ON THE VECTOR FIELDS ON AN ALGEBRAIC HOMOGENEOUS SPACE

Yoshifumi Kato

We construct a holomorphic vector field V with isolated zeros on an algebraic homogeneous space X = G/P and show that the Koszul complex defined by V gives much information concerning the cohomology groups of X. Our results give useful examples to the studies of J. B. Carrell and D. Lieberman.

1. Koszul complex. Let X be a compact Kähler manifold of dimension n. We assume the manifold X admits a holomorphic vector field V whose zero set Z is simple isolated and nonempty. The following complex of sheaves is said to be the Koszul complex defined by V:

$$(1.1) 0 \to \Omega^n \xrightarrow{\partial} \Omega^{n-1} \xrightarrow{\partial} \cdots \to \Omega^1 \xrightarrow{\partial} \Omega^0 = \mathcal{O}_X \to 0,$$

where the differential ∂ is the contraction map i(V). The structure sheaf of Z is $\Theta_Z = \Theta_X/i(V)\Omega^1$. To make the differentials of degree +1, we substitute $K^p = \Omega^{-p}$:

$$(1.2) 0 \to K^{-n} \xrightarrow{\partial} K^{-n+1} \xrightarrow{\partial} \cdots \xrightarrow{\partial} K^{0} \to 0.$$

For any locally free sheaf \mathfrak{F} , we denote by $K(\mathfrak{F})$ the complex obtained by tensoring \mathfrak{F} with (1.2) over \mathfrak{O}_X . Let $\mathfrak{K}^*(\mathfrak{F})$ be the cohomology sheaves of the complex $K(\mathfrak{F})$. Then, from the assumptions, it follows that $\mathfrak{K}^q(\mathfrak{F})=0$ for $-n \leq q < 0$ and $\mathfrak{K}^0(\mathfrak{F})=\mathfrak{F}\otimes \mathfrak{O}_Z$, whose support is contained in Z. We abbreviate $\mathfrak{F}_Z=\mathfrak{F}\otimes \mathfrak{O}_Z$. The hypercohomology $\mathbf{H}^*(X,K(\mathfrak{F}))$ can be calculated by using the double Čech complex $\check{C}^*(\mathfrak{A},K(\mathfrak{F}))$ in the usual manner. See [3]. Corresponding to the natural two filtrations in $\check{C}^*(\mathfrak{A},K(\mathfrak{F}))$, we get the following spectral sequences which converge to $\mathbf{H}^{p+q}(X,K(\mathfrak{F}))$:

$$(1.3) 'E_{\mathfrak{l}}^{p,q} = H^{q}(X, K^{p}(\mathfrak{F})),$$

$$(1.4) "E_2^{p,q} = H^p(X, \mathcal{K}^q(\mathfrak{F})).$$

From the above remark, it follows that $\mathbf{H}^r(X, K(\mathfrak{F})) = 0$ for $r \neq 0$ and $\mathbf{H}^0(X, K(\mathfrak{F})) = H^0(Z, \mathfrak{F}_Z)$. Note that the space $H^0(Z, \mathfrak{O}_Z)$, i.e., in case $\mathfrak{F} = \mathfrak{O}_X$, can be interpreted as the ring of complex-valued functions on Z.

Let \mathscr{T}_1 , \mathscr{T}_2 and \mathscr{T}_3 be locally free sheaves and $\phi: \mathscr{T}_1 \times \mathscr{T}_2 \to \mathscr{T}_3$ a bilinear map. Then by using the exterior product in K^* , we obtain a bilinear map

$$(1.5) \quad \phi \colon \mathbf{H}^{p}(X, K(\mathfrak{F}_{1})) \times \mathbf{H}^{q}(X, K(\mathfrak{F}_{2})) \to \mathbf{H}^{p+q}(X, K(\mathfrak{F}_{3})).$$

Further if we denote by F_i **H**^p($K(\mathfrak{F}_i)$) the filtration on **H**^p($X, K(\mathfrak{F}_i)$) induced from the E_i -terms (1.3), then the map keeps the filtrations

$$(1.6) \qquad \phi \colon F_r \mathbf{H}^p(K(\mathfrak{F}_1)) \times F_s \mathbf{H}^q(K(\mathfrak{F}_2)) \to F_{r+s} \mathbf{H}^{p+q}(K(\mathfrak{F}_3))$$

for $p, q, r, s \in \mathbb{Z}$. In particular if we take $\mathfrak{F}_i = \mathfrak{O}_X$, $1 \le i \le 3$, and ϕ : $\mathfrak{O}_X \times \mathfrak{O}_X \to \mathfrak{O}_X$ the multiplication, we can introduce a natural ring structure in $\mathbf{H}^0(X, K)$ which is compatible with the wedge product pairing of the groups $E_1^{-p,q} = H^q(X, \Omega^p)$. Further we have the following known results. See [2], [3].

