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RANK OF POSITIVE MATRIX MEASURES

RODERIC MURUFAS

Let L be a selfadjoint operator in a separable Hilbert space. Here
we define a concept of rank for positive matrix measures from which the
spectral multiplicity of a point in the spectrum of L may be determined.
In the process, a diagonalization procedure for positive matrix measures
is constructed, connecting the concept of a spectral matrix to the abstract
measures of a spectral representation.

The definitions and theorems appearing in paragraph 1-6 are taken
directly from the article of Rosenberg [3]. They establish background
material essential to the article and serve to familiarize the reader with
typical manipulations of positive matrix measures.

1. DEFINITION. Let (<p/y) be a complex matrix valued function on R
and v a non-negative real valued measure on the Borel subsets ® of the
real line. If for each / and j <p,y is ^-measurable and integrable with
respect to v then we say (<p/y) G £(R, v) and /(<p/y) dv — {fy^dv).

2. Let (p/y) be an n X n non-negative definite hermitian-matrix valued
function defined on the bounded Borel subsets of R where each entry
function p/y is countably additive on $ . The matrix (p/y) is called a
positive matrix measure. Each pu is a non-negative real valued measure,
and each ptj for i ¥=j is a complex valued measure. From this and the fact
that for a non-negative hermitian matrix H, (0) < H < (tr H)I where / is
the identity matrix and tr denotes trace it follows that each ptj is
absolutely continuous with respect to the positive measure p = tr(p,7) =
SJUiPtf. The Radon-Nikodym derivatives dptj/dp are thus well defined up
to sets of zero p-measure.

3. DEFINITION. The matrix function (mu(X)) - {dptj/dp) will be
called the trace derivative of (p/y). For any measure ju, such that p < ju,,

will be called the ^-derivative of (p/y).

4. FACTS, (a) (mo( \)) is ^-measurable and integrable with respect
= tr(p/y)and
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(b)(0)<(mo.(X))</p-a.e.
(c) ^m^A) is ^-measurable.

5. DEFINITION. Let <p, $ be 1 X n vector valued functions on R. If
e £*(*> p) define

Then let £2(i?,(p/7)) be the class of all ^-measurable vector valued
functions cp on R such that (<p, <p)(p ) exists and is finite. The integral
J(p(mlJ(\))\p* dp is sometimes written /<p d(ptJ)\l/*.

6. THEOREM. £2(i?,(p/y)) w a Hilbert space of vector valued functions.

7. DEFINITION. Let A represent the operator of multiplication by the
independent variable in the Hilbert space £2(i?, (p0)) where (ptj) is some
positive matrix measure and the domain of A is the set

8. DEFINITION. Let «£>, be Hilbert spaces and L/ be operators, possibly
unbounded, defined on 6D/ C §. for / = 1,2. A unitary equivalence be-
tween Lx on § j and L2 on §>2 is a norm preserving map U from ^j onto
§ 2 which maps 6D1 onto 6j)2 such that for all h E 6D1 we have U~lL2U(h)

9. DEFINITION. TWO positive matrix measures (p/y) and (T ), not
necessarily of the same dimensions, will be called equivalent if there exists
a unitary equivalence between A on t2(R,(piJ)) and A on £2(i?,(rf7)).

10. REMARK. If p and r are 1 X 1 measures then equivalence accord-
ing to Definition 9 coincides with the usual notion of equivalence where
p < T and T < p. In this event we will write p ~ T.

11. Given ann X n positive matrix measure (ptJ) let (p^.) and (p^.) be
its atomic and continuous parts, respectively. An atom is any singleton set
{A} consisting of a point \£ R such that (p/y({X}» ^ (0).

Let the one dimensional measure p represent any measure equivalent
to tr(p.y), and let (m, / \ ) ) - {dptJ/dp).
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Let the one-dimensional atomic measure pa represent any measure
equivalent to tr(p^), and let

(my/A)) = (d9yd9
a).

Let the one dimensional continuous measure pc represent any measure
equivalent to tr(p^), and let « / X ) ) = (dpc

tj/dpc).
For k= 1,2,...,n and / = 1,2,...,(2) let mf(\) be a fixed kXk

principal submatrix of (ra/7(X)). The determinant \mf(X) | is a $-mea-
surable function of X so the sets (X G R \ | mf(X) j ^ 0} are all ®-mea-
surable and so too are the sets

(!)
{XGi?|rank(m,/X))>fc} - U (X G R \ | mf(X) | ^ 0}

i=\

for /: = 1,2,...,/i. (See §35). Hence we can make the following defini-
tions.

