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ON THE VECTOR FIELDS ON
AN ALGEBRAIC HOMOGENEOUS SPACE

YosHiFuMi Kato

We construct a holomorphic vector field 1 with isolated zeros on an
algebraic homogeneous space X = G/P and show that the Koszul com-
plex defined by V' gives much information concerning the cohomology
groups of X. Our results give useful examples to the studies of J. B.
Carrell and D. Lieberman.

1. Koszul complex. Let X be a compact Kihler manifold of dimen-
sion n. We assume the manifold X admits a holomorphic vector field V'
whose zero set Z is simple isolated and nonempty. The following complex
of sheaves is said to be the Koszul complex defined by V-

(1.1) oogr ol L le=9, -0,

where the differential d is the contraction map i(V"). The structure sheaf of
Zis 0, = 0,/i(V)Q'. To make the differentials of degree + 1, we sub-
stitute K? = Q77:

(1.2) ook Skt Lo

For any locally free sheaf %, we denote by K(%) the complex obtained by
tensoring ¥ with (1.2) over 0. Let 3C*(J) be the cohomology sheaves of
the complex K(% ). Then, from the assumptions, it follows that 59 % ) = 0
for —n<¢<0and %F) =F® 0, whose support is contained in Z.
We abbreviate %, = ¥ ® 0,. The hypercohomology H*( X, K(%)) can be
calculated by using the double Cech complex C*(QU, K(%)) in the usual
manner. See [3]. Corresponding to the natural two filtrations in
C*(A, K(F)), we get the following spectral sequences which converge to
H? (X, K(F)):

(1.3) 'EP4 = HY(X, K*(F)),
(1.4) "EP9 = H?(X,IUF)).

From the above remark, it follows that H'( X, K(%)) = 0 for r # 0 and
H( X, K(9)) = H%(Z,%,). Note that the space H(Z, 0,), i.., in case
% = Oy, can be interpreted as the ring of complex-valued functions on Z.
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Let %, 9, and %, be locally free sheaves and ¢: F;, X %, - %, a
bilinear map. Then by using the exterior product in K*, we obtain a
bilinear map

(1.5)  ¢:H?(X, K(9))) X HY(X, K(F,)) - H"* (X, K(F,)).

Further if we denote by FH?(K(%,)) the filtration on H”(X, K(%,))
induced from the 'E,-terms (1.3), then the map keeps the filtrations

(16)  ¢: FH?(K(F,)) X FEHY(K(F,)) - £, H""(K(F))

for p, g, r, s € Z. In particular if we take 5, = 0,, 1 =i <3, and ¢:
Oy X 0, — O, the multiplication, we can introduce a natural ring struc-
ture in H°( X, K) which is compatible with the wedge product pairing of
the groups 'E,; 79 = HI( X, Q7). Further we have the following known
results. See [2], [3].

- LEMMA 1. Suppose the manifold X and the vector field V are as above.
Then
(1) In case S = O, all the differentials of (1.3) vanish.
(2) Therefore comparing (1.3) and (1.4), we have

(1.7) HP(X,Q9) =0 forp+#gq.

(3) The space H(Z, 0,,) has the canonical filtration induced from the
filtered hypercohomology ring H( X, K) such that:

(1.8) H(Z,0,)=F_,DF_,.,2 -2 F2{0},

(1.9) by By CF oy

(1.10) F_,/F_,, =H(X,Q"),

(1.11) H*(X,C)=grH(Z,0,) = @ F_,/F_,.,.
p=0

2. V-equivariant vector bundles. The following definition and re-
sults are in [3].

DEFINITION. We say that a vector bundle & on X is V-equivariant if
the derivation V: O, — O, can be lifted to &, i.e., there exists a C-linear
map V: & — & such that

