
PACIFIC JOURNAL OF MATHEMATICS
Vol. 107, No. 1, 1983

SUFFICIENCY AND RELATIVE ENTROPY
IN *-ALGEBRAS WITH

APPLICATIONS IN QUANTUM SYSTEMS

FUMIO HIAI, MASANORI OHYA AND MAKOTO TSUKADA

The sufficiency and weak sufficiency in * -algebras are discussed.
Some properties are studied concerning the relative entropy and the
sufficiency for invariant states and KMS states in W* and C*-dynami-
cal systems.

Introduction. The concept of sufficiency is very important in
mathematical statistics. The abstract measure theoretic investigation of
sufficient statistics was initiated by Halmos and Savage [13]. Kullback and
Leibler [19] gave the characterization of sufficiency in terms of the
information (i.e., the classical relative entropy). Umegaki [33,34] studied
the sufficiency and the relative entropy in the noncommutative case of
semi-finite von Neumann algebras.

Araki [4,5] extended the relative entropy to the case for normal
positive linear functionals of general von Neumann algebras and showed
its several properties. Furthermore Uhlmann [32] showed the general
WYDL concavity using a quadratic inteφolation theory and defined the
relative entropy of positive linear functionals of arbitrary *-algebras.

In the previous paper [14], we discussed the sufficiency and the
relative entropy in von Neumann algebras and gave the characterizations
of invariant states and KMS states with respect to the modular automor-
phism group of a faithful normal state.

In this paper, we further develop the sufficiency and the relative
entropy in * -algebras. In §1, we introduce besides the sufficiency another
notion of weak sufficiency and establish the relation between them. In §2,
we deal with the weak sufficiency of positive linear maps between ^alge-
bras. In §3, we mention the Araki's and Uhlmann's relative entropies
which are equal in the von Neumann algebra case. We further give a
formula of relative entropy for states of C*-algebras. In §4, we establish
some properties of invariant states and KMS states in WΓ*-dynamical
systems and C*-dynamical systems through the relative entropy and the
sufficiency. The theorems there improve or extend the results obtained in
[14]. Finally we give an application to the Gibbs states of quantum lattice
systems.
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1. Sufficiency and weak sufficiency of *-subalgebras. In this paper,

we shall assume that all *-algebras, C*-algebras and von Neumann

algebras have the unity / and their *-subalgebras always contain /. Let &

be a *-algebra and S be the set of all states of &.

DEFINITION 1.1. A *-subalgebra % of & is said to be sufficient for

S C S if there exists a projection ε of & onto ® such that

(i) e(A*) = ε(A)* for aΆA E <£,

(ii) ε(A)*ε(A) < ε(A*A) for aΆA E &,

(iii) e(BYAB2) = Bιε(A)B2 for aΆA G $ a n d £ 1 ? 5 2 G ®,

(iv) φ = φ © e for all φ E S.

We here call a projection ε of & onto % satisfying (i)-(iii) a conditional

expectation of 6B onto ®. If & is a C*-algebra and © is a C*-subalgebra,

then a conditional expectation of & onto © is nothing but a norm one

projection of & onto ® (cf. [31]).

We first give some examples of sufficiency in von Neumann algebras.

Let %l be a von Neumann algebra and @ be the set of all normal states of

9Ϊ. The definition in [14] of sufficiency of a von Neumann sub algebra for

S C @ is somewhat different from Definition 1.1. However these are

equivalent if S contains a faithful normal state (this is the case dealt in

[14]).

EXAMPLE 1.2. Let φ E @ be faithful and σ,φ be its modular automor-

phism group (cf. [28]). We showed in [14] that the centralizer of Z φ of φ is

sufficient for the set of all σ^-invariant states in @ and the center

3 = 9Ϊ Π 91' is sufficient for the set of all states in @ satisfying the KMS

condition with respect to σt

φ (at /? = 1).

EXAMPLE 1.3. Assume that Sft is semi-finite with a faithful normal

semi-finite trace T of 9ΐ. For each φ E @, there exists a unique positive

self-adjoint operator pφ = dφ/dτ such that φ(^4) = τ(pφA) for all 4̂ E 9Ϊ.

For any set S C @ , the von Neumann subalgebra Wl generated by

{dφ/dτ: φ E S} is proved to be sufficient for S (see [16, p. 72]).

EXAMPLE 1.4. Let {ϋft, G, a] be a W*-dynamical system where g h > α g

is a representation of a group G in Aut(9i). Let 9?" be the fixed point

subalgebra of a and @ α be the set of all α-invariant states in @. Then the



SUFFICIENCY AND RELATIVE ENTROPY 119

result of Kovacs and Szύcs [18] asserts that if 9ΐ is G-finite, i.e., φ{A*A) — 0
for all φ G @α implies A — 0, then $la is sufficient for @α.

For *-subalgebras % of 6E, the existence of a conditional expectation
of & onto % is usually a rather strict condition. In the sequel, we introduce
another weak notion of sufficiency by using cyclic representations of &.
Unbounded ^representations of *-algebras were studied in [23]. A ^rep-
resentation π of & on a Hubert space % is a map of & into linear operators
all defined on a common dense domain D(π) C % which satisfies ττ(/) = /
and

(i) π(aA + βB)Φ = aπ(A)Φ + βπ(B)Φ for all A, B (Ξ &, a, β <Ξ C
andΦ G D(π),

(ii) τr(A)D(π) C Z>(7r) for all ,4 G (£and 7r(^)τr(5)Φ = π(AB)Φ for
allΛ, 5 G # a n d Φ G D(π),

(iii) (Φ, ίr(^)Φ>= (τ7(yl*)Φ,Ψ> for all Φ,Ψ G D(ττ), i.e., ττ(^*) C

The unbounded commutant π(&)c of π(&) consists of all linear opera-
tors T: D(π) -» % such that

(φ,Γττ(yί)Ψ>= (τr(yl*)Φ,ΓΨ), A Effi,Φ,Ψ GZ)(ττ).

