T') - Fne(G/T N P)

be the canonical morphism — then

%,(S(G/T)) C S(G/T N P).

Proof. The proof is very easy, modulo one remark. In view of Lemma
4.7, there is no loss of generality in replacing f by a suitable E, (some
r < -1). The remark, then, is this. Inspect the proof of Lemma 7.3
(bis) — then it will be seen that of plays no real role at all. To put it a
different way, upon choosing the compact sets C’ and C” of that
argument so as to reflect the definition of F,(H:H,:?), we find that

VyeaG
F(H:H,:y)#0
|E(y)|= k,-exp(K, - | Hp(p)I).

Now specialize the choice of P to a I'-percuspidal P, it being supposed
that P, < P, P as at the beginning — then

Fp(H:H,:?) =1,

| Ex) =k, -exp( K, - | Hpy (x)])
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for all x in G. Write x = kman — then

HPole(x) =loga + HPJ|A2;(m),
implying that
“Hp0|,40(x)“ = HIOg a” + “HP(“AI)(m)”

Assume in addition that m is confined to a Siegel domain @53 — then there
exist constants CJ, c}) such that

CJ-exp(cEllHP3|AB(m)II)
is bounded by a power of

The contention of the lemma is therefore plain. O

Let
{((P/,S)): 1 <i<ry,}

be a set of I'-cuspidal split parabolic subgroups of G which are dominated
predecessors of (P, ) and with the property that

{(P,’S):1<i=<r,}

is a set of representatives for the I'),-conjugacy classes of I';,~cuspidal split
parabolic subgroups of M. [Note: This notation is in accordance with that
of Proposition 3.7.] Given H € a, put for any complex valued locally
bounded (measurable) function fon G/T' N P,

™
QRf(x) = 3 (-1
i=1
X 2 X'P,,'A,;B(I'P,.(H) - H’P,|'A,(mx'y,’))'fP{(x.Yi/)a
y/€TNP/TOP,

H then being the so-called partial truncation operator, the properties of
which are more or less the same as those of QY itself; cf. infra. Eg: It is
clear that Q¥ is again a locally bounded function on G/T N P.

We can view Q} as a map

o¥: 8(G/T nP) - S(G/T N P).
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As such, there is a commutative diagram

R7
S(G/TnP) - S(G/TNP)
or L Lo}
S(G/T N P) > s(G/TnP),

Y

R, the right translation operator.
Let

S(G/ (' n P)-N)

stand for the functions in S(G/T" N P) which are invariant to the right
under N. Assign to the symbol

S(KX M/T,, X A)
the obvious interpretation. Call
Fp n: Fne(G/ (T N P)-N) - Fne(K X M/T,, X A)
the canonical morphism — then, of course,
Fp ¥(S(G/(T N P)-N)) C S(KX M/T,, X A).
Furthermore, the diagram
g

PN

S(G/(TNP)-N) 5 S(KXM/T, XA)

ol L1 X QMW
S(G/(I' N P)-N) oy S(KX M/T,, X A)

P.N

commutes. Bearing in mind Lemma 3.8, this fact leads at once to
idempotence, in the sense of Theorem 5.1. It is clear that

S(G/TNP)NLYG/(T'N P)-A-N)
is dense in
L*(G/(TNP)A-N).

Since self-adjointness is direct, we thereby obtain from Q¥ an orthogonal
projection on

L*(G/(TNP)-A-N).
Let
S(G/(TNP)A-N)
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stand for the functions in S(G/I' N P) which are invariant to the right
under 4 - N. Then it is clear what one is to understand by

S*(G/(T'NP)-A-N).
On the other hand,
Fnc(KX M/ {1} X T,,) < Fne(G/(T N P)-A-N),
so there is no difficulty in defining
R(G/(TNP)-A-N).
It follows that, under the expected conditions,
07(87°(G/(I'NP)-4-N)) CR(G/(T'NP)-A4-N),

i.e. the analogue of Theorem 5.2 is in force for the partial truncation
operator too.

Later on (see §10) we shall define a cofinal subset of (a, <) having
the property that for all H in this set everything that one wants to be true
for the Q} will be true simultaneously for all P.

Just as for QMf, there are alternative ways to write QHf. Thus

off(x)= ¥ (-1

P’€Domp(P)
XX’P,'A:B(I'P(H) - H’P|'A(mx))'fp,(x)

or still

oFf(x)= 3 (-7

'PECr,,

XX’P,’A:‘J(I’P(H) - H'P|'A(mx))' (fP),P-
PROPOSITION 8.2. Fix P — then

fix) = 2 X’P,’A:@(I'P(H) - H’p]’A(mx))' Qr f(x).

P’€Domr(P)

Proof. 1t is a question of unraveling the right-hand side. Suppose that
P” < P’ — then by 'P’ we shall understand the entity obtained by dagger-
ing P” into P’. This said, we have

2 X’P,’A:@(I’P(H) - H’PrA(mx))' Qr f(x)
P’€Domp(P)

= 2 DG Vi

P’eDomp(P) P”€Domp(P’)
XX’P,’A:G(I'P(H) - HP[’A(mx))'X'P’,’A’:S(I’P’(H) - I{’P’|’A’(m;c))
X[ (x)
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or still

2 L1

P” €Domp(P)

where [...] is equal to

2 (_l)rank('P')

(P'€Cp: P"<P'<P)
XX'P,'A:G(I’P(H) - H’P]’A(mx))'X’P’,’A':S(I’P’(H) - H’P’[’A’(m;))'
The latter sum can be viewed as being taken over the subsets of
o (m,"a).

Since

we have
rank('P’) = rank(”P) — rank('P).

Accordingly, our sum is a o5, hence is zero except when P = P, giving
one in that case. In toto, therefore, the right-hand side of the initial
expression yields precisely fF( x), as was to be shown 0.

It turns out that this proposition provides a characterization of the
truncation operator. We shall, however, defer a precise discussion to §10.

9. An inner product formula. The purpose of this section is to
obtain a formula for the (L?) inner product of two truncated Eisenstein
series associated with cusp forms. In the special case when I' has just one
cusp, a result of this type was advanced by Langlands [2.a]; he did not,
however, give a proof. Here we shall treat the general case, supplying, of
course, all the particulars of the argument. The significance of such a
formula will become apparent only in subsequent papers in this series.
Indeed, via the philosophy of Eisenstein systems, it will provide the
springboard for an analogous formula vis-a-vis arbitrary Eisenstein series
which, in turn, constitutes one of the main steps in the derivation of the
Selberg trace formula.

We shall start off by establishing the notation and recalling certain
basic facts which, for the most part, can be found in [3.a). This done, our
objective will then be indicated, albeit informally, it being best to defer a
precise statement until later, taking up instead the steps needed for its
realization in their natural order.
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Let (P, S) be a I'-cuspidal split parabolic subgroup of G with split
component 4 which we take to be special. Given a K-type § and an
M-type O, introduce, as usual, the finite dimensional Hilbert space
b.us(8, 0). Attached to each ® € &, (8, O) is the Eisenstein series

E(P|A:®:A:x)= 3 a7 -0(xy).
yET/TNP

Put
Tp(a) = - (p + Cp(8)).

Then it is known that the series defining E(P|A:®:A:x) is absolutely-
uniformly convergent on compact subsets of the Cartesian product

(9,(8) +-1d) x G.

E(P|A:®:A:x)is a differentiable function of (A, x) and a holomorphic
function of A. Moreover, E(P|A:®:A:x) can be meromorphically
continued as a function of A from

J.(8) +y-1a to &+ /-14.

As such, the singularities lie along hyperplanes.

Let
(&) be a finite set of K-types
(0) be a finite set of M-types.
Set
gcus(<8>’<®>) = 2 ®6cus(89®)'
(8,¢0)
If
o= 3 D¢
(8),¢9)
is in &,,(((8),{0)), then we put
E(P|A:®:A:x)= 3 E(P|A:®;54:A:x).
(8,¢0)
Suppose that

(P,S; A) = (P, S"; A).

Let 8 be a K-type, O’ an M’-type. The reduction of § to K,, determines a
finite set (§,,) of K,,-types. The tensor product § ® §,,is a K X K,-type.
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Maintaining the customary practice, introduce the finite dimensional
Hilbert space &_,((8 ® §,,), 8 ® 0’). The assignment ' > '®,
'®(k:m) = ®'(km),
defines an injection
Eeus(8,07) = &, ((8 @ 8),),8 @ 0)

with image the set of elements invariant under the action of K,, on
K X M given by

ky - (k,m) = (kk;}, kym).
The Eisenstein series
E(KX'P|{1} X'4:'®:'A: (k, m))

is a function on K X M invariant under the action of K,,, hence de-
termines a function on G which we shall denote by

E(P|’A:"®:"A :x).
The lemma of descent for Eisenstein series then says that

E(P' |4 :9": N :x)
is equal to

2 ahTP-E(P|'A:® A xy) (AV="A+A).
YyET/TNP

Let (P, S,),(P,, S,) be I'-cuspidal split parabolic subgroups of G
with special split components 4,, 4,. Fix ®, € &_,(5, 0,). Forming the
Eisenstein series E(P, | A,:®,: A, :x), let us consider

EP(P/|A4,:®,:A,:x)
=f E(P |A4,:®,: A, :xn,)dy(n,).
N,/N,AT

There are two possibilities.
Assume that (P,, S,) and (P,, S,) are not associate — then

EP(P|A,:®,:A,:x)~0.