Lemma 1. Suppose the manifold X and the vector field V are as above. Then

- (1) In case $\mathfrak{F} = \mathfrak{G}_X$, all the differentials of (1.3) vanish.
- (2) Therefore comparing (1.3) and (1.4), we have

(1.7)
$$H^p(X, \Omega^q) = 0 \quad \text{for } p \neq q.$$

(3) The space $H^0(Z, \mathcal{O}_Z)$ has the canonical filtration induced from the filtered hypercohomology ring $\mathbf{H}^0(X, K)$ such that:

$$(1.8) H0(Z, \mathfrak{O}_{Z}) = F_{-n} \supseteq F_{-n+1} \supseteq \cdots \supseteq F_{0} \supseteq \{0\},$$

$$(1.9) F_p \cdot F_q \subseteq F_{p+q},$$

(1.10)
$$F_{-p}/F_{-p+1} \cong H^{p}(X, \Omega^{p}),$$

(1.11)
$$H^*(X, \mathbb{C}) \cong \operatorname{gr} H^0(Z, \mathcal{O}_Z) = \bigoplus_{p=0}^n F_{-p}/F_{-p+1}.$$

2. *V*-equivariant vector bundles. The following definition and results are in [3].

DEFINITION. We say that a vector bundle $\mathscr E$ on X is V-equivariant if the derivation $V \colon \mathscr O_X \to \mathscr O_X$ can be lifted to $\mathscr E$, i.e., there exists a $\mathbb C$ -linear map $\tilde V \colon \mathscr E \to \mathscr E$ such that

(2.1)
$$\tilde{V}(f \cdot s) = V(f) \cdot s + f \cdot \tilde{V}(s)$$

where f is a local section of \mathcal{O}_X and s that of \mathcal{E} .

Let $\{f_{ij}\}$ be a set of transition matrices of \mathcal{E} . Then the set $\{df_{ij} \cdot f_{ij}^{-1}\}$ defines the Atiyah-Chern class $c(\mathcal{E})$ of \mathcal{E} in $H^1(X, Hom(\mathcal{E}, \mathcal{E}) \otimes \Omega^1)$. And the class $i(V)c(\mathcal{E})$ in $H^1(X, Hom(\mathcal{E}, \mathcal{E}))$ is the obstruction for \mathcal{E} to be V-equivariant. See [3]. If we put $\mathcal{F} = Hom(\mathcal{E}, \mathcal{E})$, the cohomology groups $H^1(X, Hom(\mathcal{E}, \mathcal{E}) \otimes \Omega^1)$ and $H^1(X, Hom(\mathcal{E}, \mathcal{E}))$ can be interpreted as the $E_1^{-1,1}$ and $E_1^{-1,1}$ -terms, respectively, of the spectral sequence (1.3). Therefore each $E_1^{-1,1}$ -terms, respectively, of the spectral sequence (1.3). Therefore each $E_1^{-1,1}$ -terms, respectively, of the spectral sequence (1.3). Therefore each $E_1^{-1,1}$ -terms, respectively, of the spectral sequence (1.3). Therefore each $E_1^{-1,1}$ -terms, $E_1^{-1,1}$ -terms, respectively, of the spectral sequence (1.3). Therefore each $E_1^{-1,1}$ -terms, $E_1^{-1,1}$ -terms, $E_2^{-1,1}$ -terms, respectively, of the spectral sequence (1.3). Therefore each $E_1^{-1,1}$ -terms, $E_1^{-1,1}$ -terms, $E_2^{-1,1}$ -terms, $E_1^{-1,1}$ -terms, $E_2^{-1,1}$ -terms, $E_1^{-1,1}$ -terms, $E_2^{-1,1}$ -terms, $E_2^{-1,1}$ -terms, $E_2^{-1,1}$ -terms, $E_1^{-1,1}$ -terms, $E_2^{-1,1}$ -

(2.2)
$$\det(tI + \mathcal{C}) = \sum_{d=0}^{r} \sigma_d(\mathcal{C}) t^{r-d}, \qquad \mathcal{C} \in Hom(\mathcal{E}, \mathcal{E}).$$

The mapping σ_d is usually called the dth elementary function and is a polynomial map of degree d. We denote by e_d : $F_{-d}\mathbf{H}^0(X,K)\cong F_{-d}\to H^d(X,\Omega^d)$ the mapping which induces the canonical isomorphism $F_{-d}/F_{-d+1}\cong H^d(X,\Omega^d)$.