The commutant π(&)' of π(^) is the set of all bounded operators Γ o n X
such that Γf D(π) G ττ((£)c. For each positive linear functional ψ of β,
the GNS construction gives rise to a cyclic representation {%φ, πφ, Ωφ} of
β induced by φ which is unique up to unitary equivalence, that is, πφ is a
*-representation of & on a Hubert space %φ with Ωφ G D(πφ) such that

φ(A) =

If for every ^ 6 ^ there exists a c > 0 with A* A < cl (particularly if & is a
C*-algebra), then 77φ becomes a bounded * -representation of & on Xφ. We
shall use in this paper the following three conditions of absolute continu-
ity.

(1) A positive linear functional ψ is absolutely continuous with respect
to φ (we write ψ < φ) if φ(yί*yl) = 0 implies ψ(A*A) = 0.

(2) A linear functional ψ is strongly absolutely continuous with respect
to φ (we write ψ -< φ) if for each sequence {An} in β, φ(y4*^4rt) -> 0
implies ψ(BAn) -> 0 for all ί ε S .

(3) A positive linear functional ψ is dominated by φ if ψ < cφ for some
c > 0 .

Note that for any positive ψ, (3) implies (2) and (2) implies (1). If ψ is
a linear functional of & with ψ -< φ, then by [11, Theorem 1] there exists a
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unique T E π φ ($) c (we denote by T — dψ/dφ) such that

Then ψ is positive if and only if T is positive, and moreover ψ is

dominated by φ if and only if Γis bounded so that T E π (&)'. For each

*-subalgebra ® of &9 let \ = ττφ(®)Ωφ and Wφ = τrφ(®)Ωφ. For every

,4 G(ϊ,we define a vector P φ (^ | ©) in \ by

where Pψ is the orthogonal projection onto %

DEFINITION 1.5. A *-subalgebra © of β is said to be weakly sufficient
for S C S if for each A E & there exists a sequence {#„} in % such that

THEOREM 1.6. Assume that there is a finite subset {φ1?... ,φk) of S such
that every φ E S is dominated by p = Σf= \ψr Then a *-subalgebra % of&is
weakly sufficient for S if and only if (dφ/dp)($)p C® for every φ G S .

Proof. Suppose that % is weakly sufficient for S. For each A E 6£,
there exists a sequence {#„} in % such that

Since {τ7p(J?π)Ωp} is Cauchy, it follows that Ψ — 5-limτrp(5π)Ωp exists in

Wp. If 5 E ®, then we have

1 = 1

k

i=\

k

= \\%(A)Ώf>-ψ\\2,

so that Pp(A\%) = Ψ = s-]imirp(Bn)Ωp. For each φ e S, let Γ = dψ/dp
and f=d(φ{ <$>)/d(ρ[ %) where the cyclic representation of % induced
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by p r $ is given by {Wp, πp { %, Ωp}. Then for every 5 ε § w e have

(7Vp(2?)Ωp, πμ(A)Qp)= φ(B*A) = (vφ(B)Ωψ, Pψ(A | $ ) )

Since this holds for each v4 E β, we obtain

Tπp(B)Ωp = f

and hence % ζ _
Conversely suppose that (dφ/dρ)%p C®p for all φ G S. Let A E (£

and take a sequence {i?Λ} in % such that -Pp(y4 | %) = j -lim πp(Bn)Ωp. For
each φ E 5, since φ is dominated by p, it follows that {πφ(Bn)Uφ} is
Cauchy, so that Φ = .s-lim πψ(Bn)ίlφ exists in %φ. If 5 E ®, then we have

- φ(B*A) = ((dφ/dp)πp(B)Ώp, Pp{A

and hence P φ (^ | ©) = Φ = s-timπφ(Bn)Ωφ. Thus ® is weakly sufficient
for S. Π

REMARK. Theorem 1.6 is considered as the noncommutative extension
of Halmos-Savage's theorem [13]. For the proof of "only i f part of
Theorem 1.6, we need only φ -< p for every φ E S. If πp is a bounded
^-representation (particularly if & is _^C*-algebra), we see that (dφ/dρ)%p

C®p is equivalent to (dψ/dp)Qp E.Wp since Γτrp(^l)Ωp = ττp(^l)ΓΩp for all
A <Ξ&andTEπp(&)c.

In the following theorem, we state the elementary facts of weak
sufficiency which are immediately seen from the definition and Theorem
1.6.

THEOREM 1.7. (1) If a *-subalgebra % of & is weakly sufficient for
{φ, ψ} and φ = ψ on%9 then φ = ψ on &.

When the assumption in Theorem 1.6 is satisfied, then:
(2) // a *-subalgebra ^of& is weakly sufficient for S, then © is weakly

sufficient for the convex hull of S.
(3) If a *-subalgebra % of& is weakly sufficient for S and a *-subalgebra

Qof% is weakly sufficient for (φΓ %: φ E 5}, then Q is weakly sufficient for
S.

(4) If a *-subalgebra % of a C*-algebra & is weakly sufficient for 5, then
any *-subalgebra β with Φ c S C ( ϊ w weakly sufficient for S.
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THEOREM 1.8. (I) If a *-subalgebra % of (I is sufficient for S, then % is

weakly sufficient for S.

(2) Assume that there is a φ G S such that ψ -< φ for all ψ E S. Then a

*-subalgebra % of&is sufficient for S if and only if% is weakly sufficient for

S and there exists a conditional expectation εφ of & onto ® with φ = φ ° εφ.

Proof. (1) Let ε be a conditional expectation of & onto % with

φ = φ o ε for all φ E S. If A G &, B G % and φ E S, then we have

and hence P φ ( ^ | ©) = τrψ(ε(A))Ώψ. Thus ® is weakly sufficient for S.

(2) Suppose that © is weakly sufficient for S and there exists a

conditional expectation εφ of & onto Φ with φ = φ ° εφ. We show that

ψ = ψ o £ φ for all ψ G S . For each ψ E 5 , since (dψ/d<p)2φ E ® φ by

Theorem 1.6 (Remark), we can choose {Bn} in ίB such that

φ = s-Kmπφ(Bn)Qφ.