Assume that (P, S;) and (P,, P,) are associate. Call 0, the M,-type
associated with O, — then

E"(P/|A4,:®,:A,:x)

— (wy Ay —p3) ; . . .
= 2 ay(x)™ P2, (Ccus(PZiA2'P1|Al‘w21'Al)q)l)(x)’
wy € W(A,,4))
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the c-function
cus( 2|A P|A w21 A)

being a linear transformation from &,,(98, 0,) to &, (8, 0,). It is known

cus
that

cus

cus( IAZ ;A :w2l:A)

is a holomorphic function in Y P(al) + V-1 &, and, additionally, admits a
meromorphic continuation to all of & a, + \/—— 1 d,. As such, the singularities
lie along hyperplanes.

Suppose that

(P, S7; 47)

(P’S’ A)k{ ’ ’ ’
(P27 Sz; Az)-

It will be assumed that ("P,,’S,) and ("P,,’S,) are associate. Since there
exists a canonical injection
W('4,,’4,) = W(4;, 4) (‘W = wyy)

with image the elements in W( A}, A7) which induce the identity on 4, it
follows that (P{,S;) and (P;,S;) are also associate. Let ‘w,, €
W('A,,’A,) — then the c-function

cus(/P2 | ,AZ ,Pl l A WZI ‘A )
is a linear transformation from &, ({8 ® §,,), 8 ® 07) to &, ((8 ® §,,),
6 ® 0)). The lemma of descent for c-functions then says that the diagram

Cous PJAY - PiA} 2 why  A})

gcus(a’ G;) cus(6 )
v N
cus(<8®8M> 8®® ) cus(<8®6M> 6®® )

Cous('Pol' A :"PI' Ay 2wy ' AY)

is commutative.
Our objective will be to obtain a formula for

(QUE(P,| A, :®,:A,:7),QME(P,|4,:9,:A,:7)).

For this purpose, it will be convenient to change our notation a little and
study

QHE(P*|A*: ®*: A*:7).
Bearing in mind that

o= 3 (-1 .,

PeCr
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the first step is to investigate
EP(P*|A*:®*:A*:7).

Observe that now, just as in §6, the triple (P*, S*; 4*) represents the
fixed data whereas the triple (P, S; A) represents the variable data.

The relation of association breaks up the I'-cuspidal split parabolic
subgroups of G into equivalence classes. Let C* be the class containing
P* — then we distinguish two cases:

C* N Domp(P) = @
C* N Domp(P) # @.

Suppose that the first eventuality is in force — then it is a well-known
simple fact that

EP(P*|A*:®*:A*:7) = 0.

Accordingly, it is the second eventuality which is of primary interest. To
treat it, some preparation will be needed.
Let P/ (1 =i =<rp) be a set of representatives for

P\C* N Dom(P).
Then
C* N Domp(P) =[] C*(P)

where
Cx(P)=P- {P/} N C* N Domp(P).
Let P;, (1 = p =<'r,) be a set of representatives for I' N P\C*(P) — then
(Pl:l1<isr,1=sp<'r}
is a set of representatives for
' N P\C* N Dom(P).
Finally, extend the P;, (1 = p =< 'r,) to a set of representatives P;, (1 = p <
r/) for
I'\G- {P/} N C*.

The functional equations for the c-functions admit a ready descrip-
tion in terms of these choices. Given w* € W( 4., A*), put

wy = I(Py,| 4, : P | 4wy € W(4,, A%).

in?
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Let
€ C* N Dom(P),
A’ the special split component of (P’, S’). Given w; € W(A', 4}), put
wy, = w/I(P/|A;: P |A;,) € W(A4, 4,,).
There is then an equality of meromorphic functions

(P'|A’: P*| A% : wiw} : A¥)

CLIS

-

= cus(P |A, i;:, l A:p, : wi,p : wiTLA*)
p=1

° cous( P! | Aj, s P A% Wk A*).

I

Actually, in what follows, we shall be primarily interested in the case
when w/ is in the image of the canonical injection

W(A,A;) => W(A', 4})

I_l

so w/ = 'w;, say. Suppose that 1 < p <’r, — then w;, is in the image of the
canomcal mj ection

W('A,’A,.#) = w(4, A;M)

[ A— I
sow/, = 'w,,

A (ws) = wiA* (A (w*) = A (w*) + A (w*)).

say. Set, for simplicity,

Then, in view of the descent property supra,
Cous( P | A/ Py, | Ajy 2wy s A (W)Y
= CousP| AP, |"Ayy ' wyy AL (W)
As for the other possibility, namely that 'r, <p <r/, there is an x € G
such that
x P,.’x" — })i/

but th1s time P;, is not a dominated predecessor of P. We claim that P and
xPx~" are not F -conjugate. Assume the contrary, e.g.

P =y(xPx')y™!

Then it would follow that yPi;Ly" is a dominated predecessor of P.
However, in view of the fact that G and P conjugacy are one and the same
on Dom(P), there must be an index » < 'r; with the property that P/, is
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I' N P-conjugate to yP; -1, an impossibility. Hence the claim. Owing to
our hypothesis on w
w/ o I(P|A :xPx7' | xAx™") = I(P| A :xPx~" | xAx™").
Consequently, for standard reasons,
cus(PllA’ i;;'A;[L:wl’;L:WiTLA*) =0.
In summary, therefore, when
w/ € Im(W('4,’4,)),

the terms in the functional equation indexed by p =1,...,’r, can be
interpreted in terms of the daggered picture whereas those indexed by
p="'r,+ 1,...,r/ drop out altogether.

Apart from the facts just mentioned, the investigation of

EP(P*|A*:®* 1 A*:7)

also depends on a lemma of decomposition for W( A’, A*), itself a variant
on a well-known theme.
In terms of the domination

(P, S; A) = (P!, S/; 4)),

represent P per P/, i.e. write

Put
WE(A,, A*) = {w} € W(A], A*):w*N;> 0V X\, € F/}.
LEMMA 9.1. There is a disjoint decomposition

rp

wa,a) =1 I w- w4, 4%,

=1 'wEW(A,'A,)
that is
Vw* € W4, 4%), 3
a unique index i
a unique 'w, € W('A,’A;)
a unique w* € WP( A}, A*)
such that

w* = w/wr.
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Proof. Uniqueness. Deny the contention — then w/w* = w/w* where

either i #j or i = j, w/ # w/. Let w/; = w;'w/, so that w* = w/w*. Since

w/; € Im(W('4,,"4))), there is a N, EF with w/ A <0 (cf [3.a]), thus

ijoiy
r—
zj}\u Enk}\k’

the n, being non-negative for all values of k£ and strictly positive for at
least one value of k. Noting that wwW] = wE, we have now, on the one
hand,

wr € WH(4), 4*) = w*\), >0
while, on the other,

wr € WH(AL, A*) = w*w/ N, = - X n,w*\, <0,

ity T

a contradiction.

Existence. Take a w* € W(A’, A*). Consider
(A€ Zp(m,’a): w*A >0}.
This set evidently determines a chamber in 'a, call it C(w*). On general
grounds there exists an index / and a ‘'w; € W('4,’A;) such that C(w*) =
'w; - @,P(’a ) (cf. [3.a]). Let w* = w"w* then w* = w/w*, so we have
only to show that w* € W( 4, A*) which, however, is immediate, w/\’

being positive on C( w*) forall\, € F).
Hence the lemma. O

Here is the result governing
EP(P*|A4*:®*: A*:7).

PROPOSITION 9.2. Retain the preceding assumptions and notations —
then

EP(P*|A* : ®* : A* :x)
is equal to
T
ST 3 ateow
=1 p=1 wrew?(4,,, 4%

XE(’ | A Cos(Piy | Al s P*| A% cwk : A*)@* /A, L(w*):x)

[Note: We are allowing ourselves a slight solecism. . ..]

The sense of equality is, needless to say, that of meromorphic func-
tions. A literal version will be given below.
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To make the verification, observe that either side of the claimed
equality is slowly increasing. Accordingly, we shall employ the familiar
principle of negligibility. Let [...] stand for the difference between the
two — then, viewed as a function on K X M X A, as is permissible,

[...]"~0

unless P’ € C* N Dom(P). This said, fixa P’ € C* N Dom(P) — then
it need only be shown that

to draw the desired conclusion, viz.