12. DEFINITION. Let (p/7) be a positive matrix measure. Using the
above notations let the rank ofipjj) at a point X G R, denoted rank(p/y)(X),
be defined by

rank( ptj) (X) = lim p-ess max (rank( w,./ /i))}
* * 0 + A(\)

where A(\, e) = {/x G (X — e, X + e) | either JLI is not an atom or ju = X}.
Let the rank of (p /y), denoted rank(p/7), be defined by rank(p^) =
maxAG/?{rank(p/y)(X)}. Let the atomic rank of (p/y) at a point \ G R,
denoted ranka(p,y)(X), be defined by ranka(p/7)(X) =' rank(po({X})). Let
the continuous rank of (p/y) at a point X G R, denoted rankc(p/y)(X), be
defined by

rank c( ptj) (X) = lim pc-ess max { rank( mc. • (ju))}.
* - » 0 + e ( X X + )

13. REMARK. It will be shown in Corollary 39 that these definitions
give the same values for equivalent positive matrix measures.

14. LEMMA.

rank(p/y)(X) = max[ranko(p0)(X),rankc(p/7)(X)].
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Proof. Since p/7({A}) = /{X}/W,7(/A) <*P(/0 = ™ijW'P(W) we may
write

p-ess max {rank( m tJ (/x))}
fx<=A(\,e)

— max rank(mo(A)-p({A})), p-ess max {rank(ra,7(ju))]

= max rank(p.y({A}))? pc-essmax {rank(m^(/x))} . D

Let L be a self adjoint operator on a Hilbert space $ .

15. DEFINITION. A spectral matrix for L is a positive matrix measure
(p/y) for which there exists a unitary equivalence between L on $ and A
on£2(i?,(P/y)).

16. LEMMA. / / (p , 7 ) is a spectral matrix for L and X is an eigenvalue of
L of multiplicity k then ranka(p/y)(A) — k.IfX is not an eigenvalue of L
then rank> / y .)(A) - 0.

Proof. Let Y= (p/7({A0})). From Definition 12 rank^(pz7)(A0) =
rank Y. By the spectral theorem there exists a unitary matrix V such that
Y= VAV* where A is the matrix {atj) — (ju.y5/7) and iiu...,[in are the
eigenvalues of Y each repeated according to its multiplicity. Since the
eigenvalues of Y are non-negative we can suppose iix> fi2> - • • > \in>0.
Suppose \ik > 0 and ixk+x = 0. For / = 1,2,... ,k let et represent the /th
row of the n X n identity matrix and define

ifA = A0,

otherwise.

Then {c/(A) • V~l}^=l is a set of orthogonal eigenvectors of A correspond-
ing to Ao in e2(U,(p l7)).

To demonstrate the completeness of this set assume /(A) is an
eigenvector of A corresponding to Ao such that /(A) -L £,(A)- V~x for
/ = I9...9k. The support of/(A) is {Ao} so that for / = I9...9k we have

O=jf(X)d{piJ(X))Vef(X)

= f(X0)VAV*Ve* =
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If we define g = / ( X 0 ) ' ^ then this last equation implies the first k
components of g must be all zeros. Hence, we write g —
(0,0,... ,0, gk+l, gk+2,... ,gn). Therefore

f\\2=ff(\)d(Pij(\))f*(\)

= f(\0)VAV*f*(\0) = gAg* = 2 Hi\8i\2 = 0.
1 = 1

This also shows that if k = 0 then Ao is not an eigenvalue of L.
Now to continue let U be the unitary equivalence between L on # and

A on t\R, (pjj)). Then {U'^iX) • V'l]}^=l is a complete set of orthogo-
nal eigenvectors of L corresponding to Xo in the Hilbert space §. Hence
rank(p/7({A0})) = k — multiplicity of the eigenvalue Ao. •

The following definition and theorem are taken from Dunford and
Schwartz [1].