Then ψ = ψ o εφ follows from

EXAMPLE 1.9. We recall the usual concept of sufficiency in the

classical probability theory (cf. [7, 13]). Let (X, ίF) be a measurable space

and S be a set of probability measures on ^. A σ-subalgebra % of ^ is

sufficient for S if and only if for each A E <# there exists a β-measurable

function g such that g = Eμ(\A\§) a.e. [μ] for every μ G S , where ^ ( 1 ^ | β)

denotes the conditional expectation of the characteristic function \A of A

with respect to μ and §. Let & (resp. ®) be the set of all complex-valued

^(resp. β)-measurable simple functions. Under the pointwise operations,

& becomes a *-algebra and % is a *-subalgebra of 6B. Each μ E S is

naturally regarded as a state of (£. The cyclic representation {5Cμ, ττμ, Ωμ}

is given as follows: 3Cμ = L2(X, ¥, μ),_^(/) is the multiplication operator

by / E g , and Ωμ = 1. Moreover <3>μ = L2(X,Q,μ) and P / ι ( / | ® ) =

-Bμ(/|β). Then it is easy to see that if S is dominated, i.e., there is a

measure / n o n ί with μ < m for all μ E S, then β is sufficient for S if and

only if $ is weakly sufficient for 5.
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EXAMPLE 1.10. Let 9Ϊ be a von Neumann algebra acting on a Hubert

space % with a cyclic and separating vector Ω with | |Ω|| = 1, and φ be a

faithful normal state given by φ(A) — (Ω, AQ). For each von Neumann

subalgebra 99? of 9ΐ, let S be the set of all states ψ defined by

(ΓΩ, AQ) with T E M'+ , Π2 E Wtt and | |Γ 1 / 2 Ω| | = 1. Then it follows

from Theorem 1.6 that Wl is weakly sufficient for S. Furthermore Theo-

rem 1.8 shows that W is sufficient for S if and only if there exists a

conditional expectation εφ of 9ΐ onto W with φ = φ o εφ, which is if and

only if Wl is invariant under the modular automorphism group σt

φ (cf.

[29]).

2. Weak sufficiency of positive linear maps. In this section, let β

and % be two *-algebras and γ: % -> & be a linear map such that

γ(/) = /, y(B*) = y(B)* and y(B)*y(B) < γ(5*5) for all ΰ e i W e

also assume that for every B G ® there is a c > 0 with B*B < cl9 which is

satisfied if ® is a C*-algebra. Let S^ and §>$ be the sets of all states of &

and ®. Then it is immediate that φ G ^ implies φ ° γ G S$. For each

φ G § £ and A Eΐ &, define a linear functional φA of (J by q>A(Aλ) —

φ(A*Aι). Then we have φA © γ -< φ o γ since

for every B, Bλ &% where J?*J5 < el. Therefore d(φA © y)/d(φ ° γ ) G

i r φ o γ (Φ) c ' i s defined.

DEFINITION 2.1. We call γ to be weakly sufficient for S if for each

A E & there exists a sequence {Bn} in ® such that

[^(?U ° τ ) M φ ° Y)]Ωφoγ - 5-l imir φ β γ (J?jQ φ β γ , ψ G S.

Definition 2.1 is compatible with Definition 1.5. Indeed we have

THEOREM 2.2. Let γ: % -» β be a *-homomorphism. Then γ is weakly

sufficient for S C.%^ if and only if the *-subalgebra y% of & is weakly

sufficient for S.

Proof. If {3Cφ, πφ, Ωφ} is the cyclic representation of & induced by

φ E &&9 then the cyclic representation of © induced by φ © γ is obtained
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by {(γ®)φ, ττφ © γ5 Ωφ}. Now it suffices to show that

[d(φA o y)/d(φ o γ)]β φ = Pφ(A | γ®), φ ε S ^ G l

This follows from

([d(φA ° Ύ)/d{φ o γ)]Qφ, τrφ(γi?)Ωφ) = (φA o y)(B)

= φ(A*(yB)) = (πφ(A)Qφ9 τrφ(γ2?)Ωφ)

), ττ φ (γ i?)Ω φ ) , i ) G i D

We assume further that (£ is abelian and γ: % -» $ is completely
positive, i.e.,

2 ^*y( i?*Z? y )^O

for every Al9... ,An E £ and j ^ , . . . ,£„ E Φ. Note (see [30, IV. 3]) that
when & and % are C*-algebras, any completely positive map γ: % -» β
with γ(/) = / satisfies automatically γ(5)*γ(5) < y(B*B) for all 5 G <3α,
and any positive linear map γ: % -> β is completely positive if either £ or
@ is abelian. Let & ® © be the *-algebraic tensor product of 6E and ®. For
each φ E Sff, we can define the compound state φ ® γ of β ® Φ by

(φ Θ y)(A ® B) = (φA*

since

Identifying & and ® with *-subalgebras & ® / and / ® © of (J ® ®, we
then have

THEOREM 2.3. (1) ί w sufficient for (φ ® γ: φ E §^}.
(2) γ w weakly sufficient for S Cc>a if and only if % is weakly sufficient

for (φβγ φGS).

Proof. (1) Defineε:&®% ^&byε(A ® B) =Ay(B)9A G « , ί G ©.
Since γ is completely positive and β is abelian, it follows that ε is a
conditional expectation of β ® % onto β. Hence (1) is seen from (φ ®
γ) o ε = φ ® γ for all φ E § β .

(2) For φ E § β , let (5C~, π^, Ω~} be the cyclic representation of
&® % induced by φ = φ ® γ. Since φΓ % = φ ° γ, the cyclic representa-
tion of ® induced by φ o γ is given by {®~, ττ~Γ ©, Ω~}. Let ^ E (J,
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5 E ( S a n d 7 1 = d(φA ° y)/d(φ ° γ) G π~(%)c. It follows that

= [d(φA ° Ύ

where the first equality is a special case of the equation in the proof of
Theorem 2.2 and the last equality is seen from

([d(ψA o Ύ

51) = (Γττ~(2?)Ω~, ir~(Bx)Qφ)f Bλ E

The "if" part of (2) is now immediate by taking B — I. Conversely if γ is
weakly sufficient for S, then there exists a sequence {Bn} in © such that

Since π~(2?) is bounded from B*B < cl9 we have

P?(Λ ® 5 I ®) = τrφ(B)TΏφ = s-1imπΦ(BBn)Q99 φ E 5.