But we have
[EP(P*|4*: 0 A*: D] (k, m', a')
= EF(p* | A*: ®*: A*: km'a’)
_ » (@) B =)

w* € W(A', 4%)

(Cons(P7| A" P*| A% w* : A*)®*)(k, m') (A'(w*) = w*A).
Decompose a” per A" ='A-A to get a’ = 'aa. Using Lemma 9.1, write
w* = w/w}*. Since :

w! € Im(W('4,’4,)),
the functional equations supra for
Cons(P/ | A" P* | A% :w/w* : A*)
then lead us to

[EP(P*|a*:@*:A*:9)]" (k, m', @)

o
=2 2 p)
i=1p=1ywrewr(4,,, 4%

'Am )= ’ 7 o7 7 .7 o7
| S ) (P A | Ay ()
"W, EW(A,'A,)

X [a(A,p(w*)—p). (c (Pi;LIA;p:P* lA* :wi’;:A*)(I)*)(k, m')]}

cus
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’
[

rp r,
=33 3 g uw=p)

i=1p=1 wrewr(4,, 4%

XEP('P,| Ay s Pl | Al P* | A% iwE i A*)®* A (w*):km"a)

which is exactly what we wanted to prove.

An Eisenstein series, qua a meromorphic function, is the continuation
of another expression, itself a series with a well-defined region of conver-
gence. It is therefore natural to try to find conditions on A* which will
serve to ensure that both sides of the equation appearing in the proposi-
tion supra fall within the appropriate domains.

It is plain that the projection of

wrCru(a®)  (wk e WH(4),, 4¥))
onto ‘a,, is contained in

@’P (,am)

w

and dually. That being so, put
’tm = maX’A,‘,EE%,m(m,’a,,,)((l)\iw ,pip>/<’}‘ius ’pm(W*»)a

a positive real number. Suppose now that Re(A*) + 7,,p* is in the
negative* chamber — then a short calculation, which need not be repro-
duced, allows us to infer that Re(’A, (w*)) + ‘p,, is in the 'negative
chamber. Matters can certainly be arranged in such a way as to guarantee
that these conditions are uniform with respect to the data. In other words,
if A* is sufficiently negative, then

EP(P*|A* :®*: A* :x)

= (ax,) "7 @*(xny)dy(n)

xny

yET/TNP '[N/Nﬂf
while

E(’P,.ul "Ayy (P | Aj t PX| A% Wk s A*) B DAL (w*):x)

S T O

Y,ECNP/TNP,
. (ccus(Pi; | A}, : P*|A* :w,’;:A*)d)*)(xym).
With this understanding, it therefore follows that
To(H: E(P* | A* : ®*: A*:?))(x)
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or still

2 XpaslIp(H) _HP|A(XY))'EP(P*|A*:(I):A*:xy)
YyET/TNP

is equal to

’
1

¥ F,
EP » » S (a, )
1

=1 p=1 wrew”(4,,, 4% v,€T/TNP,
XXE/‘”*(IE;,(H) - HR;JA;#('XYI[.L))
e (Pry| Al P* A% Wi A%)®%)(xy,,)

where, of course,

P = (PI;L)F,;

(P,S; A) = (P, S,; 4,).

It is easy to check that our formula is substantially independent of the
choice of the representatives P, .
All that is needed now for the calculation of

QUE(P* | A* : ®* 1 A*:?)

is a little more notation, coupled with some simple combinatorial remarks.
Let us agree to write Dom(C*) for the set of all I'-cuspidals P with the
property that

C* N Domp(P) # @.
Then Dom(C*) is a union of I'-conjugacy classes, say
C*
Dom(C*) = [] @*.
c=1
Fix an element P* in P*. Since

Q"= 3 (-7

PeCr

= > (-1

PeCr—Domp(C*)

+ 2 (_l)rank(P). -
PeDomp(C*)
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the fact that
P E @r - Domr(@*)
EP(P*|A*:®*:A*:7) = 0,
in conjunction with the preceding developments, serves to imply that
QHE(P*|A*:®*:A*:?)
is equal to
C*

3 ()T (HE(P* | 4% 1 % 1 A% 7)),

c=1
there being an explicit formula for
Tp(H:E(P*| 4% : ®* : A*:7))

which is best dealt with by a little bookeeping. Let P* (1 <i=<r*) be a
set of representatives for G\ C* — then

ex = [Jer

where CF = G-{P*} N C*. Let P} (1 =p =r*) be a set of representa-
tives for I'\C* — then

{(Prl<isr*1=sp=<r¥

is a set of representatives for I'\C*. Given @*, write B* for the set of all
pairs (i, p) for which there exists an element of 9* dominating P;%. With
each pair (i, p) € B there is associated a unique subset

Fi(c) € 25(g, at)
such that
(PiTL)F;;(c) = @c*'
Call this latter parabolic P*(i, u). We then have that
Tp.(H:E(P*| A* :®* : A*:7))(x)

is equal to

p) S S (e, )

(W ERE ywr e WHECH(AL 4% Y ET/TNPY
F(e), -
XX “C)*(IP,;(H) HR;|A;,(XYip))

. (ccus(P,.j; | A%, P*| A w :*A*)CI)*)(xym).
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Accordingly,
QUE(P* | A*:®*: A*:7)(x)
can be written as the sum over ¢ of these C*-expressions provided we
insert the factor
(__l)rank(Pc*(i,u)).

This seemingly intractable conclusion admits a straightforward reduc-
tion to wit: The symbolic sums

(1) CE > 2 fli, p, Fx(c), w)

=1 (L) EBY whre wheEm(4L,4%)

*
rx n

® 33 3 S Sl Eowd),

=1 =1 FECIhye, ak) wie wPr(ay,, A7)

*
r* n

® 22 X

1=1 p=1 wiE W(AL, A*)

X ) i, p, Fy,owi)

{F*CZP (g, ap): VALEFL, w*AS,>0}

are equal in the sense that if f is a function of four arguments with values
in a vector space V over C such that for a given pair (i, p)

£l 1,2,2): 9(30(a, at)) X W(4s, 4%) - C,

then all the sums give the same value when applied to f. Indeed, this is
clearly the case of the second and third so we need only deal explicitly
with the first and the second. Let

g*:{([ ’J,,F*) ISiS"*,lSMSI’* F*E@( P*(g alp,))}

Then it is simply a question of establishing the truth of the following
lemma.

LEMMA. The map

C*
II 8* - ¢

c=1

(i,p) €BF > (i, p, Fi(c))

is a bijection.
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Proof. Surjectivity. Let (i, p, F;) € 9* be given — then
(P,.“';)E: € Dom(C*)
so there exists ¢, 1 < c¢ < C*, such that
(P2)p € OX.
By definition, therefore, (i, p) € B¥, implying that
Fp = Fx(c)

which is surjectivity.

Injectivity. If

(i, ) € B
(i”, “//) = %Zﬁ’

go to the same place, then i’ = i”, '’ = u” because they appear in the
image. Thus we must show that if
(i,p) EBENBL and Fi(c) = Fi(c"),
then ¢’ = ¢”. But
P¥i,p)=Pii,p) €EP*NPt =2

unless ¢’ = ¢”” which is injectivity.

Hence the lemma. O

Coming back to

QUE(P* | A*: ®* : A*:7)(x),
initially given by a sum of the first kind, pass, via the second, to a sum of
the third kind. Before we formulate a statement of recapitulation, there is
a simplification to be made as regards the
x fi*-term

multiplied by -1 raised to the

rank((P%) . ) = #(3%.(a. az,)) — #(E2)

i

power. Given w, € W(4},, 4%), let

F(wz) = (A, € 2%.(q, ak): wi*A%, <0}
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This done, place ourselves in the setting of Lemma 2.8, the role of F there
being played here by F(w;;). If, for brevity,

Tax = Tx g,
then
T F(w3):7)
is the characteristic function of the set of all Hj € a}, such that
A% € F(ws) = (Hz, Nt)>0
Ny, @ F(wy) = (Hj, Mg )= 0.

Thanks to the lemma, then, the sum over the

F; C Zolz(g, a},) such that V A%, € F

o
ip? wi;L Ai;t. >0

of —1 raised to the
rank((P,’,'j)E:) = #(E%ﬁ(g, at)) — #(Fx)

power times
XF’:’*( I}’,.;(H) - HP,;|A,’;,(XY,~,L))
equals —1 raised to the #(F(w};)) power times
’T*,*( F( Wit) : IP,;;(H) - Ha;gA;;,(in,L)) .
To summarize:

PROPOSITION 9.3. Retain the preceding assumptions and notations —
then

QUE(P* | A* : ®*: A*:?)(x)
is equal to

*
r¥

(Wi A*—p)
DD S (ar, )T
i=1 p=1 wiEW(A}, 4% v,,€T/TNP: :
#(F(w) .
X (=) 5D g, (F(w): Ipy(H) = Hpy o (x7,,))

X (ccus(l’,;‘: | A%, P* | A* :w,.;:A*)Q*)(xym).
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Harmonic analysis now enters the picture. A brief review of the
salient facts is therefore in order.

Let, as at the beginning, (P, S) be a I'-cuspidal split parabolic
subgroup of G with split component 4 which we take to be special. Put

= rank(P, S).