17. DEFINITION. Let jtx be a positive measure defined on the family $
of Borel sets of the real line and let {en} be a decreasing sequence of Borel
sets whose first element ex is R. Let ixn{e) = jx(e D en), e E $ , n = 1,2,
A unitary equivalence Ubetween L o n § and A on ©^°=1£

2(-R, M«) is said
to be an ordered representation of § relative to L. If ^(e^) > 0 and
fi(ek+x) = 0 then the ordered representation is said to have multiplicity k.
Two ordered representations U and t7 of § relative to L and L respec-
tively, with measures JU. and /I, and sets {en} and {en} will be called
equivalent if ft — /Z and \i{en Aen) — 0 for n = 1,2,..., where A denotes
the symmetric difference.

18. THEOREM. Any two ordered representations of § relative to L are
equivalent.

19. DEFINITION. Suppose U is an ordered representation of § onto
© ^ 6 (JR, pt) relative to a selfadjoint transformation L. Let @ =

®°L{&
2(R, Pi), ®c= ®^Llt

2(R,pc
i)eind(Sa= (B^L^iR, pa

t) where p\
and ]û  are, respectively, the continuous and atomic parts of the measure

20. REMARK. Note that pt > /xy, p] > pcj and pa
t > ^ for / <j.
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21. DEFINITION. Let & be the subspace of § generated by the
A

eigenvectors of L and let © = § © ©.

22. LEMMA. G/t;e/7 a« ordered representation U of § — @ © ©

Proof. Since @ c = © © @ a and 1/ preserves orthogonal complements,
it need only be demonstrated that © = U~\®a).

Let Fj(X; Xo) G ©,* j£2(i?, nt) represent the vector with X{AO}(^)
 a s

the yth component and zeros elsewhere. Here Xs *s ^ e characteristic
function of a set S. Then the set Wa = {^(X; Xo) \ Xo G R; [ij({X0}) > 0;
j — 1,2,...} is a generating set for @fl. On the other hand the set E of
eigenvectors of L generates @\

Suppose 0¥=cpEE. Let <?(A) = £/<». Then XG(X) = A[G(X)] =
U o L((p) = t/(X0<p) = Aof/(<p) = X0G(X) implies G(X) = 0 a.e., ([ix) on
i? - {Xo}. So G may be expressed as G(X) = © ^ a ^ X ; Xo) and we
have G G @fl. This shows U(E) C ©^ and therefore U(&) C @tf.

On the other hand suppose JF).(X; XO) G W â. Let <p = U'\Fj). Then
L ( 9 ) = f/"1 o A o f/((p) = u-i o A(/;.) = ^ ( A 0 - / r ) = \Q-U-\FJ) =
X0<p so<pG£. This implies U'\Wa) C £ and therefore U'\(Ba) C ©. •

23. DEFINITION. Let {a^} and {T^} be sequences of continuous and
atomic Borel measures, respectively, on R such that oi > oj and r. » T̂  for
/ <y. A continuous ordered representation of the Hilbert space tg relative to
the operator L is a unitary equivalence between L on g and A on
0£°=1£2(i?, ok). An atomic ordered representation of $ relative to L is a
unitary equivalence between L on @ and A on ©^°=1£2(i?, T^). If there
exists a largest index k such that o^ [resp. rk] is a non-zero measure and
a^+1 = 0 [Tfc+1 = 0] then the continuous [resp. atomic] ordered represen-
tation is said to have multiplicity k.

24. LEMMA. When they exist, continuous and atomic ordered representa-
tions of jg relative to L are unique.

Proof. Lemma 22 implies that the direct sum of an atomic and a
continuous ordered representation of § relative to L gives an ordered
representation of § relative to L. It also implies that any ordered
representation has a unique decomposition into an atomic and a continu-
ous ordered representation. The result follows from Theorem 18. •
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25. REMARK. By Lemma 22 L on @ is unitarily equivalent to A on
®™={&

2(R9 n
a

k). Thus if \ is an eigenvalue of L of multiplicity r then A is
an atom of fia

k for k = 1,... ,r. Consequently the multiplicity of the atomic
ordered representation equals the multiplicity of the eigenvalue of L of
highest multiplicity.

the two
26. LEMMA. The multiplicity of an ordered representation is the larger of

>,^ two numbers, the multiplicity of the continuous ordered representation
and the multiplicity of the atomic ordered representation.