Hence © is weakly sufficient for (φ ® γ: φ E S). D

EXAMPLE 2.4. Let (X, 5Γ) and (7, β) be two measurable spaces and *>
be a channel distribution from (X, <S) to (7, β), i.e., v is a real-valued
function on I X § such that for every x E X, v(x, •) is a probability
measure on § and for every B E β, v( , B) is ^-measurable on X Let
©(X) and ®(7) be the abelian C*-algebras of bounded complex-valued
measurable functions on X and 7. Define a positive linear map γ:

Let 5 be a set of probability measures on S\ For each μ E £, μ ® γ is
given by

(μ ® γ ) ( / β g) = [ f®gd{μ®v), f E &(X), g E ®(7),

where μ® v is the probability measure on f ®β defined hy {μ ® v)χ
(A X B) — fAv(x9 B) dμ. Then we see in connection with Theorem 2.3(2)
that γ is weakly sufficient for S if and only if the σ-subalgebra X X § =
{XX B: B G§] o f ^ ® β i s sufficient in the classical sense for {μ ® v\
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EXAMPLE 2.5. Let 9? be a von Neumann algebra. An ^-valued

PO-measure M on a measurable space (X^) is a map M: <$ -*Sfl such

that M(F) > 0 for all F G ^ and Σ^ = 1 M(F Λ ) = / (σ-weakly) for every

countable measurable partition {Fn} of X. Let ^ ( X ) be the abelian

C*-algebra of bounded measurable functions on X. We define a positive

linear map γ: ζ&( X) -» 9? with γ(l) = / by

' x

For each φ G 6 , the cyclic representation {%φ o γ , τrφ o γ , Ωφ o γ ) of

induced by φ ° γ is given as follows 3Cφ o γ = L2(X, φ ° M), ττφ o γ ( / ) is

the multiplication operator by /, and Ω φ o γ = 1. For A G 9ΐ,

° Y)/^(φ ° 7) i s identical to the Radon-Nikodym derivative

© M)/d(φ ° M) which is in L2(X, φ © Λf). Now assume that 9ΐ is

σ-finite, so that 31 has a faithful normal state. Then it is proved that γ is

weakly sufficient for S C @ if and only if for every A G Sft there exists a

measurable function/on X satisfying

J(φ^ © M)/d(φ ° Λf) = / a.e. [ φ ° M ] , φ G 5.

Further assume that M is pure, i.e., M is a spectral measure. Then γ is a

*-homomorphism and y(%(X)) is equal to the subalgebra Wl — {M(F):

F G f y . Hence Theorem 2.2 shows that γ is weakly sufficient for S if

and only if Wl is weakly sufficient for S.

EXAMPLE 2.6. Let (ϊ be a C*-algebra and C(§) be the abelian

C*-algebra of continuous functions on §. Define a positive linear map γ:

& -> C(§) with γ(/) = 1 by (yA)(ω) = ω(A)9 A G &, ω G S. For each

p G S and each abelian von Neumann subalgebra 93 of π (&)', we take the

93-orthogonal measure λ of p (cf. [30, p. 241]). Now assume that & is

separable and 93 C 3 P — %(&)" Π τrp(β)', i.e., λ is a subcentral measure

of p, and let S be the set of all Borel probability measures μ on S with

μ < λ. Then γ is weakly sufficient for S. This is proved as follows. There is

a *-isomorphism θ of L°°(S, λ) onto 93 such that

)9 A G &,f G L°°(S, λ) .

For each μ G S and / G C(§), taking gμn = mm((dμ/dλ)ι/2, n) we ob-

tain
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(μ o y)(A) =jω(A) dμ{ω) = lim(0(gMjΩp, πp(A)θ(gμn)Ωp),

{μfoy)(A)=jf(ω)ω(A)dμ(ω)
c>

Since {gμn} is Cauchy in L 2 ( § , λ), it follows that Φμ~ s-limθ(gμn)Ώp

exists and

(μfoy)(A) =

Hence the cyclic representation of & induced by jα o γ is given by

and we have

[d(μfoγ)/d(μoyj\φμ =

Since 6£ is separable, there exists a sequence {An} in & such that τrp(^4rt)

# ( / ) (strongly), and hence

This shows that γ is weakly sufficient for S.

A linear map γ: φ -» β considered here describes more or less a

quantum communication channel with the input space & and the output

space % (cf. [15,21]). Examples 2.4-2.6 provide classical-classical, quan-

tum-classical and classical-quantum channels. Roughly speaking, the

physical meaning of weak sufficiency of γ is that the indirect measurement

through γ gives as much information (measured by the relative entropy) as

the direct measurement of observables in β given a set S of input states

(see §§3, 4).

3. Relative entropy of states of *-a!gebras We begin with the

definitions of Araki's relative entropy and Uhlmann's relative entropy.

(I) Araki's relative entropy. Let (9Ϊ, %9 J, ̂ P) be a standard form of a

von Neumann algebra %l (cf. [2,12]). Araki [4,5] defined the relative

entropy of normal positive linear functionals <p and ψ of 9? as follows.
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There exist unique vector representatives Φ and Ψ in <? such that φ(A) =
(Φ, AΦ) and ψ{A) = (Ψ, AΨ) for all A G 9Ϊ. The operator Sψφ with
the domain

is defined by

SΨΦ(AΦ + Ω) = **(Φ)Λ*¥, Λ G K, J W ' ( Φ ) Ω - 0,

where ^ ( Φ ) denotes the 9ΐ-support of Φ. Then Sψ φ is a closable
conjugate-linear operator and the relative modular operator Δ ψ φ is de-
fined by Δψ φ = (SΨΦ)*SΨ φ. Let Δψ φ = f™λdeψφ(λ) be the spectral
decomposition of Δ ψ φ . The Araki's relative entropy *S(ψ | φ) is now given
by

+ oo otherwise.