Let 8 be a K-type, O an M-type. Denoting by JC, the space of Fourier-
Laplace transforms of functions in C®(y~1 &), set

I,(8,0) = I, ® 6,,(8, 0).

If ® €3(,(5,0), then ® may be viewed as a differentiable function of
(A, x) which, as a function of A, is entire and rapidly decreasing in
vertical strips, and which, as a function of x, is a member of &_ (8, 0).
Attached to @ is the wave-packet

1

Oolx) = (2w)’fne<A>=Ao

E(P|A:®(A):A:x)|dA|,

A, a point in 9,(d). The integral defining @, is absolutely convergent and
independent of the choice of A,. Moreover, ®, is a rapidly decreasing
differentiable function on G/T, thus lies in L?(G/T). Let R be a real
number > || pll. By the R-tube, we mean the tube over the ball of radius R
with center zero in d. Denoting by JC,(R) the space of all holomorphic
functions in the R-tube which decay at infinity faster than the inverse of
any polynomial, set

‘JCA((‘}, O; R) = ‘JCA(R) ® 5cus(8, ).
There is a strict inclusion

9,(8,0) = U I,(5,0; R).

Let ® belong to J(,(8, O; R) — then, utilizing a limit process, one can
show that it is possible to associate with ® an element O, in L*(G/T),
which is, in fact, the L*limit of wave-packets formed from functions in
JC,(9, 0).
Let (P, S,),(P,, S,) be I'-cuspidal split parabolic subgroups of G

with special split components 4,, 4,. Let

d,, 6, be K-types

0,, 0, be M,, M,-types.

Let
Q€ %Al(al’ Gl)
®, € 5, (8,,0,).
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It is then always true that
[ 4 (x)8g(x)dg(x) = 0
G/T

unless (P, S,) and (P,, S,) are associate (with common rank /, say),
8, = 8,,and 0, and 0, are associate, in which case

/ ®q>l(x)@<p2(x)dc(x)
G/T
is equal to

1
(27)1/1;6(1\ ):Ao( Cous(Po | A 1 Py | Ay iwy 1 AR (A), @ ( -wy, A )) |dA, |

summed over the w,, in W(4,, 4,), AJ being any point in'J P(a )- Simple
considerations of continuity 1mp1y that all this remains unaltered when
only

®, €3, (8,,0;R)
®, € 30, (5,,0,; R).

These points made, return to
QUE(P*|A* :®*: A*:7)(x),

which, for A* sufficiently negative, can be written, as has been seen above,
in the form

E ‘Pm(wz‘::A* :x'Ym)’
Y.ET/TNP;

summed over

hl<i=sr*
p,l=p=rr

W, Wi € w( A*

o I

A*),

where now, by definition,
P Wi s A* 1 x)
is equal to

(a2) AP 5 (1) * TR, (F(wi): 1py(H) = Hpypo(x))

X (Cous( P | A% 2 P*| A% i s A*)®*)(x).
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Fix i and p and a real number R}, > ||p}; || — then we intend to compute
_ -(A%—eL) . .
(I’W(W;;:A*ZX)(AT”) - L*(a:a*) " q)i[.L(WITL'A* xal’:L)dA,’;(al’Z)
"

for A%, belonging to the R} -tube. [Note: In so doing, it will be necessary
to assume that A* is ever more negative.] The outcome of this will be an
expression for

QUE(P*| A% :®*: A*:7)

in terms of wave-packets, thereby clearing the way for the final inner-
product calculation.
We have

*
w

[ (@) Py lwys A% xan)d g (a)
"

= ()R ) BT (o (PE] A%, PR A% wE: A%) 0¥ (x)
times the integral over a, of
exp((Hj, wid* — AL))
X1y u( F(w2): Ipo(H) = Hpy o (x) — HZ).

This integral is best treated by passing to coordinates. To simplify the
notation, let us make the following temporary changes in the data:

(P*, Sk A%) - (P, S; 4)

e Pip?
* *
Wy, =W
*
Hy - H

Ay — A
Put
J(P, 4) =|det[(A,, \))] /2.
LEMMA 9.4. Suppose that A is in the R-tube — then, for A* sufficiently
negative, the integral over a of
exp(( H, w*A* — A))
X7y FO9%): T,(R) — Hpy (x) — H)
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is equal to

(—1)1_#(F(w*))'J(P, A)
!

Xexp(<IP(H) — Hp(x), w*A* — A>) 1/ I] (w*A* — A, N,)].
i=1

Proof. Given A, determine H, by the requirement
(H,\;)=(H, H)) (H € a).
Define a map T: R’ - a via the rule
!
T(t,,...,t,) = > t,H,.
i=1
Then
/
(T(t),....t;), w*A* — A)y= X t,(w*A* — A, X)).
i=1
Furthermore, by definition,
T*,*(F(W*) »(H) — P)A( x) — T(tl""atl)) =1
iff
N, € F(w*) = (L(H) = Hp,(x) = T(t),...,), N )> 0
A, @ F(w*) = (I,(H) = Hpy(x) — T(t,,...,1,), N)=<0,
thatis,V A,
A C[>0 ifA, € F(w*)
(Ip(H) = Hpy(x), X) = 1,38 {_<_ 0 ifA, & F(w*).

It can be supposed that
F(w*) = {A|,...,An}.
Set
¢, = (Ip(H) = Hp,(x), X).

Then, in terms of these coordinates, our integral becomes

J(P, A)f fc’fm f L] ay. ..,

—O00 T Cpxyy
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where

!
[...]= I exp(z,(w*A* — A, X))).
i=1
Formally,

(~00): fc' exp(t,(w*A* — A, \,)) 4t

=00

= exp(c;(w*A* — A, X))/ (w*A* — A, X)),
+ o0
(+): f exp(z,(w*A* — A, X)) dt,

= —exp(c,(w*A* — A, 7,))/ (W*A* — A, ).

But A* is at our disposal in the sense that we can assume ahead of time
that it is very negative. Since

IRe(A)ll <R,
calculation (-o0) is valid provided
Re(w*A* — A, A,) >0
which will be the case, as
A, € F(w*) = w™*\, <0,
while calculation (+ o0) is valid provided
Re(w*A* — A, 7)) <0
which will be the case, as
A, & F(w*) =w™\ >0.
The value of the integral is therefore

(-1 (P, 4)
)
X [] exp(c,(w*A* — A, N,))/ (w*A* — A, X).
i=1

However,
[ /
S (wrA* — A N) = F (w*A* — AN (L(H) — Hp,(x),X)
i=1 i=1

= (I,(H) — Hp,(x), w*A* — A)
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so we finally get

(_1)/*#(F(M’*))'J(P,A)
/
Xexp((Lp(H) — Hp,(x), w*A* — A))- |1/ [ (w*A* — A, 7)),

=1
as desired. O
Consequently, for A%, belonging to the R}-tube, if A* is sufficiently
negative, then
q)l”(w,’z TA* :x)(Aj"”)
is equal to

(_l)rank(P " j(P* A* )

xexp({ I, (H), wiA* — A%,))- (1/[1( A% — A% AY)

X (ccus(P,.,"; | AY, : P* | A* :wl’;:A*)Q*)(x).
Because
@I”(w,’;:A* :x)(Aj"u)

needn’t decay fast enough vertically, we cannot assert that it is in
ﬂCAI*(S 05 R},). No real difficulty is present, though. Indeed, the function

178

exp( (A,M,A )) @m(w,.’;:A*:x)(A}“”) (e>0)

does fall off suitably at infinity, hence
2
®exp(s(?,"))'¢’,“(w,;“: A*:? eL (G/F)
Moreover,
IEIE)I (")CXP(E(?a?)) SO, (whiA*:Y)
exists in L*(G/T),
<I>,P(w;; CA* :?)(Aj“u)

being L? on vertical lines. Actually, it is easy to identify this limit. For, as
a moment’s reflection shows,

lslj}} Ocxp(er) - 0,5 477 (X)

= 2 q>m( DA% xy,) a.e.
YwET/TAPE



THE SELBERG TRACE FORMULA 11 469

This remark carries with it the a posteriori conclusion that

2 (pm(w,.’;:./\* :xym)
v,ET/TNP:

is a square integrable function on G/I'. The same is therefore true of
QME(P* | A% : ®* : A*:?)(x).

In this connection, observe that the truncation parameter H is arbitrary. ...
[Note: Recall, by comparison, that A* is sufficiently negative.] Following
the customary practice, write

®<D,“(w,;: A*:?)

for

Iim®

10 exp(&(2,) - Q,“(w,’;: A*:7).