LEMMA 2. The map σ_d determines the classes $\sigma_d(c(\mathcal{E}))$ and $\sigma_d(\tilde{c}(\mathcal{E}))$ which belong to $H^d(X, \Omega^d)$ and $F_{-d}\mathbf{H}^0(X, K)$, respectively. We have:

- (1) $(-1)^d \sigma_d(c(\mathfrak{S}))$ is the dth Chern class of \mathfrak{S} and coincides with $(-1)^d e_d(\sigma_d(\tilde{c}(\mathfrak{S})))$.
- (2) Let $\tilde{V}_Z \in H^0(Z, Hom(\mathcal{E}, \mathcal{E})_Z) \cong \mathbf{H}^0(X, K(Hom(\mathcal{E}, \mathcal{E})))$ denote the restriction of \tilde{V} to Z. Then $(-1)^d \sigma_d(\tilde{V}_Z)$ belongs to $H^0(Z, \mathcal{O}_Z)$ and is equal to $(-1)^d \sigma_d(\tilde{c}(\mathcal{E}))$.
- 3. Semisimple Lie algebras. Let $\mathfrak g$ be a complex semisimple Lie algebra. We choose a compact form $\mathfrak t$ and define a *-operation on $\mathfrak g$ with respect to $\mathfrak t$. Let $\mathfrak b$ be a Borel subalgebra of $\mathfrak g$. If we put $\mathfrak h=\mathfrak b\cap\mathfrak b^*$ then $\mathfrak h$ becomes a Cartan subalgebra of $\mathfrak g$. Let $\Delta\subset\mathfrak h^*_{\mathfrak R}$ be the root system of $\mathfrak h$ in $\mathfrak g$. The set Δ is divided into two classes, the positive roots Δ_+ and negative roots Δ_- with respect to $\mathfrak b$. We denote by Π the set of simple roots corresponding to Δ_+ . Then any root $\phi\in\Delta$ can be written as $\phi=\Sigma_{\alpha\in\Pi}\,n_{\alpha}(\phi)\alpha$ where $n_{\alpha}(\phi)$ are nonnegative or nonpositive integers according to $\phi\in\Delta_+$ or Δ_- . The algebra $\mathfrak g$ has the root space decomposition

(3.1)
$$g = \mathfrak{h} + \sum_{\alpha \in \Delta_{+}} \mathfrak{g}_{\alpha} + \sum_{\beta \in \Delta_{-}} \mathfrak{g}_{\beta},$$

where

$$\mathfrak{b}=\mathfrak{h}+\sum_{\alpha\in\Delta_+}\mathfrak{g}_\alpha.$$

For any $\alpha \in \Delta$, dim $g_{\alpha} = 1$, and from the definition of g_{α} it follows that

(3.2)
$$\operatorname{ad}(H)(X) = [H, X] = \alpha(H)X, \quad X \in \mathfrak{g}_{\alpha}, H \in \mathfrak{h}.$$

Let $\mathfrak p$ be a parabolic Lie subalgebra of $\mathfrak g$ which contains $\mathfrak b$. Then there exists a decomposition of $\mathfrak g$ corresponding to $\mathfrak p$.

LEMMA 3. Let \mathfrak{g} , \mathfrak{p} be as above. We put $\mathfrak{n} = \{Z \in \mathfrak{g} \mid (Z,Y) = 0 \text{ for all } Y \in \mathfrak{p}\}$ where (,) is the Killing form of \mathfrak{g} . Then \mathfrak{n} is the maximal nilpotent ideal of \mathfrak{p} and also the set of all nilpotent elements in the radical of \mathfrak{p} . Further if we define $\mathfrak{g}_1 = \mathfrak{p} \cap \mathfrak{p}^*$, then we have the decomposition

(3.3)
$$g = n^* + g_1 + n, \quad p = g_1 + n.$$

Moreover g_1 lies in the normalizers of both n and n^* .