Note that the relative entropy 5(ψ | φ) is independent of the choice of a
standard form of 9Ϊ which is unique up to unitary equivalence. We used in
[14] the notation S(ψ \ ψ) instead of S(ψ | φ).

(II) Uhlmann's relative entropy. Let £ be a complex linear space.
Given two seminorms p and q on £, the quadratical mean QM(p, q) is
defined by

βM(/>, ?)(*) - sup α(x, x) 1 / 2 , x G £,

where 7/ is the set of all positive hermitian forms a on £ satisfying
I α(x, j>) ̂ ^ ( x ) ^ ^ ) for all JC, j G £. A function / 1 - ^ ^ on [0,1] whose
values are seminorms on £ is called a quadratical interpolation from p to q
if for every x E £ the function t h-» /?,(x) is continuous and if the following
properties hold:

pt = β M ( Λ i , Λ a ) , / = (ί! + ί2)/2, ίi, h G[0,1],

QM(p9pt),

Uhlmann [32] showed that for each positive hermitian forms α and β there
exists a unique function t H> QFt(a, β) on [0,1] with values in the set of
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positive hermitian forms on £ such that the function pt given by pt(x) =
QFt(a, β)(x, x)ι/2 is the quadratical interpolation from a(x, x)ι/2 to
β(x, JC) 1 / 2, and defined the relative entropy functional S(a; β)(x) of a
and β by

S(a;β)(x) = -liminf j{QFt{a, β)(x,x) - a(x,x)}, x E £.

Now let £ be a *-algebra, and φ and ψ be positive linear functionals of 6E.
The Uhlmann's relative entropy S(ψ | φ) is defined by

where φL and ψΛ are the positive hermitian forms given by φL(A, B) —
φ(A*B) and ψR(A, B) = 4>(BA*).

For each normal positive linear functionals φ and ψ of a von Neu-
mann algebra 9?, the Uhlmann's relative entropy is equal to the Araki's
relative entropy. We here contain the proof for completeness.

Let % be the domain of (7 + Δ ψ Φ ) 1 / 2 , which becomes a Hubert
space with an inner product:

(Ω,, β 2 ) = ((/ + Δ Ϋ f φ ) I / 2 Q l s (/ + ΔΨ > Φ) 1 / 2Ω 2), Ω,, Ω2 E %.

The operators (/ + Δ ψ φ )~' and Δ φ φ(7 + Δ ψ φ ) " ' are positive bounded
linear operators on %. Define positive hermitian forms a and β on % by

α(Ω,, Ω2) = (Ω,, ΔΫ > Φ(/ + ΔΦ ; ΦΓ'Ω

We then have (cf. [24], [32, Example 4])

QF,(a, β)(Q, Ω) = (Ω, [ Δ Ϋ > # ( 7 + Δψ>Φ

= ( Ω , ( Δ Ϋ > Φ ) ' - ' Ω ) , / e ( o , i ) , Ω e 3 C .

Since 9? Φ C Xand

ψ*(Λ, B) = (AΦ, Δ Ψ I Φ ( 7 +

φL(^ί, 5) = (ΛΦ, (7 + ΔΫ ) Φ

it is easy to check that

<27v(ψΛ, ψL)(A, A) = QF,(a, β)(AΦ, AΦ), AϊΞft.

Take the spectral decomposition Δ ψ φ = j™λdeψ φ(λ). If ψ < φ, then
2 = /5 Φ Φ Φ = JΨ = Ψ and'hence ψΛ(Λ 7) = | | (Δ^ Φ ) 1 / 2 Φ| | 2 .
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We have

Γλ ' ~= -liminf Γλλ ' ~ l d(Φ, eψ φ(λ)Φ)

= Γλlogλd(Φ,eψφ(λ)Φ)

because the function (λ~' — \)/t converges decreasingly to -logλ as
ί-> +0. If ψ«<p does not hold, then ψ Λ (/,/) < I K Δ ^ φ ^ Φ H 2 and
hence S(ψR; ψL)(I) = + oo. Thus the Uhlmann's relative entropy is equal
to the Araki's one.

LEMMA 3.1. Let &be a C*-algebra and π be a nondegenerate representa-
tion of & on a Hubert space. If φ and ψ are positive linear functionals of &
having the normal extensions φ and ψ to π(&)" such that ψ(A) = φ(π(A))
andψ(A) = ψ(ττ(Λ)), then S(ψ|φ) = S(ψ|φ).

Proof. According to the Uhlmann's definition of relative entropy, it
suffices to show that

QFt(ψ\ <pL)(A, A) = QFt(jR, φL)(π(A), v(A)), te[θ,l],Ae&.

Let Γ be the set of / G [0,1] for which the above equation holds for every
A E (&. Let H be the set of all positive hermitian forms a on & satisfying

I a(AX9 A2) |< φR(Al9 Aλ)
λ/2<pL{A2, A2)

v\ Al9A2 e β,

and H be the set of all positive hermitian forms a on π(&)" satisfying

\&(Qχ,Qi) 1 ^ Ψ Λ ( δ i » β 2 ) 1 / V ( β 2 , 2 2 ) I / 2 , β , , β 2 e

If a G ̂ , then the form α o n ί ϊ defined by α(v41? A2) — ά(π(A{), π(A2))
is in H. Conversely if a E H, then there exists a positive hermitian form ά
on π(&) such that α(^41? A2) = ά(π(Aλ)9 π(A2)) and hence

\ά{ττ{Aλ),7r{A2))\
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By the Kaplansky density theorem, a can be uniquely extended to a
positive hermitian form όί on ir(&)" which is in H. Therefore

QFί/2{φR

9φ
L)(A9A) = sup a(A, A)

= sup ά(π(A), π(A))

= β F 1 / 2 ( ψ Λ , φL)(τr(^l), π(A))9 AG&.

This implies 1/2 G Γ. Noting that

, A) < ψ * ( Λ , A)χ-'φL(A, A)', te[θ9l]9Ae&9

we can see by the similar arguments that / E Γ implies t/2 G Γ and
(1 + 0/2 G Γ, and that tl9 / 2 6 Γ implies (ί, + /2)/2 G Γ. Since Γ is
closed, we deduce that Γ = [0,1]. D

In the above lemma, we can take as π the cyclic representation
induced by φ + ψ or the universal representation of &.