We have proved:

PROPOSITION 9.5. Retain the preceding assumptions and notations —
then

QHE(P* | A% :®* : A*:7)(x)

is equal to

*
rx n

22 2 G)(Dm(w,;:A*:?)(x)'

i=1 p=1 w}E W(AL, A%)

A prenatal version of the inner product formula can now be given.
For this purpose, it will be convenient to revert to the notation involving
the subscripts 1 and 2. So let again (P, S,),(P,, S,) be I'-cuspidal split
parabolic subgroups of G with special split components 4,, 4,. Let

d,, 8, be K-types
0,, 0, be M, M,-types.
Let

(Dl = 8cus(81’ ®])
q)2 € 6cus(82’ 62)

Then, supposing that A, and A, are sufficiently negative,

(QPE(P,|4,:®,:A,:?), QRE(P,|4,:®,:A,:?))
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is equal to

2222 X 2

iy iy py W(A,,,A) W(A,,,,A4))

A © Ay
il!‘l(w'lﬂl A q)lzuz(wzz,uz A5

X (0
where

wiuul

e w(4,,, 4,

iy’

W € W(A, ., 4,).

2y iny’

This makes it plain that
(QHE(P,|A,:®,:A,:?), QUE(P,|A,:®,: A,:?))

is null unless (P, S;) and (P,, S,) are associate (with common rank /,
say), 8, = 0,, and O, and 0, are associate, in which case the summand

(QQ,M(W,IH TA ) G)@,y‘z(w,y‘z: A2:?)) ’

that is,

./‘G/FGCP,»”‘I(W,”” A :?)(x)(a@,w(w,m: Ay: n(x)dg(x),

can be written as the sum over
wy iy, pa iy, 1) € W(Aizpz’ Ai(ul)

of

1
(277)( ‘Le(A,I“I):AO [ . ] | dAilI»H ‘

Ly

where [...] is the inner product of
cws(P,w2 |4, P [ A, twy(igs By 1y, }LI)ZA[‘M)
applied to
CI’,»WI(WWl (A :?)(Aim)
with
q’im( Win, A, :?)("Wzl(’é, B iiy, ﬂl)m)a

0 : C e s
A,ml being any point in J P,w.(afml)'
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On the basis of these considerations, there is no loss of generality in
supposing henceforth that P, P, belong to a fixed association class C, say.
In turn, this enables us to simplify the notation so as to put it in line with
that utilized in [3.a]. Thus let P, (1 <i < r) be a set of representatives for
G\C — then

e=1Je,
where C, = G-{P,} N C. Let P, (1 =p =<r,) be a set of representatives
for I'\C, — then
{Pl<isrl=sp=<r}
is a set of representatives for I'\ C. We have, correspondingly, that
(QUE(P,|A,:®,:A,:?), QUE(P,|4,:®,:A,:?))

is equal to

r n r n

igl ,El jgl El W, E W%WA,) w, € W(EAJ,,,AZ)
X (o, 4,:)7 Ot nain)
provided, of course, that A, and A, are sufficiently negative. Take now
(®¢.,.(Wmi A7) ®‘1’,y(wpl Azl'-’))
and write it as the sum over
w(j,vii,p) € W(Aijm)
of

=)
(27)" TRe(A =19,

[...]11dA,, ]

where [...] is the inner product of
ccus(Pj,,lAj,,:PmlAm:w(j, v:ii, ;L):A,.u)
applied to
@iu(wiu:Al :?)(Ai#)

with

fI>j,,(wj,, A, ?)(—w(j, v:i, ,u)Km),
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A9, being any point in I, (a,,). For definiteness, we can and will assume
that

{Vi,w, R, =2llp,I
= say.

: =R,
Vj, Vv, R, =2lp,l
In reality, there is no need to stress this point since it plays no role in what

follows. We have yet to explicate the specific nature of @, and @,,. To
begin with, recall that

J(Py, 4,) =] det[(Ni’ Alj)] |V2

TPy, 4;) =|det[(X, X)] 7.
These positive real numbers are actually equal. This is most easily seen by
remarking that for any (P, S) in C with special split component A4,
J(P, A) is the volume of & modulo the lattice spanned by the elements of

%4, a) or still, the volume of & modulo the lattice spanned by the
elements of =2 ,(g, a). But for every w,, € W(4,, 4)),

War - (iEP,(Q, al)) = izpz(g, a,),

implying, therefore, that
J(P,, 4,) =J(P,, 4,).
We shall agree to write
vol(C)

for their common value. Next, to avoid any confusion, observe that

rank(P,,) + rank(P,) =0 mod2.
Accordingly, given

w(j,vii,p) € W(4,,, 4,),

the integral

1
e ldA LY
) jl.le(A,',‘FA‘.’u e
upon expansion, becomes the integral
vol(C)?
vol(€) [.]dA,l.

@2m) Trea,n=n,
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the integrand being the product of
CXP(<I (H)’ l[.L Am>). (I/H(WULAI - Alp,’ }\iu))
>‘m

and

exp(<IP(H), J,,A2+w(j,vzi,u)Am>)
(I/H(w A, +w ],V:i,M)Aw,}\j,,))

and
( cus( 'A i,.LIAip,:w(j’V:i’M):Aip)ccus(PiuIAip:P],Al:wiu:Al)(I)l’
ccus(PijAjv:P2 lAzzwjﬁAz)‘I)z)-

As we shall see, a substantial portion of this admittedly complicated
expression can be collapsed after some additional manipulation.
Rewrite

(QUE(P,|4,:®,:A,:?),0"E(P,|4,:®,:A,:?))

in the form

222 2
i=1p=1w,EW(A,, 4)
vol(@) f
@2r) TrRea=n,

. (I/E(W"“ — Ay A, ))[...] |dA,, |

exp((lpm(H), wyhy = A,))

where [...] is the sum

ron
22 2 2
JEL =1 w,EW(A,,, A)) w(j,v:i,))EW(A,,, A,)

of the product of
exp( (15, (H). w, K, + w(j, v:i, w)A,, )

X(I/II( Ay +w(i, v p)A,, A, ))
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with

(CCUS(I)jViAJV:Pi[LIA[ :W(j> v, “):Am)ccus(Pzp.,Aiu:PI IA] :wip.:Al)(I)l’
cus( IA PZlA AZ)(DZ)

With i, p, and w,, fixed, [...] is a function of A, . We intend to prove that
it is holomorphlc qua a function in the tube over ¥, P (G,,)-
Here is the argument. The domain of holomorphy of

ws( A4, ,HIA,”:w(j,v:i,u):A,#)

contains

Tp(8,) +-1d,,,

hence no singularities can come from it. As
exp( (1, (H), w, K, + w(j, v:i, p)A,, )
is obviously holomorphic, the only possible singularities arise from

I/H(WIVK2+ w(j,vii, )N, N, )
A,

these occurring when
( A+w(j,1/zy)Am, ):0

for some A ,, the corresponding hyperplanes being distinct. Our function
thus has, at worst, simple singularities along hyperplanes. The singular
hyperplanes associated with different terms in the sum may very well
coincide but this will not raise the order of the singularity (it being a
question of addition rather than multiplication). To prove, therefore, that
the singularities have codimension = 2, hence that our function is con-
tinuable along them, we proceed as follows. Since 7, u, and w,, are fixed,
set for simplicity

i T

P=P,A=4,, A=A,
(D: CL\S( l}LlA PIA w A)®

Choose k,, € K with the property that P, =k, Pkj; —then 4, =

k, Ak j,,‘ In these notations, we must thus estabhsh the holomorphicity of
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é > 2 (I/H(W12K2+W1A’>‘j))

J=1 waEW(A,, Ay)) wEW(A,, A) A

X gleXp(<I (H), k,, (W12K2+WJA)>)

X( cus( |A P!A k wj:A)q)’ccus( |A PZIAZ AZ)(I)Z)

Wiz

as a function of A in the tube over ¥,(d). Observe that 37_,... is
holomorphic so it is only the terms indexed by the triples ( ], V125 w»)
which can cause a problem. Consider, then, a singular hyperplane

{A: (wﬂK2 + wA, }\j) = 0}

determined by one of these triples. We may then attach to A , in the usual
way, a I'-cuspidal parabolic Py > P, the special split component of Py
being, of course

A = exp(Ker()\j)).

On the other hand, there is also attached to A; another I'-cuspidal
parabolic P, in C, itself a dominated predecessor of P, , arising from the
simple reflectlon Wy, (cf. [3.a]). [Note: Strictly speakmgf’j may not be one
of our fixed representatlves for G\C but there is no real harm in
pretending that it is.] We recall that

wy, € w(4l, 4f), wy (X)) = -\, say,
S0
‘le(}‘j) =X\, €Zp(8.0a,).
The singular hyperplane
{A: (wkjwjz:/i2 +wy Wi, Aj,) = O}
is the same as the one with which we started. Accordingly, the summands
which are singular along a given hyperplane occur in pairs. To draw the

required conclusion, it need only be shown that the residues add up to
zero. The residue with respect to A ; is

(1/ 11 (w12K2+ij,>\))

A#A,,AEZ}(a,a,)

< 3 el {1,005, (7. wA)

X (ccus(Pjv’Aju:P!A:kjij:A)q)’ccus( IA P2|A AZ)(I)?.)