For any subspace α which is invariant by the adjoint action of \mathfrak{h} , we define the set $\Delta(\alpha) \subseteq \Delta$ as follows:

(3.4)
$$\Delta(\mathfrak{a}) = \{0 \neq \alpha \in \mathfrak{h}_{\Re}^* | [H, X] = \alpha(H)X \text{ for some } 0 \neq X \in \mathfrak{a} \text{ and any } H \in \mathfrak{h}\}.$$

The subalgebras g_1 , n and n* are invariant and we have:

(3.5)
$$\Delta(\mathfrak{g}_1) = \{ \phi \in \Delta \mid n_{\alpha}(\phi) = 0 \text{ for all } \alpha \in \Pi \cap \Delta(\mathfrak{p}) \},$$

(3.6)
$$\Delta(\mathfrak{n}) = \{ \phi \in \Delta_+ | n_{\alpha}(\phi) > 0 \text{ for all } \alpha \in \Pi \cap \Delta(\mathfrak{p}) \},$$

(3.7)
$$\Delta(\mathfrak{n}^*) = -\Delta(\mathfrak{n}).$$

Let G be a simply-connected complex semisimple Lie group whose Lie algebra is \mathfrak{g} . Let B, T and P be the Borel subgroup of G with Lie algebra \mathfrak{h} , the Cartan subgroup with Lie algebra \mathfrak{h} , and the parabolic subgroup with Lie algebra \mathfrak{p} , respectively. The homogeneous space X = G/P becomes compact. Further, the space X can be embedded into a certain projective space by using the representation theory of G. Hence we call the space X an algebraic homogeneous space. Let G_1 , N and N^* be the Lie subgroups of G corresponding to \mathfrak{g}_1 , \mathfrak{n} and \mathfrak{n}^* , respectively. Then the group P is the semidirect product of G_1 and N, and, further, $P \cap N^* = \{I\}$. See [7].

Let N(T) be the normalizer of T in G. We call the group W = N(T)/T the Weyl group of G with respect to T. We put $W_1 = N(T) \cap P/T \subset W$

and $W^1 = W/W_1$. The group N(T) acts on T, \mathfrak{h} and Δ as follows:

$$(3.8) w \cdot \exp H \cdot w^{-1} = \exp(\operatorname{Ad}(w)H),$$

(3.9)
$$(\mathrm{Ad}(\mathfrak{w})^*\alpha)(H) = \alpha(\mathrm{Ad}(\mathfrak{w})^{-1}H),$$

for $\mathfrak{w} \in N(T)$, $H \in \mathfrak{h}$, $\alpha \in \Delta$. But if $\mathfrak{w} \in T$, the actions of \mathfrak{w} are all trivial. Hence we can regard as the group W acts on T, \mathfrak{h} and Δ . For simplicity, we use the same letter \mathfrak{w} for \mathfrak{w} , $Ar(\mathfrak{w})$ and $Ad(\mathfrak{w})^*$.

4. Main results. We first prove the following proposition.

PROPOSITION 1. If we act the maximal torus T on X = G/P then the set $W^1 = W/W_1 = N(T)/N(T) \cap P$ is naturally realized as the set of all T fixed points in X.

Proof. An element $\bar{g} \in X$ is fixed by the action of T if and only if $g^{-1}Tg \subset P$ where g is a representative of \bar{g} in G. Since the group $g^{-1}Tg$ is also a maximal torus of G contained in P, there exists $p \in P$ such that $g^{-1}Tg = pTg^{-1}$. This means $gp \in N(T)$. Hence \bar{g} defines a coset \widetilde{gp} in W^1 . If two fixed points \bar{g} and \bar{g}' define the same coset in W^1 then gp = g'p'p'' for some $p, p' \in P$ and $p'' \in N(T) \cap P$. So $\bar{g} = \bar{g}'$ in X. If we take an element $m \in N(T)$ then the coset corresponding to \bar{m} is $\bar{m} \in W^1$. Hence the mapping is onto.

Let us consider the following diagram:

We write an element Z of \mathfrak{n}^* as $Z = \sum_{\alpha \in \Delta(\mathfrak{n}^*)} z_\alpha X_\alpha$ with respect to the basis $X_\alpha \in \mathfrak{g}_\alpha$, $\alpha \in \Delta(\mathfrak{n}^*)$, of \mathfrak{n}^* . Since the Lie algebra \mathfrak{n}^* is nilpotent, we have $\log(\exp Z) = Z$ and hence the map ϕ is one-to-one and onto. Since $N^* \cap P = \{I\}$, the mapping ψ is also one-to-one. The left multiplication of \mathfrak{m} is clearly one-to-one. Hence we can take the pair $(\mathfrak{m} N^*, \phi^{-1} \circ \psi^{-1} \circ \mathfrak{m}^{-1})$ as a coordinate neighborhood near $\mathfrak{m} \in W^1$ and then the functions $\{z_\alpha(\mathfrak{m} n^*)\}_{\alpha \in \Delta(\mathfrak{n}^*)}$ become the local coordinates.