Proof. Since the direct sum of an atomic and continuous ordered
representation gives an ordered representation, the conclusion follows. •

The next three lemmas and two definitions which follow are taken
from the book of M. H. Stone [4].

27. DEFINITION. Let E(X) be a resolution of the identity for L and let
/ G # . Let ( / ) denote the closed subspace of $ generated by the set

28. LEMMA. When the Hilbert space $ is separable there exists a
countable, orthonormal set of vectors {^}^=1 C © such that (£ =
©r=i(^)» Pk(^) = H£(^)*Mi2 are> for a^ k> continuous and increasing
functions of X giving rise to non-atomic Borel measures {pk} such that
P,» Pjfor i<j.

29. LEMMA. L has a simple spectrum if and only if there exists an
element f E. $ such that ( / ) = # .

30. LEMMA. If L has a simple spectrum and ( f) = § then L on $ is
unitarily equivalent to A on £2(R, p) where p(\) = \\E(X)f\\2.

31. DEFINITION. Let pk(X) be the continuous functions of Lemma 28.
The point X has multiplicity n with respect to the continuous spectrum of L if
pn(X + e) — pn(X — e) for all e > 0 and if there exists some 8 > 0 such
that pn+l(X + e) - pn+x(X - e) = 0 whenever 0 < e < 8.

32. LEMMA. Suppose U is an ordered representation of $ relative to L
where U: § -> ®°k=xt

1{R, nk). The point X has multiplicity p with respect to
the continuous spectrum if iic

p([X — e, X + e]) > 0 for all e > 0 and if there
exists some 8 > 0 such that /x^+1([X — e, X + e]) = 0 whenever 0 < e < 8.
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Proof. Let {\pk} be the orthonormal set and pk(X) = \\E(X)\^k\\
2,

k— 1,2,..., be the continuous distribution functions of Lemma 28.
Lemma 30 implies L on ( ^ ) is unitarily equivalent to A on £2(R, pk).
By taking direct sums we have a unitary equivalence between L on (£ and
A on ©£°=1£

2(1?, pk) which according to Definition 23 is a continuous
ordered representation of $ relative to L. Thus by Lemma 24 pk ~ ji£. •

33. LEMMA. 4̂ hermitian n X n matrix of rank k is uniquely determined
by k linearly independent columns.

Proof. Suppose

l\n

\an\

represents the given matrix. Without loss of generality assume that the
first k columns are linearly independent. This implies the last n — k
columns are linear combinations of the first k columns. By symmetry the
last n — k rows are linear combinations of the first k rows. It follows that

rank

and therefore

0n • • ' a\k
-

\ak\ ' * • akk I

= rank
0i i • • ' 0 u '

•

, 0^1 * * * 0«A; /

an

ak\

l\k

lkk

Now every entry in the first k columns or rows is either given or
known by symmetry.

If i > k and j > k then to determine atj we find the unique solution
(a,, . . . ,ak) to the system

« , * 1 '

akk I
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This solution represents the unique linear combination of the first k
columns giving theyth column. Finally

•

34. LEMMA. Given two ̂ -measurable hermitian matrix functions m{\)
and n{\) such that n(X) is a fixed principal k X k submatrix of the n X n
matrix m(\) and rank m(X) = rank n(X) = k on a set S G ®, then there
exists a ̂ -measurable matrix P(X) such that

m(X) = P(X)n(X)P*(X) onS.

Proof. Let R be a k X n matrix formed by adding columns of zeros to
the k X k identity matrix in the positions of columns to be deleted from
m(X) containing only the k columns used to form n(X); and Rm(X)R* =
n(X).

Since rank m(X) = rank n(X) on S, we can define the ^-measurable
matrix P( A) = m(X)R*n~\X). Now we show P( A)«( A)P*( A) = m(A).

We have UP(A) = Rm(X)R*n-{(X) = n(A)«-1(A) = l*xyt so that
P*(A)U* = l^andP(AMA)P*(A)7?* = m(A)i?*.

This last equation implies that the columns selected by i?* from the
matrices P(A)«(A)P*(A) and from m(A) coincide. Furthermore these k
columns are linearly independent since m(A)iJ* has rank A: (recall
Rm(X)R* = «(A)).