J" Wiz«
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while the residue with respect to A ;. is

T (Rt )]
A=\, A€ (8,0,)

eXp(<IP (H)’ v (WNWJ'ZKZ + w)‘ij'A)>)

1

X

v

X (CCUS(I)j'VlAj’y:PlA :kj/,,W)\joZA)q),

NS

cus( |A PZ‘AZ k W}\jwj2:A2)q)2)'

To show that
Res(?\j) + Res(}\j,) =0,

look first at the products

M... 10 ...

A#N, A#A,

Because
wjzA2 + ij]aj =0,

and the
A#EN, }\EE‘}JJ(Q,aj),
when restricted to a A give E?,A( g, a;), we have

II (szxz +wA, 1)
A#,,Ae:‘,l}@,a)

= II (wj2K2+ij,)\)

A,AEE‘}I\I(Q,QAJ)
orstill,asw, =1lona,,
J J

I1 (W}\jijAZ T wy WA, }\)
A AE33, (3,01

= H (w)\jwjzA2 + w,\ijA, )\).
A#AJ,,)\EZ%,(Q,Q/)

It remains to establish the equality of the sums, i.e., that

é CXP(< (H), k,,- (WA, + WJA)>)

X( cus( IA PlA kjij:A)q)’ccus(PjV!A PZIAZ Jv 12 AZ)q)Z)
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is equal to

Ejexp(<1 H), k., (wkjug2xz+wkle1\)>)

v=1
X (Cos( Py 4 P Atk wy wii A) O,
cus( |A Pz!A23kj’uW>\joz3Az)®z)-

We shall work on the second term first. Thanks to the functional equa-
tions, we have

cus( IA P IA w)\wj2:A2)

g cus( :I)jV’IAjV':kj’vw)\jkj_Vl' kjllezA )
occus(PjV’lA PZIAZ kjl/ j2 AZ)

In reality, there is a small difficulty in making this assertion (and others of
the same nature). What is the point? The functional equations provide an
equality but only in the sense of meromorphic functions. We have
assumed that A, is very negative which, however, does not rule out the
possibility that some transform of it may hit a singular hyperplane of c_,.
Since the set of singularities is locally finite, the reader will agree that our
equation is valid on a dense, open subset of A,’s, a set to which we tacitly
confine ourselves from now on. This said, we claim that

exp(<IPﬂ(H), kj,- (W;\ijsz + w)\jij)>)

X (Cous( P | Ay P A thpwy w1 A) D),

cus( IA jV’IAjV’: k l kJVWIZA )
X( cus( 'A PZIAZ v’ j2 AZ)(I)Z)

is equal to

CXP(\/IPN»(H)’ Ky (wahy + W,'A)>)
X ( CUS( Ay 2By | Ay ik wy Tk, 3kj'vW>~,ij)
X Co( Py | Ay 1 P A ke pwy w i M),

cus( ]A PZIA jv j2 AZ)(I)Z)'
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We start the verification by remarking that the equality of the inner
products follows from an adjoint computation, namely

cus( lA 'P'IAjv': kl kWi A )

Jv'y2
= cCus(PjV' (A2 P[4, k; Wi ’k ! kj,yw,\jwﬂAz}
= cus( oA P Ay kg wyk) kj,pw)‘jij),
the passage to the last line being justified with the observation that
w>\jwsz2 +wywA € a,, + \/—~_l(i)\j,
hence that
“Wx,szAz
wy w; A

have the same projection onto df, + V-1, and the c-function depends
only on these components. As for the exponentials, put

P, =k;,P, k;!

v

— 1
P>\jv' - kj”’P)\jijI'

There are two possibilities:
(1) P,\ and PA are I'-conjugate;
2) P,\ andPA are not I -conjugate
The second pos&blflty can be ignored since then

cus( ‘A })jy’lAjV’: k‘-l kj,,szA ) =0

cus( vl A, P |4, :kj,,,w{j‘kj‘,,, :kj,vw)\jij) =0,

implying that the claimed equality is automatic in this case. Turning to the
first possibility, assume that actually Py, = P, — then

kg, (w,\]wsz2 + w}\ijA) =k, (W12X2 + ij),
so we have
<Ip,,,(H)’ kj., (WAJWJ'ZKZ + WA,WJ'A)>

<IPM(H), k., (w)\}wjz]\—2 + WA,WJA)>

I

I

<IPX,V(H)’ ey (wahy + WJ'A)>

f

<IP,..,(H), kj,,' : (Wj2K2 + ij)>,
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thus the exponentials are surely equal when P, = Py . In general,

therefore, all that need be done is to check that

exp<<IP (H), k- (w, A, + WJA)>)
X( cus( lA IA k wi‘kl k wk,ij)

chus(Pj,V’Aj,p :P|A :kj,,,wx/wj:A)(I),
cus( IA PZ |A2 Jv’ _/2 tA )QZ)
is unchanged when P, is replaced by a I'-conjugate YP,y~'. Let k be the
K-component of y per G = K- (vP,,y™') — then
< vp, - (HD), Kk, - (wjzX2 + ij)>
= (1, (H), k,,. - (w, K, + wA))

< Hp 14, (v), ke (WJ~2K2+W1A)>-

Moreover (cf. [3.a]),

(s YPuv™"-) ccus( Be ) @, cens( ¥BL Y7 ),
= exp( ( Hp, (1), Ky 8a ) |- exp( ( By o (1), KA )
X (Cas( Py Cas( Py )@, Co( By ) @a),
the ‘2-rho’ factor being absorbed by the integration implicit in the inner

product. This checks the invariance under I'-conjugacy. The claim is
thereby settled. Consequently, the second term

;jexp(< (H), k i (wxjwj2K2+w>\jij)>)
X (Cos(Pp | 4y Pl A Kpwywy: A)O,

cus( |A 1P| 4, k WA,sziAz)(I)z)
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can be written, after reordering, in the form

1eXp(<ij,(H)s kj,- (Wj‘sz + ij)>)

I M=

v
r]'
XD (ol Pl Ayt Py | Ayt b wihsh Kpwy WA )
cus\ “ v | 2w 4 ) VA M0 YRS MRS T4 Widd
v'=1

X CCL\S( P

i | Ayt P LA K wy Wy A)‘I’,
Ccus(Pjv 'Ajv : P2 IAZ : kjij2 : AZ)(I)2)

or still, employing the functional equations once again, as

> exp((l,,ﬂ(H), k,, (ijKZ + ij)>)
v=1
’>< (Ccus(})jV‘Ajv:PIA :kjy“)j:A)‘D, CC“S(PJ”'AJ"':P2|A2:kjpwjzlAz)(I)z)

which, being the first term, serves to establish the equality of the sums. It
follows that

Res(A;) + Res(A ) =0,

hence holomorphicity.
Let us reinforce our position. The inner product

(QUE(P,|A,:®,:A,:?), QUE(P,|A4,:®,: A,:?))

admits the representation

r 4]

22 2

i=1l p=1w,EW(A,,4))

vol(€)*. CXp((Ip_(H)’wmAl - Am>)

X [
(2'") RC(A,-“):A?“ *

X (I/H(WWAI — A, M))[---] |dA,,|

where now, as we know, [ ...}, the sum

r r

22 2 2

JELv=1w,EW(A),, A2) w(j,v:i,p))EW(A,,A,)
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of the product of

exp(<IPﬂ(H), w, A, +w(j,v:i, p.)Am>)
X(I/H( A, +w(j, v, A, A ,,))
x/

with
( cus( |A m|A1p.:W(j’VZi,”):Aip)ccus(Piy.|Aip:PllAl:Wiu:A])(I)I’
ccus( |A P2|A2 W (A )(I))

is a holomorphic function of A, in the tube over 9. 3 ( d,,)- It is of interest,
although perhaps not of 1mportance that these conclus1ons have been
reached with no assumption whatsoever on H. To make further progress,
however, it will at last be necessary to impose a condition on H. Before
doing this, we shall indicate the next step in the analysis. We are summing
over triples (i, 1, w,,). Fix i and p — then we intend to prove that if

Wip.# I(Piy.|Aip.:Pl |Al)’
that is, if
Wm(@p,(al)) # GP,“(aip)’

then

Re(A,)=A9,

provided H is suitably restricted.
Here is the condition on H. Fix H, in a — then it will be supposed
that H < H, where

HOO = HO - th,

t a large real number determined via the following condsiderations.
Replacing H by H,, in the formulae supra, put

HO_I( 0)
I{j?/:IP],(HO)'

Then, qua a function of A, the argument in the exponential is given by

o

(HS w(j, v, p)A, )= (HO. A,,)
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where, without loss of generality, we may assume that the centralizer of
w(j, v:i,p) in d,, contains no dual roots. If now Hy, is substituted for
H,, then we obtain, accordingly,

<Hjow w(J, v, “)Am>_ <H,.2, Aiu>
—1((H,,.w(j. v i 0)A,) =~ (H,,, A, )
where (cf. §6)
w(j,v:i, 1) 70, = 0 € =95 (d,)-