Theorem 1. The quotient set $W^1 = W/W_1$ can be canonically embedded into X = G/P as the set of all T-fixed points, and the pair $(\mathfrak{w} \overline{N^*}, \phi^{-1} \circ \psi^{-1} \circ \mathfrak{w}^{-1})$ is a coordinate neighborhood near $\mathfrak{w} \in W^1$. The sets $\mathfrak{w} \overline{N^*}, \mathfrak{w} \in W^1$, are all T invariant Zariski open sets. In fact if we multiply $\exp H \in T$ on $\mathfrak{w} \overline{N^*}$, the local coordinate $\{z_{\alpha}(\mathfrak{w} \overline{n^*})\}_{\alpha \in \Delta(\mathfrak{n}^*)}$ changes to $\{e^{(\mathfrak{w}\alpha)(H)} \cdot z_{\alpha}(\mathfrak{w} \overline{n^*})\}_{\alpha \in \Delta(\mathfrak{n}^*)}$. Further, the space X is covered with the family of the open sets $\mathfrak{w} \overline{N^*}$, i. e., $X = \bigcup_{\mathfrak{w} \in W^1} \mathfrak{w} \overline{N^*}$.

Proof. The first sentence has been proved. Let \mathfrak{w}_0 be the element of W whose length is maximal among all. Then since $\mathfrak{w}_0^{-1}N\mathfrak{w}_0=N^*$, $\mathfrak{w}_0\overline{N}^*=N\mathfrak{w}_0P/P$. Namely the set $\mathfrak{w}_0\overline{N}^*$ is the Bruhat cell of maximal dimension and is a Zariski open set. So $\mathfrak{w}\overline{N}^*=\mathfrak{w}\mathfrak{w}_0^{-1}\mathfrak{w}_0\overline{N}^*$, $\mathfrak{w}\in W^1$, are all Zariski open sets. Since, for $\exp Z\in N^*$,

$$\exp H \cdot w \exp Z \cdot P = w w^{-1} \exp H w \cdot \exp Z \cdot w^{-1} \exp(-H) w \cdot P$$

$$= w \cdot \exp(w^{-1}(H)) \cdot \exp Z \cdot \exp(-w^{-1}(H)) \cdot P$$

$$= w \cdot \exp(\operatorname{Ad}(\exp(w^{-1}(H)))Z) \cdot P$$

$$= w \cdot \exp(\operatorname{Exp}(\operatorname{ad}(w^{-1}(H)))Z) \cdot P$$

and

$$\operatorname{Exp}(\operatorname{ad}(\mathfrak{w}^{-1}(H))) \cdot Z \in \mathfrak{n}^*,$$

then

$$(\phi^{-1} \circ \psi^{-1} \circ \mathfrak{w}^{-1})(\exp H \cdot \mathfrak{w} \overline{\exp Z}) = \operatorname{Exp}(\operatorname{ad}(\mathfrak{w}^{-1}(H))) \cdot Z.$$

If we write $Z = \sum_{\alpha \in \Delta(\mathfrak{n}^*)} z_{\alpha} X_{\alpha}$, we have

$$\operatorname{ad}(\mathfrak{w}^{-1}(H)) \cdot Z = \left[\mathfrak{w}^{-1}(H), \sum_{\alpha \in \Delta(\mathfrak{n}^*)} z_{\alpha} X_{\alpha}\right]$$
$$= \sum_{\alpha \in \Delta(\mathfrak{n}^*)} \alpha(\mathfrak{w}^{-1}(H)) z_{\alpha} X_{\alpha} = \sum_{\alpha \in \Delta(\mathfrak{n}^*)} (\mathfrak{w}\alpha)(H) z_{\alpha} X_{\alpha}$$

and, hence,

$$\operatorname{Exp}(\operatorname{ad}(\mathfrak{w}^{-1}(H))) \cdot Z = \sum_{\alpha \in \Delta(n^*)} e^{(\mathfrak{w}\alpha)(H)} z_{\alpha} X_{\alpha}.$$

To prove $X = \bigcup_{w \in W^1} w \overline{N}^*$, we need the following fact. See [6].