(2.1) V(f-s)=V(f) s+ f V(s)

where f is a local section of O and s that of &.
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Let { f;;} be a set of transition matrices of &. Then the set {df,, - £, '}
defines the Atiyah-Chern class ¢(&) of & in H'(X, Hom(&, &) ® Q).
And the class i(V)c(&) in H'(X, Hom(&, &)) is the obstruction for & to
be V-equivariant. See [3]. If we put ¥ = Hom(&, &), the cohomology
groups H'( X, Hom(&, &) ® Q') and H'( X, Hom(&, &)) can be interpre-
ted as the 'E; "' and 'E'-terms, respectively, of the spectral sequence
(1.3). Therefore each V-equivariant vector bundle & defines the hyper-
cohomology class & &) lying in F_ H( X, K(Hom(&, &))). Here the class
é(&) is well defined only up to F,H’( X, K(Hom(&, &))) and is called the
hyper-Chern class of &. We denote by o,: Hom(&,6) - 0,,0=<d=<r=
rank &, the vector bundle homomorphisms defined by the rule:

r

(2.2) det(e1 + @)= X 0,(@)t" 4, Q€ Hom(6,6).

d=0

The mapping o, is usually called the dth elementary function and is a
polynomial map of degree d. We denote by e,;: F_ ,H(X,K)=F_, -
HY(X,Q%) the mapping which induces the canonical isomorphism
F_y/F 4 = HYX, Q).

LEMMA 2. The map o, determines the classes o,(c(&)) and o,(¢(&))
which belong to HY( X, ) and F_ /H( X, K), respectively. We have:

(1) (=%, (c(&)) is the dth Chern class of & and coincides with
(— e ( 0,(¢(&))).

(2) Let V, € HY(Z, Hom(&, &),) = H% X, K(Hom(&, &))) denote
the restriction of V to Z. Then (—1)%,(V,) belongs to H%(Z, 0,) and is
equal to (—1)%,(&(&)).

3. Semisimple Lie algebras. Let g be a complex semisimple Lie
algebra. We choose a compact form t and define a *-operation on g with
respect to t. Let b be a Borel subalgebra of g. If we put ) = b N b* then b
becomes a Cartan subalgebra of g. Let A C ¥ be the root system of h) in
g. The set A is divided into two classes, the positive roots A , and negative
roots A_ with respect to b. We denote by Il the set of simple roots
corresponding to A, . Then any root ¢ € A can be written as ¢ =
2 e N (9)a where n (¢) are nonnegative or nonpositive integers accord-
ingto¢ € A, or A_. The algebra g has the root space decomposition

(3.1) g=b+ X g, + X ag
aEA, BeEA_
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where

b=1§+ 2 3o

a€EA,

For any a € A, dim g, = 1, and from the definition of g, it follows that
(3.2) ad(H)(X)=[H, X] =a(H)X, X€aq, ,HEDH.

Let p be a parabolic Lie subalgebra of g which contains b. Then there
exists a decomposition of g corresponding to p.

LEMMA 3. Let g, p be as above. Weputn = {Z € g|(Z,Y) = 0 for all
Y € b} where (,) is the Killing form of . Then 1 is the maximal nilpotent
ideal of b and also the set of all nilpotent elements in the radical of p. Further
if we define g, = b N p*, then we have the decomposition

(3.3) g=n*+g,tn, p=g, +n.

Moreover g, lies in the normalizers of both n and n*.

For any subspace a which is invariant by the adjoint action of §, we
define the set A(a) C A as follows:

(34) Ala)={0#*a€c€b}|[H, X] =a(H)Xforsome0 # X € a
and any H € h}.
The subalgebras g,, n and n* are invariant and we have:
(35)  A(g) ={o€l|n,(¢)=0foralla € II N A(p)},
(3.6) A(n)={p €A, |n(¢)>0foralla € II N A(p)},
(3.7) A(n*) = —A(n).

Let G be a simply-connected complex semisimple Lie group whose
Lie algebra is g. Let B, T and P be the Borel subgroup of G with Lie
algebra b, the Cartan subgroup with Lie algebra fj, and the parabolic
subgroup with Lie algebra p, respectively. The homogeneous space X =
G /P becomes compact. Further, the space X can be embedded into a
certain projective space by using the representation theory of G. Hence we
call the space X an algebraic homogeneous space. Let G,, N and N* be the
Lie subgroups of G corresponding to g, n and n*, respectively. Then the
group P is the semidirect product of G, and N, and, further, P N N* =
{I}. See[7].

Let N(T) be the normalizer of 7T'in G. We call the group W = N(T')/T
the Weyl group of G with respect to 7. We put W, = N(T) N P/T C W
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and W' = W/W,. The group N(T') acts on T, b and A as follows:
(3.8) m-expH-mw ' =exp(Ad(w)H),
(3.9) (Ad(w)*a)(H) = a(Ad(w) " 'H),

for w € N(T), HE Y, a € A. But if w € T, the actions of w are all
trivial. Hence we can regard as the group W acts on 7, ) and A. For
simplicity, we use the same letter v for 1, Ar(i) and Ad(iv)*.