Owing to an elementary estimate, due to Langlands [2.b], there is a
positive constant C and an element

Hw(j,v:i,p,) €a,,

such that
“ccus(I;v IAjV :Pip. IAiu : W(_], v: i’ N’): Am)“OP
is bounded by
C’CXP(<Hw<j,v:i,u)’Re(Am) - Pm>)
times

(I/H(Re(A,.u) + Pips }\iu))'

A

w

We can and will assume that
3 o
Re(Aiu) € ~2Pin T @P,-u(aiu)'
Redefining the constant C, we then have the majorization
” ccus(Pjv l Ajv :I)iu I Aiy, : W(j’ v. ia p‘) : Am)” OP
S C * Cxp( <HW(_],V . i,[L)’ RC(A,”)>) .
All this leads, therefore, to the estimate
| exp(<IPm(H00), —Am>)~exp(<lpﬂ(H00), w(j,v:i, y)Am>) |
X ”ccus(PjviAjv:Pip,|Aip,:w(j9 vii,p): Am)HOP

< C-exp((w(j,»:i, ) H) — HY + H

w(j,v i, p)

+t(Hpm —w(j,v:i, p)'alﬂ),Re(Am)».
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Bearing in mind that

H, — w(j,v:i, ,u.)_alﬂ IS C),,m(am),

P,

we now fix H, by requiring that 7 be large enough to secure

w(j,v:i, p,)—lHﬁ, —H)+H

w(j,v:i,p)

+t(Hpm —w(j,»v:i, “)“Hpﬂ) € E)Pm(am)

for all i, p and j, ». Thanks to the remarks following Lemma 6.7, if
H < H,, then

Re( (15, (H), w(j, v:1, p)A,, )~ (L (H), A, ))
= Re((T, (Hoo), w(j, i, p)A, ) — (I (Hy), A,)),

implying that the domination is controlled by H, alone, the decay being,
in fact, exponential in Re(A,,).
The formula above for the inner product of

QME(P,|4,:®,:A,:7)
with
QUE(P,|4,:®,:A,:?)

has been obtained under the supposition that A, and A, are sufficiently
negative, the precise sense in which this is so being a function of the
radius R of the ambient tube (R fixed per the preceding agreements). In
addition, to ensure holomorphicity in A, of [...], we saw earlier that it
was necessary to restrict A, to a certain dense, open subset of its initial
domain of definition. Once these choices have been made, an expression is
produced, an expression which is then open to modification, subject, of
course, to the requisite justifications. This is where the condition on H
comes in. Assuming that H < H,, we shall prove, under the conditions
mentioned earlier, that

...=0
Re(A,)=A%,

by shifting the contour of integration
In this connection, there is a little lemma which should be recalled as
it will be helpful (cf. [3.a]).
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LEMMA. Let & be a connected, open region in R". Let F be a holomor-
phic function in the tube over & such that for each bounded line segment o in

S,
Fe L' (o XR").
Then: The integral

-~

is independent of the choice of x in .

Thanks to our hypothesis on w,,, there is a A, such that w,'A,, <.
Move the contour of integration from A?M to A‘,’# —tNM(t=0,1 - + o).
That this is permissible is a consequence of the fact that

exp(...)[...]

is holomorphic and none of the terms in the product vanish except,
perhaps, for the one corresponding to A, , but, for the one corresponding
to A,

I"”

i
Re(w, A, A,) >0

Re( wiuAl - (A(t)u - t}\i#)’ }\i#)
= Re(WmAl’ }\iu) - (Aeu’ }‘iu) Tt

ZI Re(wmAl’ }‘iu) l —I (A?u’ }\iu) |> O’

so it does not hit a zero either. Our lemma then tells us that the integral
does not depend on t. To conclude that it is null, we can therefore let
t - +oo. Since the integrand evidently eventually admits an L'-majorant,
hence — 0 dominatedly, it follows that

f L.=0,
Re(A,) =A%,

as desired.

There is a unique i such that P, is G-conjugate to P, and a unique p
such that P, is I'-conjugate to P,,. In the sum over the triples (i, p, w,),
only the terms corresponding to this particular i and p survive, there being
a contribution when
wy, = I(Py, A, P |A).

ip
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Changing the notation, we can then say that, under the standing hypoth-
eses on A, A, and H, the inner product

(QUE(P,|A4,:®,:A,:7), QHE(P,|4,:®,:A,:?))
is equal to

vol(C)*

(277)[ jl;e(A)zAgexP“IP'(H)’ Ay~ A>)

: (1/[[[ (A = A N) [T dA |

i=1
where [...] is the sum

n

Sy 3 »

=lp=1lw, 2EW(A4,, 42) w, \EW(A4,, 4)

of the product of
exp(<IPm(H), WiM:2K2 + W,,,,:IA>)
X (I/H(Wlu:ZKZ + wmllA’ AlI‘«))
>\UL

with
(Ccus(Pip.IAm: Pl |Al : th.:l : A)(I)l’ Ccus(PmlAm: PZ |A2 :Wiliiz: A2)®2)9

in toto, a holomorphic function of A. We shall evaluate the integral by
shifting the contours and computing residues.

The integral itself is taken over A + y/-1d,. Pass to coordinates by
means of the change of variables

!
A=A+ 2 zZ'N, (z' € Q).
=1
The corresponding Jacobian is
| det[ (N}, A))] /2,
the inverse of

| det[(A, AL)] 172,
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which is nothing more than vol(©). In these parameters, the term which
will contribute residues is

/
[1/1 {8, = atn) - 21).
i=1
the integration being carried out according to the scheme

j:;__‘/ljw.../:?wdz’...dz‘.

Now move the first line of the integration to

fC"'l/:TOO (C <<0)'
C—V-1w

Using an argument similar to that employed above, we see that the
integral with respect to z' tends to 0 as C - —o0. We are therefore left
with the residue which occurs at

(A, — A, N).

But then we must evaluate

__.__.__(\/201()?_)1 f:;ijw f;_‘/_:]_w{ﬂ dz'...dz*?
T -V-1o00 -v~1 o0

where {?} is
i
(1/'1;12 [(Al - A({’ Ni) - Z'])[],

the A-variable implicit in [...] having the value

4
A+ (A, — AL N) + 32N,

i=2

Repeat the procedure per z2,...,z' — then A9 will cancel in the end.
We thus arrive at the following conclusion, to wit: The inner product

(QUE(P, | 4,:®,:A,:2),0YE(P,|4,:®,: A,:?))

is equal to the sum

o) 3 S 3 s

i=1 "'zl wip:ZEW(Am$A2) M)i;A.IEE‘/V(Ai;MAI)
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of the product of

eXP(<IP,‘,(H)’ Wm:2K2 T ow,. 1A1>)
X (l/y(wip:ZXZ + Wm:lAl’ }‘m))

with

(Ccus(Pip‘Aip:PI lAl ‘W Al)q)l’ Ccus(Pip,|Aiu :P2|A2:wip.:2 :AZ)(I)Z)'

p.:l:

While this result has been established with A, and A, subject to certain
restrictions (and H too, of course), it is clear that both sides of the
equation are meromorphic in (A, A,). In other words, we have proved
the following theorem.

THEOREM 9.6. Fix H in a — then there exists Hy, < H, such that for
allH < H, and
P eC

VG’V{P?_E@

the inner product
(QUE(P,|4,:®,:A,:7),08E(P,|4,:®,:A,:?))

is equal to the sum

r n

-1)-vol(€)- 3 % 2 2

i=1 }1:1 wiu.ZEW(Am’AZ) wm: IEW(AU:.’A!)

of the product of

exp(<IPm(H): wip:ZKZ + wiu: IAI >)
X (I/F(Wip:ZKZ + wip.:lAl’ Aip))

with

(ccus(Pip[Am:Pl’Al:wi Al)q)l’Ccus(PiulAip,:PZ‘A2:wi AZ)(I)Z)

p,:]: ].LIZ:

[Note: It is a question here of special split components.]
There is also a daggered version of this theorem which could be stated

formally as Theorem 9.6 (bis). An informal statement will suffice, how-
ever.
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Suppose that
(P{, Si; A7)

(P,S;A)>{ ) ar
(Pz,Sz',Az),

it being assumed that ("P,,’S,) and ('P,,’S,) are associate, belonging to 'C,
say. Introduce the partial truncation operator QF (cf. §8) — then attached

to
i
®;
are partial Eisenstein series
E(P |'4,:'®,:"A,:7)
E(Py)|'A,:'®,:'A,:7),
themselves functions on G/T" N P. The commutative diagram connecting

O and 1 X Q™ X1 then allows us to assert that for H suitably
restricted, the inner product

(QHE('P,|'4,:'®,:"A,:7), QRE('P,|"4,:'®,:'A, 7))

is equal to the sum

ro '

(=)"-vol(€): 3 X ) )

i=1 p=1"'w, ,EW(A,, 4;) "W, . 1EW(A,,'4,)

of the product of
exp<<I (H) Wi JA, +7 Wi, . lA1>)

(I/H( lp, 2/A +7 wl[l. I,AI’,)\ip.))

with
(Ccus('Piul,Aip,:’Pl IIAII,wip.:l :IAI),q)l’

ccus(, m| ’le'Az w2 ’Az) ‘I))

REMARK. In the next paper in this series, using Proposition 9.5 and
methods from the theory of Eisenstein systems, we shall give a completely
different proof of Theorem 9.6 (in a generalized form).