We here remark that the relative entropy defined in (I) and (II)
contains the usual relative entropies in the classical and quantum systems.
Let (X, ψ) be a measurable space, and μ and v be probability measures on
(3r. Take a measure w i o n f with μ, v < m. Then μ and v are naturally
regarded as normal states of the abelian von Neumann algebra SSI —
U°{X, m) acting on % = L2(X, m). Then the relative entropy S(v\μ) is
equal to the classical relative entropy I(v \ μ) (known as the Kullback-Lei-
bler information):

ί
r dv Λ dv j . .

I -r-log-j-dμ iϊv<£μ,
J dμ 6 dμ
+ oo otherwise.

Indeed, Φ = (dμ/dm)ι/2 and Ψ = (dv/dm)λ/1 are vector representatives
for μ and v, and Δ ^ φ is the multiplication operator by lsuppφί^/Φ)2

where l s u p p φ is the characteristic function of the support of Φ. If v < μ,
then we have

S(v\μ) = Jφ2lsuppΦ\Oί>(Ψ/Φ)2 dm

dm *dm]
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Next let φ and ψ be normal states of the full von Neumann algebra

9Ϊ = B(3C) on a Hubert space %. Then φ and ψ are given by φ(A) =

Ύτ(pφA) and ψ(A) — Ύτ(ρ^A) with positive trace class operators pφ and pψ

on %, and we obtain

S(ψ I φ) = Tr(pψlog pψ - p^log p φ ) .

The relative entropy 5*(ψ | φ) has several basic properties such as joint

convexity, monotonicity, lower semicontinuity, etc. (cf. [4,5,32]). The

monotonicity is stated as follows (cf. [32, Proposition 18]). Let 6£ and % be

*-algebras and γ: % -> & be a linear map such that γ(/) = /, γ(2?*) =

γ ( £ ) * and γ(B)*γ(5) < y(B*B) for all 5 G $ . If φ and ψ are positive

linear functional on 6E, then

This monotonicity is applied to positive linear maps such as in Examples

2.4-2.6. Particularly if % is a *-subalgebra of &, then we have S$(ψ \ φ) <

S(Ψ\φ) where 5$(ψ |φ) denotes the relative entropy of the restrictions

φr % andψΓ ©.

In connection with Example 2.6, it is proved that the relative entropy

of states of a C*-algebra is equal to that of their decomposition measures

in some cases.

THEOREM 3.2. Let & be a C*-algebra and μ, v be regular Borel

probability measures on S with barycenters φ, ψ G §. If there is a subcentral

measure λ on% such that μ, v < λ, //ze« S(ψ\φ) = I(v\ μ).

Proof. Let λ be the 93-orthogonal measure of p G § with an abelian

von Neumann subalgebra 93 of 3p = ττp(&)" Π πp(@,)'9 and θ be the

*-isomorphism of L°°(S, λ) onto 93 such that

Qp,θ(f)πp(A)Qf)) = fe{ω)ω(A)dλ(ω), A E &,f <Ξ L°°(S, λ).

As is seen in Example 2.6, there exists a Φμ G %p such that φ(A) =

(Φμ, πp(A)Φμ) for all A G 6B. Hence φ has the normal extension φ to

πp(&)" and it is easily checked that

Φ(β(f))=ffdμ,

Analogously ψ has the normal extension ψ to πp(&)" satisfying

j(θ(f))=ffdv9 /GL-(S,λ).
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Using Lemma 3.1, we have

The inverse inequality always holds by the monotonicity. D

COROLLARY 3.3. (1) Let φ , ψ E § which satisfy the KMS condition with

respect to a strongly continuous one-parameter automorphism group at of'&.

If μ and v are the central measures ofφ and ψ, then S(\p\φ) = I(v\ μ).

(2) Let {S,,G9a} be a C*-dynamical system such that aG is a large

group of automorphisms of 6£, and φ, ψ E § be a-invariant. If μ and v are

the ergodic decomposition measures of φ and ψ, then S(\p\φ) = I(v\ μ).

Proof. (1) Let K be the set of all states satisfying the KMS condition

with respect to ar Then K is a Choquet simplex and the central measure

of p E K is identical to the unique maximal measure on K representing p

(cf. [8, p. 121]). Hence it follows that λ = (μ + v)/2 is the central measure

of p = (φ + ψ)/2, so that Theorem 3.2 gives the desired equality.

(2) First note that the set §>α of all α-invariant states becomes a

Choquet simplex, because the condition of large group implies the G-

abelianness (cf. [10]). Hence λ = (μ + v)/2 is the ergodic decomposition

measure of p = (φ + ψ)/2. It follows (cf. [26, Theorem 3.6], [27, Theorem

3.1]) that λ is the 33-orthogonal measure of p with 93 = (πp(&) U Up(G))'

~ 2P Π Up(G)' where g h-> Up(g) is the unitary representation of G on %p

such that τrp(ag{A)) = Up{g)<πp(A)Up{g)* and ί/p(g)Ωp - Ωp. Thus we

have the desired equality. D

4. Relative entropy, sufficiency and KMS condition. In this section,

we establish some relations between the relative entropy, the sufficiency

and the KMS condition in W*-dynamical systems and C*-dynamical

systems. The following theorem is obvious from Definition 1.1 and the

monotonicity of relative entropy.

THEOREM 4.1. If a *-subalgebra % of&is sufficient for {φ, ψ} in §, then

THEOREM 4.2. Let %l be a υon Neumann algebra and @ be the set of all

normal states of 9Ϊ.

(1) Let {SSI, G, a) be a W*-dynamical system. If φ, ψ E @ are a-in-

variant, then S(ψ I φ) = Sma(\p | φ) where %la is the fixed point subalgebra

of a.
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(2) Let at be a strongly continuous one-parameter automorphism group

of SSI. // φ, ψ E @ satisfy the KMS condition with respect to an then

5(ψ I φ ) = Ss(ψ I φ) where 3 = 9? Π 9T.