Thus by the previous lemma we have P(A)«(A)P*(A) = m(X) on
S. D

35. DEFINITION. Given an n X « positive matrix measure (p/y.) of
rankr then for k- l ,2,. . . ,r and / = 1,2,...,(£) let mf(A) be a fixed
fc X k principal submatrix of (m/y(A))5 the trace derivative of (p,y). Let
fkl = {A G R 11 mf(A) | ^ 0 } and Sk = (A G R | rank(mo(A)) > ife}. De-
fine the disjoint sets Tk- SkC\ Sk+l = {A G R | rank(miy(A)) = k}. Here
S' denotes the complement of a set 5. Then recursively define the disjoint
sets

Tkl=Tknfkln

= {AGR|rank(mo(A)) = k, \ mf(A) | ^ 0, A ̂  T^forl

where Tkl = Tk n f̂ . Now for Jfc=l,2 r we have 7; =
Also define T = U^=17; = {A G R | rank(mo(A)) > 1).
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36. REMARK. The sets fkl and Sk were shown to be ^-measurable in

§11.

37. LEMMA. Given an n X n positive matrix measure (ptJ) 6>/rank r with
trace p = 2 p / p let (dfJ) be the rXr diagonal positive matrix measure
defined by dit(e) = p(e H St) for e E i Then there exists a unitary equiva-
lence U between A on £2(R,(pu)) and A on £2(i?,(d /y)) given by /(A) H>
f(X)-D(X)for some nX r ^-measurable matrix D(X).

Moreover tx(du) < pa«d(m /7(A)) = D(X)(niJ(\))D*(X) p-a.e.y where
(niJ(X)) is the p-derivative of (d^).

Proof. Define the diagonal matrix {dtj) by dit{e) = p(e n St).
By Lemma 34 there exists a ^-measurable n X k matrix Pkl(X)

such that on the set Tkl of Definition 35 we have (m/y(A)) =
Let i?^7 be the matrix such that mf(X) =

Next recall from Fact 4C that ]/mf(X) exists as a ^-measurable
matrix function. Furthermore from the definition of the set Tkl we know
]/mf(X) has a ^-measurable inverse ymf (X)"1 defined on 7^. Let JŜ  be a
k X r matrix whose first k columns form the k X k identity and whose
last r — k columns are zeros. Then we define a ^-measurable n X r matrix
D(X) on the set T by D(X) = Pkl(X)]/mf(X) -Ek for k = 1,2,. . . , r ;

/ = 1,2 ( j [ ) ;and\6r f t / .
Now the map/(A) i-»/(A) D(X) defines the unitary equivalence (7.
To check the isometry let {ntj) be the p-derivative of (dtJ). We have

TklCSkCSk_xC---CSx and TkinSk+x=0.

This implies that on the set Tkl we have (ntJ) — E£Ek. This is an r X r
diagonal matrix with the first k diagonal entries equal to 1 and all other
entries equal to zero. Note EkE£ = l*x*- Now

f(A)P*(A)/*

= fTf(X)(mu(X))f*(X) dp(X)
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To verify the map U is onto £2(!T,(d/7)) we show there is an inverse
map U~l defined on all t\T, {dtj)) given by g *-»/where for X G Tkh

Recall from Lemma 34 that RklPkl(X) = l*x*- F° r ^ G ?*/we

RklPkl(X)Jm?(X)Ek

Here the matrix EkEk does nothing more than set the last r — k
components of the 1 X r vector g(X) equal to zero. Since dH{Tkl) = 0 for
i > k and Tkl was chosen arbitrarily it follows that

Thus £/ ° [/"^g) = g showing C/is onto.
Also since f/(/) = f(X)D(X) preserves multiplication by the indepen-

dent variable, U is a unitary equivalence between A on £2(T, (p/7)) and A
2

To see (m/y(A)) = Z)(A)(rt/7(A))Z>*(A) let ^(X) = (a/y(X)) represent
the hermitian matrix

^(X) = D(\){niJ(\))D*(\) - (ifly(X)),

let S be any ^-measurable set with compact closure, let ek be the &th row
of the n X n identity matrix and let fk(X) — xs(^)'ek- The isometry of U
implies

0 = fRfk(\)A(\)f?(\) dp(X) =fakk(\) dp(\)

for k = 1,...,«. Since A is hermitian and tr^4 = 0 p-a.e. it follows that
A — (0) p-a.e. In other words

D(\){nu(X))D*(X) = (/Hy(X)) p-a.e. D

38. THEOREM. Let p be the multiplicity of a point X E R with respect to
the continuous spectrum of L, let (p/y) be a spectral matrix for L, and let
q = rankc(p0)(X).