4. Main results. We first prove the following proposition.

PROPOSITION 1. If we act the maximal torus T on X = G /P then the set
W'=W/W,= N(T)/N(T) N P is naturally realized as the set of all T
fixed points in X.

Proof. An element g € X is fixed by the action of 7 if and only if
g 'Tg C P where g is a representative of g in G. Since the group g~ 'Tg is
also a maximal torus of G contained in P, there exists p € P such that
g 'Tg = pTg~'. This means gp € N(T). Hence g defines a coset gp in
W' If two fixed points g and g define the same coset in W' then
gp = g'p’'p” for some p, p’ EP and p”" EN(T)NP.Sog=g in X. If
we take an element m € N(T) then the coset corresponding to D is
b € W'. Hence the mapping is onto.

Let us consider the following diagram:

G G/P G/P
U U U

(4.1) A N A Iy "
w w w w

Z - expZ - expZ - wexpZ.

We write an element Z of n* as Z = X,y 2, X, With respect to the
basis X, € g,, a € A(n*), of n*. Since the Lie algebra n* is nilpotent, we
have log(exp Z) = Z and hence the map ¢ is one-to-one and onto. Since
N* N P = {I}, the mapping ¢ is also one-to-one. The left multiplication
of m is clearly one-to-one. Hence we can take the pair
(wN* ¢~ ' oy~ o) as a coordinate neighborhood near v € W' and

then the functions {z(1w7*)},can+ become the local coordinates.
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THEOREM 1. The quotient set W' = W /W, can be canonically embedded
into X = G/P as the set of all T-fixed points, and the pair
(WN*, ¢~ "oy ' ow™) is a coordinate neighborhood near Yo € W'. The
sets WN*, w € W', are all T invariant Zariski open sets. In fact if we
multiply exp H € T on wN*, the local coordinate {z(1w71*)} e anr) changes
to {e™V -z (WA*)},cpne)- Further, the space X is covered with the
family of the open sets wN*, i.e, X = U__, wN*

Proof. The first sentence has been proved. Let v, be the element of W
whose length is maximal among all. Then since w, 'Nw, = N*, m ,N* =
Nw,P/P. Namely the set v, N* is the Bruhat cell of maximal dimension
and is a Zariski open set. So wN* = ww, 'w,N*, v € W', are all Zariski
open sets. Since, for exp Z € N*,

expH -wexpZ-P=ww 'expHw -expZ-w 'exp(—H)w - P
=1 -exp(w (H)) - expZ - exp(—0 '(H)) - P
=mw- exp(Ad(exp(m"(H)))Z) - P
=mw - exp(Exp(ad(m_l(H)))Z) - P
and
Exp(ad(w™'(H))) - Z € n*,
then
(97" oy ow ) exp H - wexp Z) = Exp(ad(w™'(H))) - Z.

If we write Z = 3, cp(y+) 24 X,» We have

a“ta

ad(w '(H))-Z=|w Y (H), 3 =zX,

aEA(n*)
= 2 a«(w'(H)z,X,= 3T (wa)(H)z,X,
aEA(N*) aE&EA(n*)
and, hence,
Explad(w '(H)))-Z= 3T e™oUD; x
aEA(n*)

To prove X = U __ . w N*, we need the following fact. See [6].

Fact. Let Y be a compact Kiahler manifold which satisfies H'(Y, C) =
0. Then if a complex connected solvable Lie group S acts holomorphically
on Y, it always has a fixed point inside any analytic subvariety that S
leaves invariant.
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The space X satisfies above assumptions and we can take 7 as S.
Then since wN* is a T invariant Zariski open set, the complement
X =X—-U_ w N* becomes a T invariant subvariety. Hence if X" is
not empty, it must have a 7 fixed point. But this is a contradiction. This
completes the proof.