Proof. (1) Let s(φ) and s(ψ) be the support projections of φ and ψ,

which are in Sfta from the α-invariance of φ and ψ. Since 5 ( ψ | φ ) =

Sςχa(\p I φ) = +oo if »y(ψ) < Λ (φ) does not hold, we assume that s(ψ) <

s(φ). Letting e = s(φ), we can define a W*-dynamical system {!&, G, ά}

by & = eSfte and ά g = αgΓ &. Then φ = φΓ $t and \p = ψΐ $1 are ά-in-

variant. Since φ is faithful, it follows (see Example 1.4) that $1" = eSSlae is

sufficient for {φ, ψ}. Hence we have S(ψ | φ) — Senae(\p \ φ) by Theorem

4.1. It now suffices to show the equations:

) and S

Define a linear map γ: 9? -> 5R by γ(^4) = eyίe. Then we have γ(/) = e,

γ(i4*) = γ(i4)* and y(A)*y(A) < γ(^*^ί) for all ^ E 31. Since φ = φoy

and ψ = ψ o γ9 the monotonicity gives 5(ψ | φ) < S(ψ | φ). Next define a

linear map γ: Sβ -> 9ΐ by γ ( 5 ) = 5 + φ ( £ ) ( / - e). Then we have y(e) =

= B*B+\φ(B)\2(l-e)

< 5*5 + φ (B*B)(I -e) = y(B*B), B E ^ .

Since φ = φ o γ and ψ = ψ o γ? the monotonicity again gives S(ψ | φ) ^

£(ψ I <p). We hence obtain the first equation and analogously the second

equation.

(2) By the KMS condition, the support projections s(φ) and s(ψ) are

in 3 (cf. [22, Lemma 5.1]). Letting j(ψ) < .y(φ) = e, we define & = 9?e

and ά, = α,Γ &. Then φ = φ r 5 β a n d ψ = ψ r ^ satisfy the KMS condition

with respect to άt. Since φ is faithful and hence άt — of the modular

automorphism group of φ, it follows (see Example 1.2) that 3 = 8e i s

sufficient for {φ, ψ}. As in the proof of (1), we thus have

() () D

THEOREM 4.3. Le^ at be a strongly continuous one-parameter automor-

phism group of SSI and φ, ψ E @. Assume that φ satisfies the KMS condition

with respect to ar

(l)IfS(\p\φ) = *S^«(ψ I φ) < + oo, /Λe« ψ w at-inυariant.

(2) // 5(ψ I φ) = 5 3 ( ψ I φ) < +oo, ίfow ψ satisfies the KMS condition

with respect to ar
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Proof, By the assumptions, we have s(φ) G Q Π 9ta and s(ψ) <
As is seen from the proof of Theorem 4.2, we may suppose that φ is
faithful, so that at = σt

φ the modular automoφhism group and %la = Zφ

the centralizer of <p (cf. [28, Lemma 15.8]). In [14, Corollaries 4.2 and 4.3],
we proved (1) and (2) for the case when also ψ is faithful. Now let ψ be not
faithful and/? = s(ψ).

(1) We first show that/7 G Zφ. Let & = (Zφ U {/?})", φ - φί tit and
ψ = ψr &. Then φ is a trace of & and we have 5(ψ | φ) = S z(ψ | φ)
< + oo by the assumption. Let ε be the conditional expectation of 91 onto
Zφ with φ © ε = φ. Define ψ' = ψ o ε, ψ, — (1 — t)\p + tφ and ψ/ = ψ, o ε

= (1 - OΨ' + /φ for 0 < / < 1. Since ψ, is faithful, it follows by [14, The-
orem 3.3] that

(*) \\i' ~ i\\ < {2(s(i\φ) - Szμt\φ))}V\ 0<t<\.

Since φ is a trace, there exists a positive self-adjoint operator h affiliated
with tit such that ψ(A) = φ(hA) for all ̂  E tit. Take the spectral decom-
position A = /0°°λ de(λ). Noting that Δ$f$ = A and Δ^ $ = (1 - ί)A + tl
where Φ, Ψ, and % are vector representatives of φ, ψ and ψ, in the
standard form of tit, we have

= Γλlσgλdφ(e(λ))9
JQ

= Γ [ ( 1 - f)λ + ί]log[(l - /)λ + t] dφ(e(λ)).

Since

- 1 <[(1 - ήλ + /]log[(l - t)λ + t] < (1 - Oλlog λ,

it follows from the Lebesgue's convergence theorem that

and analogously

By letting ί -» +0 in (*), we obtain ψr = ψ, which implies that Zφ is
sufficient for {φ, ψ}. Then it is easy to see that A is affiliated with Zφ, so
that p = s( A) e Zφ. Now define a faithful state ψ = cψ + (1 - c)φ where
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c — ψ(p) < 1 a n d ψ = (1 — c)"V/-^- Since s(ψ) _L s(φ), by [5,Theorem
3.6] we have

+ clog c + (1 — c)log(l — c),

4-clogc + (1 — c)log(l — c).

Since φ is σ,φ-invariant and φ < (1 — c)~]φ, it follows from Theorem 4.2

(1) that S ( φ | φ ) = Sz(φ\φ) < +oo, and hence 5 ( ψ | φ ) = 5 z ( ψ | φ ) <

+ oo. This implies by [14, Corollary 4.2] that ψ is σ,φ-invariant. Thus ψ is

σr

φ-invariant.

(2) Substituting 3 for Z φ in the proof of (1), we can show that / ? £ 3

and a faithful state ψ defined as above satisfies the KMS condition with

respect to σf

φ, and thus ψ satisfies the same condition. D

Let & be a C*-algebra and at be a strongly continuous one-parameter

automorphism group of ($,. Let φ 6 § and {3Cφ,τrφ,Ωφ} be the cyclic

representation of & induced by φ. Suppose that φ satisfies the KMS

condition with respect to ar Since φ is αΓinvariant, there is a strongly

continuous one-parameter unitary group Uφ(t) on %φ such that ί7φ(/)Ωφ

= Ωφ and

irφ(at(A)) - Uφ(t)irφ(A)Uφ(t)*9 / E R , i G l

The normal extensions φ and at of <p and at to 77φ(β)" are given by

ί e R, β ε τrφ

and it is known (cf. [1, Lemma 2.4]) that φ satisfies the KMS condition

with respect to άn i.e., άt — of the modular automorphism group of φ.