Then q— p.

Proof. Given (p/y) let (dtJ) be the r X r diagonal matrix measure of
Lemma 37. Since SY D S2 D • • • D Sr it follows </,.. > rfyy for i <j. The
space £2(H,(rfj7)) is naturally equivalent to ®k=lt

2(R, dkk) so the
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unitary equivalence of Lemma 37 is easily modified to give an ordered
representation Uof !Q relative to L onto ®™=l£

2(R, fik) where

[0, otherwise.

Thus by Lemma 32 we can use the measures nc
k to determine/?.

If p = tr(p/y) then by Definition 12 there exists a 8 > 0 such that
whenever 0 < e < 8 then the Borel sets

Nk(X9e) = ( f i G [ A - £ , H £ ] |rank(m<y(A)) = k)

satisfy the conditions pc(Nk(X, e)) = 0 for k > # and pc(Nk(X, e)) > 0 for
1 < A: < #.

Recall Tk = {$GR\ rank(m/y(£)) = A:} and Sk = U^kTr Now

/ij([X - e, X + e]) = pc(5, H [A - £, A + e])

but

[A - e, A + e]) < 2 Pc{Tt n [A - e, A + e])
i — k

i = k

These inequalities imply iic
q([X ~ £, A + e]) > 0 for all e > 0 and there

exists a 8 > 0 such that /i^+1([X - e, A + e]) = 0 for 0 < e < S. Thus by
Lemma 32 p — q. •

39. COROLLARY. 77ze numbers defined in Definition 12 are equal for
equivalent positive matrix measures.

Proof, Let (piy) and (p/y) be equivalent positive matrix measures. The
existence of a unitary equivalence between A on £2(i?,(p,y)) and A on
£2(i?,(p/7)) implies that ordered representations for either space relative
to the operators of multiplication by the independent variable involve
equivalent measures. By Lemma 32 the respective multiplicities of a point
A G R with respect to the continuous spectra are equal for all A E R.
Theorem 38 implies rank<:i(p/y)(A) = rankc(p/y)( A) for all A E R.

Moreover the unitarily equivalent operators A and A have the same
eigenvalues with identical multiplicities. Thus Lemma 16 implies
rank^(p/y)(A) = ranka(p/y)(A). By Lemma 14 rank(p.y)(A) =
rank(p/y)(A). •



RANK OF POSITIVE MATRIX MEASURES 189

40. COROLLARY. Given a positive matrix measure (pl7), the multiplicity
of an ordered representation of £2(i?,(p/y)) relative to A coincides with
rank(p,7).

Proof. By Lemma 14

rank(p/y) = max rank(p/y)(A)

= nwx{max[ranka(p,7)(X), rankc(p,7)(\)]}

= max! max ranka(p,7)(A), max rankc(piy)(A.)j.

By Lemma 16 the number maxAG^rank^(p/y)(\) is the highest multi-
plicity of any eigenvalue which, in turn, is the multiplicity of an atomic
ordered representation by Remark 25.

By Theorem 38 the number maxX(E/?rankc(p0)(\) is the maximum
multiplicity of any real number with respect to the continuous spectrum
which, in turn, is the multiplicity of a continuous ordered representation
by Lemma 32.

By Lemma 26 the maximum of these two numbers gives the multiplic-
ity of an ordered representation. •

41. REMARK. We have assumed the separability of § so that the
multiplicity of a point with respect to the continuous spectrum is defined
and the existence of an ordered representation is assured by the spectral
theorem.

42. Conclusion. One of the most important problems in the theory of
differential operators is relating spectral multiplicity to the behavior of the
coefficients of the differential expression. In case L is an ordinary
self adjoint differential operator its spectral matrix may be defined in
terms of eigenfunctions which have known relationships to the coefficients
of the corresponding differential expression. Thus the concept of rank of a
positive matrix measure has provided a promising new connection in this
regard by allowing the determination of spectral multiplicity directly from
the spectral matrix.
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