10. Recapitulation. The purpose of this section will be to provide a
capsule overview of certain aspects of the present paper by way of a
technical summary which can then serve as a convenient reference for
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later work. In so doing, we shall set up a list of axioms and show how the
truncation operator admits a characterization in terms of them.
Let us first recall the definition of a. Thus fix a set of representatives

(B, S)}

for the I'-conjugacy classes of maximal I'-cuspidal split parabolic sub-
groups of G. Let A7)* be the special split component of ( P*, §7) —
then, by definition,

a= @ am=
m
If now (P, S) is a I'-cuspidal split parabolic subgroup of G with special
split component A4, then we define a map
I.:a—-a
by requiring that when
(P,u’ Sp,? A[.l.) >= (P’ S7 A)9
P maximal I'-cuspidal so that

nhY =P
for some y, € I' and some index m(p), the orthogonal projection of
I,H) (Hea)
onto a,, is

I(B,| A,: PR | Apex)) + Hpy(v,).

m(p) | “Fm(p)

On the other hand, if
(P,S;4) = (P, S"; 4),
then
Lp:a—"a

is the dotted arrow rendering the triangle

commutative.
It should also be kept in mind that a comes supplied with a natural
ordering, namely given H,, H, in a, write



490 M. SCOTT OSBORNE AND GARTH WARNER
if for every I'-cuspidal split parabolic subgroup (P, S) of G with special
split component A4 it is true that

I,(H,) € I,(H,) + Cp(a).

This relation partially orders and, in fact, directs a.
The canonically defined map

Iy:a-a,

has a cofinal image and is order preserving.
Proceeding axiomatically, we shall suppose that there is attached to
each I'-cuspidal P and each H € a a linear operator

o¥. S(G/TnP)- S(G/T N P)
subject to the following conditions, all of which are possessed, of course,
by the partial truncation operator (or by the truncation operator itself if
P =G).
AxioMm I. QH(S(G/T N P)) C S(G/(T N P)-N) and the triangle

S(G/T N P) = S(G/ (T O P)-N)

o8N v QF
S(G/(T' N P)-N)

commutes.
AxioM I1. The diagram

S(G/(TNP)-N) 5 S(KXM/T, XA)

) V1 X QMM x|
S(G/(I'NP)-N) 6}—» S(KX M/T,, X A)

P,N

commutes.

AxioMIIL V f € S(G/T N P)
fAx)= 2 X’P,’A:G(I’P(H) - H'P|'A(mx))’ Qp f(x).

P’'€Domp(P)

We pause at this point to make two comments. First, Axioms I and II
imply that if Q™ is known for any reductive group, then so are the QF, this
being the reason that the focus is on Q™ alone in what follows. Second,
Axiom III implies that the Q¥ are uniquely determined as can be seen by
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downward induction on rank(P), noting that Q}f = f¥ when P is T-per-
cuspidal while, for all other P,

0pf(x) = f7(x)
-P’EDZ (P)X’P,’A:G(I’P(H) - H’P"A(mx))' Qp f(x).
PP
AXIOM IV.V r < —13 r" <r such that
0"(s,(G/T)) C §,(G/T),
the operation
o": 5,(G/T) - S,(G/T)
being continuous. Furthermore, VH, € a,
{o":H<H,)

is equicontinuous.

AxioM V. If f € R(G/T), then for all g € S(G/T),
(0%)-g € L'(G/T)
and
(0%, g) = (£, Q%).

AxIOM VL. If f has compact support, then so does QVf. Moreover, if C
is a compact subset of G/, then there exists H(C) € a such that

H<H(C)=0%=f onC.

The remaining axioms will be true only on a non-empty subset a, of
a which is cofinal in a (per <), hence is itself directed. Two properties are
required.

() V P, I(ap) C (ay)p:
(i) VH,, VH,,

H, <H,, H, €a,=H, €q,.

In connection with (ii), let us remind ourselves that given H,, H, in a,
we write

H, <H,
if there exists an H, € Cp(a,) such that
1(Py| 4, 5Pi0|Ai0)(IP,O(H2) - IP,O(HI)) = H,
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for alli, = 1,...,r,. This relation partially orders a and
H, <H,=H, <H,.
The significance of (i) is that it implies that again we need only deal
explicitly with the QY.

AxioMm VIL. VH € a,,
Q"(R(G/T)) C R(G/T).
Axiom VIII. VH & ay,
Q"o QM = N,
Furthermore, VH', VH",
H'<H,H €a,

Q" o QW = oW
The axioms thus entail that QH(H € a,) defines an orthogonal
projection on L*(G/T), there being coincidence on
S(G/T) N L*(G/T).

In addition,

lim Q"=1ID (He€a,)

H- -

in the strong operator topology.

AxioMIX.VH &€ Qo

O"(8»(G/T)) C R(G/T).
Apropos of this axiom, observe that

o": $*(G/T) - R(G/T)

is continuous, as follows from the closed graph theorem.

AxioM X. Let (P,, S,), (P,, S,) be I'-cuspidal split parabolic subgroups
of G with special split components A,, A,. Let
8,, 8, be K-types
0,, 0, be M,, M,-types.
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Let

(I)l € 8cus(81’ (91)
®2 € gcus(‘SZ’ ®2)
Then, for allH € a,,
(QUE(P,|4,:®,:A,:?), Q"E(P,| 4,:®,:A,:7))

is null unless (P,, S,) and (P,, S,) are associate, in C (say), 8, = 8,, and 0,
and 0, are associate, in which case

(QUE(P,|A4,:®,:A,:?), QHE(P,|4,:®,: A,:?))
is equal to the sum
(-1)"-vol(€)- 3 2 2
=1 p=1w, ,EW(A,, 45) w, (EW(A4,, 4)

of the product of
CXp(<IPm(H), Wip,:2K2 + wip: lAl >)
X (I/II(WI;LQKZ + wip:lAh }\m))

with

(ccus(PmlAm:Pl IAI ‘W Al)q)l’ ccus(PiplAiu:leAZ:Wiu:Z:AZ)(DZ)'

p,:l:

We stress once more that these axioms are actual properties of the
truncation operator. Indeed, they characterize it in the following sense.
Fix an H € a, and suppose that we are given a linear operator

T: S(G/T) - S(G/T)
satisfying Axioms IV-X — then,
vfe S(G/T),
Tf = QHf a.e.

The proof hinges on the familiar principle that a rapidly decreasing
function which is orthogonal to all Eisenstein series associated with cusp
forms (including the case when P = G') must, of necessity, vanish a.e. This
being so, let now E, and E, be cuspidal Eisenstein series — then

(TE,, E,) = (TE,, TE,) (by VIII)
= (QYE,, O"E,) (byX) = (QYE,, E,) (by VIII).
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Changing the notation, it therefore follows that
TE = QYE ae.

for any Eisenstein series E associated with a cusp form. The other axioms
will be needed to force this conclusion for an arbitrary f € S(G/T'). Let
04 be a wave-packet — then, V E,

(704, E) = (84, TE) (by V)
= (@, QME) (cf. supra)
= ("8, E) (by V).
Hence
TO, = Q"0, a.e.

But the axioms certainly imply that 7 defines an orthogonal projection on
L*(G/T), there being coincidence on

S(G/T) N L*(G/T).
Accordingly, since the wave-packets are dense in L*(G/T),
vie S(G/T)N L*(G/T),
Tf = QHf a.e.
Finally, write

S(6/T)= U s(6/T)
r<-1
and fix an f € S(G/T'). Using the fundamental theorem of reduction,
write
o
6= U S, woliy "
io=1

o=

or still

G=UK-4,[t] w, T.

ic=1
Let

A;‘O[to] = {a EA,ie"<&(a)=,VAE E%O(g, a,-o)}.
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Call C, the image in G/T of the I'-saturation C,(I') of
o

U K-4;[1o]-

io=1
in G — then C, is compact with C, C C,, , and
G/T'=UC,.
On&, ki
|f]= G- By
Suppose that x € &, , «; but x & C(I') — then
x & K-A7[t]- w,,
$O

[f(x)|= G- .E,:.Io(x)EP,O()c)"l <Ce™"-Ep (x)"".

This means that for all x € & K

19, wp ig®

|f(x) — XC,,f(x) |= e EP,O(x)r

—1

Consequently,
Xc,f =/ inS,_,(G/T).
However,
Xc,f € S(G/T) N L¥(G/T)
and, by what has been ascertained above,

T(Xc,,f) = QH(XC,,f) a.c.
Thanks to IV, then,
Tf = QYf ae,

as desired.
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