Then we have

THEOREM 4.4. Let &, at and ψ be as above. For each ψ E § with ψ •< φ,

let ψ be the normal extension ofψ to π (&)". Then the following conditions

are equivalent:

(i) ψ satisfies the KMS condition with respect to at\

(ϋ) 3 φ = ^φ(ffiΓ Π ττφ(βy is sufficient for {φ, ψ};
(iii) 3 φ w weakly sufficient for {φ, ψ}
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(v) (Dφ: D(φ + ψ)), E $φ for all t E R where (Dφ: D(φ + ψ)), is
the Connes Radon-Nikodym derivative (cf. [9]);

Proof. Note that ψ is given by

Ψ ( β ) = ((dψ/*p)Ωφ> βΩφ>, Q

and hence ψ -< φ. Since there exists a conditional expectation ε~ of πφ(

onto 3 with φ = φ ° ε~, the equivalence of (ii), (iii) and (iv) follows from

Theorem 1.6 (Remark) and the proof of Theorem 1.8. Because the KMS

condition of ψ with respect to at and the same of ψ with respect to άt are

equivalent, it follows from [14, Theorem 2.3] that (i) and (ii) are equiva-

lent. Since (Dφ: D(φ + ψ)), = (D(φ + ψ): Dφ)*, we see by [14, Lemma

2.1] the equivalence of (ii) and (v). Finally the equivalence of (i) and (vi)

follows from Theorems 4.2 (2) and 4.3 (2) and Lemma 3.1 if we prove

^3 (Ψ I Φ) < + °° There exists a positive self-adjoint operator h affiliated

with 3 φ such that ψ(β) = Φ(hQ) for all Q E 3 φ . Take the spectral

decomposition A = j^λde(λ). Then the condition ψ < φ gives rise to

φ(h2) = /0°°λ
2 rfφ(^(λ)) < + oo. Hence we have

= Γλlogλdφ(e(λ))
*Ό

< Γλ2dφ(e{λ))<+oo. D

REMARK. Assuming only that ψ has the normal extension ψ to ?7φ

(which is necessarily a vector state), we obtain the equivalence of the

conditions (i), (ii) and (v) in Theorem 4.4, which imply (vi) and are

implied by the equality (vi) with a finite value. For the case of ψ being

dominated by φ, the condition (iv) can be replaced by d φ/dφ G 3 φ (see

e.g. [17, p. 104]). Also for the c^-invariance of ψ E § with ψ ̂ < φ, we can

obtain the similar equivalent conditions by substituting Z~ = πφ((J)" Π

£/φ(R)' for 3 φ in the above conditions (ii)-(vi).

Theorem 4.4 finds an application in quantum lattice systems. Let L be

a countable set and %0 a finite-dimensional Hubert space. For each

nonempty finite set A C L , let %A — ® x e Λ 5 C x with %x = %0 and &A =

B(%A). Then the quantum lattice system on L is described by the

quasi-local C*-algebra &= U Λ c L ( £ Λ . An interaction Φ is defined as a

function from finite subsets Λ C L into the self-adjoint elements of & such

that Φ(Λ) E &A. Let φ be a state of & satisfying the Gibbs condition with
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respect to Φ (see [8] for the definition). Now assume that Φ satisfies

sup Σ HΦ(Λ)II
A
| =

< +00

for some r > 0. Then the strongly continuous one-parameter automor-
phism group af of & can be given by

af(A) = lim e'
tH^A)Ae'itH^A\ A E &,t E R,

where HΦ(A) = ΣXζ:AΦ(X). It is known (cf. [8,p. 268]) that ψ E §

satisfies the Gibbs condition with respect to Φ if and only if ψ satisfies the

K M S condition with respect to af. Then we have

COROLLARY 4.5. Let &, Φ, at = af and ψ be as above, and let ψ E S

vwYA ψ < φ. Tftew /Λe G/όfe condition for ψ with respect to Φ w equivalent to

each of the conditions (i)-(vi) in Theorem 4.4, and these conditions imply the

following:

(vii)/<9r each A C L , &AC = U^ c ΛcΦΛ-w weakly sufficient for (φ, ψ};

(viii) /or eαc/ϊ A C L , S(ψ | φ) = 5βAC(ψ | φ).

Further if U Λ c L 77 φ ( ( £ Λ ) Ω φ w Λ core for the modular operator Δ Ω associated

with Ω , ί/ze condition (vii) conversely implies the Gibbs condition for ψ vwϊΛ

respect Φ.

The main part of the corollary is immediate from Theorem 4.4 and
the fact that Sψ is identical to ΠΛcLττφ((ίAc)// the algebra of observables
at infinity. The last part follows by [6, Lemma 3].

We finally give some notes on the translationally invariant case of
L — 7jd. Let T be the automorphism group of translations on Ί/. Let Φ be
a τ-invariant interaction satisfying ΣABOer^ ||Φ(Λ)|| < +oo for some
r > 0. A τ-invariant state <p is said to be equilibrium with respect to Φ if
the following variational equality holds (see [17,25]): P(Φ) = s(ψ)—
ψ(Aφ) where ^(φ) is the mean entropy of <p and

P(Φ) = Urn lA
Λ->oo

(van Hove)

AΦ= Σ |A|- ιΦ(A).
Λ 3 0

Then the equilibrium condition with respect to Φ, the Gibbs condition
with respect to Φ and the KMS condition with respect to af are all
equivalent for τ-invariant states of & (cf. [3,8,20]). Let φ, ψ E § be
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τ-invariant. Since {#,Zd, T} is asymptotically abelian, we obtain S(ψ | φ)
= I(v I μ) by Corollary 3.3 (2) where μ and v are the ergodic decomposi-
tion measures of φ and ψ. If φ is equilibrium and ψ < φ (or more weakly ψ
has the normal extension to tr (&)"), then it can be proved that v < μ, so
that ψ is automatically equilibrium because μ is supported on the set of
equilibrium states.
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