Since the Lie group G acts on X = G/P from the left side, the space
X has many global holomorphic vector fields. For an element H € b, let
us define a holomorphic vector field V; on X by the rule

(42) (V! JE) = lim < { flexpleH)g) = (7).

where g € X and f is a local function near g. Then the above theorem

implies that the vector field V, is expressible on o N* in the explicit form
_ d

(@3 Vy= 3 (wa)(H)z, g0

aEA(n*) a

If H belongs to the Weyl chambers then 0 # (wa)(H) € R for all
w € W' a € A(n*). Hence the set of all vanishing points of V;, agrees
with W' and V,, vanishes in the first order there.

Let us quote the following fact from C. Kosniowsky [S].

Fact. Let M be a compact complex manifold of dimension » and 4 a
holomorphic vector field with simple isolated zeros {{|,...,{,}. Let us
consider the Lie derivative L,: T¥(M) —» TH(M) at { € {{,...,{,} and
denote by {6,({),...,0,({)} its eigenvalues. Then we have

X, =2(=1)%h77=(=1)"-#{ |Red(5) >0
q
for exactly p indicesj, 1 <j < n},

where h?9 = dim HY( X, QF).
Theorem 2 is well known.

THEOREM 2. Let X = G/P. Then the numbers h?? are determined as
follows:

(1) 79 =0 for p # q,

(2) h7? ={w e W'|(wa)H) >0 for exactly p weights a, a €
A(n*)}.
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Proof. (1) has been shown in Lemma 1. By using (4.3) we can easily
calculate the eigenvalues of the Lie derivative L, at the zero point
w € W' In fact they are the values {2(wa)(H)}, e+ After noting
X, = (=1)? - k7, we complete the proof.

THEOREM 3. Let X = G/P. Let & be a homogeneous vector bundle
which is induced from a representation ¢: P — GL(V"). Then:

(1) The vector bundle & is V,~equivariant.

(2) The representative (— 1) ,( VH, 2) of the dth Chern class,0 <d <
= rank &, of & in H%(Z, 0,,) takes the value o,(d¢(ro~'(H))) at o € W'
Here we denote the differential of ¢ by d¢: p — gl(V).

ReMARK. For the line bundle case, i.e., r = 1, see E. Akyilidiz [1].

Proof. The vector bundle & is obtained by dividing G X V by the
equivalence relation (g, v) ~(gp,¢ '(p)v) for g€ G, pE P, v E V.
Therefore a local section v of & can be interpreted as the V-valued
function on some open set U of G which satisfies v(g) = ¢( p)ov(gp) for
g, gp € U, p € P. Similarly a local function f on X can be considered as
the function satisfying f(g) = f(gp). For these v( g) we define

(44)  (74o)(g) = lim < {o(exp(eH)g) — v(g)):

then
= lim -+ {(o( p)o(exp(eH)gp) — (p)o(gp))

= 9(p)lim + (olexp(e)gp) — o(gp))

= o(p)(Vyv)(gp).

Hence (V,,v)(g) is also a local section of &. On the other hand, let fbea
local function; then

(45) (7y(f0))(8) = lim + {flexp(e)g)o(exp(eH)g) = f(g)v(5))}
= tim =+ {(/(exp(eH)g) — f(8))olexpleH)g))

+lim +((8) ofexp(eH)g) — o(s)))

= (Vuf )g)o(g) + f(8)(Vyv)(g).



VECTOR FIELDS ON AN ALGEBRAIC HOMOGENEOUS SPACE 293

This means V}, is a lifting of ¥}, to &. Hence & is V;-equivariant. Let v(g)
be a local section of & which takes a constant vector v along the set mw N*.
Then

(4.6) (Vyo)(wexpZ) = zi—{r(x)%{v(exp(sH)m expZ) —v(wexpZ)}

— lim Y (o expl —
= lim — {¢(0 ™" exp(—eH)w)
-o(mww ' exp(eH ) exp Zw ' exp(—eH )mw)
—v(mexp Z)}

= lim %{qb(m_‘ exp(—eH)w)v — v}

e—0

= tim ! (B~ ()0 o)
=—d¢(w '(H))v(mexp Z).

Therefore if we choose a basis of local sections of & on w N* from these
sections, we can write V;, , = —d¢(1 " '(H)) by using matrix notation.
So we have

(4.7) det(t — V, ,) = det(t] — (—d¢)(w~'(H)))

= d§O<-1)"ad<—d¢(m-‘(H>))f-d

= 2 o,(dg(w!(H)))r .
d=0
The proof of Theorem 3 is completed.
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