Fact. Let Y be a compact Kähler manifold which satisfies $H^1(Y, \mathbb{C}) = 0$. Then if a complex connected solvable Lie group S acts holomorphically on Y, it always has a fixed point inside any analytic subvariety that S leaves invariant.

The space X satisfies above assumptions and we can take T as S. Then since $w \overline{N}^*$ is a T invariant Zariski open set, the complement $X' = X - \bigcup_{w \in W^1} w \overline{N}^*$ becomes a T invariant subvariety. Hence if X' is not empty, it must have a T fixed point. But this is a contradiction. This completes the proof.

Since the Lie group G acts on X = G/P from the left side, the space X has many global holomorphic vector fields. For an element $H \in \mathfrak{h}$, let us define a holomorphic vector field V_H on X by the rule

$$(4.2) (V_H f)(\bar{g}) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \{ f(\exp(\varepsilon H)\bar{g}) - f(\bar{g}) \},$$

where $\bar{g} \in X$ and f is a local function near \bar{g} . Then the above theorem implies that the vector field V_H is expressible on $w \, \overline{N}^*$ in the explicit form

(4.3)
$$V_{H} = \sum_{\alpha \in \Delta(\pi^{*})} (\varpi \alpha)(H) z_{\alpha} \frac{\partial}{\partial z_{\alpha}}.$$

If H belongs to the Weyl chambers then $0 \neq (m\alpha)(H) \in \mathbf{R}$ for all $m \in W^1$, $\alpha \in \Delta(n^*)$. Hence the set of all vanishing points of V_H agrees with W^1 and V_H vanishes in the first order there.

Let us quote the following fact from C. Kosniowsky [5].

Fact. Let M be a compact complex manifold of dimension n and A a holomorphic vector field with simple isolated zeros $\{\zeta_1, \ldots, \zeta_k\}$. Let us consider the Lie derivative $L_A: T_{\zeta}^*(M) \to T_{\zeta}^*(M)$ at $\zeta \in \{\zeta_1, \ldots, \zeta_k\}$ and denote by $\{\theta_1(\zeta), \ldots, \theta_n(\zeta)\}$ its eigenvalues. Then we have

$$\chi_p = \sum_q (-1)^q h^{p,q} = (-1)^p \cdot \sharp \{ \zeta_i | \operatorname{Re} \theta_j(\zeta_i) > 0 \}$$

for exactly p indices j, $1 \le j \le n$,

where $h^{p,q} = \dim H^q(X, \Omega^p)$.

Theorem 2 is well known.

THEOREM 2. Let X = G/P. Then the numbers $h^{p,q}$ are determined as follows:

- (1) $h^{p,q} = 0$ for $p \neq q$,
- (2) $h^{p,p} = \{ w \in W^1 | (w\alpha)(H) > 0 \text{ for exactly } p \text{ weights } \alpha, \alpha \in \Delta(\mathfrak{n}^*) \}.$

Proof. (1) has been shown in Lemma 1. By using (4.3) we can easily calculate the eigenvalues of the Lie derivative L_{V_H} at the zero point $\mathfrak{w} \in W^1$. In fact they are the values $\{2(\mathfrak{w}\alpha)(H)\}_{\alpha \in \Delta(\mathfrak{n}^*)}$. After noting $\chi_p = (-1)^p \cdot h^{p,p}$, we complete the proof.

THEOREM 3. Let X = G/P. Let \mathcal{E} be a homogeneous vector bundle which is induced from a representation $\phi: P \to GL(V)$. Then:

- (1) The vector bundle \mathcal{E} is V_H -equivariant.
- (2) The representative $(-1)^d \sigma_d(\tilde{V}_{H,Z})$ of the dth Chern class, $0 \le d \le r$ = rank \mathcal{E} , of \mathcal{E} in $H^0(Z, \mathcal{O}_Z)$ takes the value $\sigma_d(d\phi(\mathfrak{w}^{-1}(H)))$ at $\mathfrak{w} \in W^1$. Here we denote the differential of ϕ by $d\phi$: $\mathfrak{p} \to \mathfrak{gl}(V)$.

Remark. For the line bundle case, i.e., r = 1, see E. Akyilidiz [1].

Proof. The vector bundle \mathscr{E} is obtained by dividing $G \times V$ by the equivalence relation $(g, v) \sim (gp, \phi^{-1}(p)v)$ for $g \in G$, $p \in P$, $v \in V$. Therefore a local section v of \mathscr{E} can be interpreted as the V-valued function on some open set U of G which satisfies $v(g) = \phi(p)v(gp)$ for $g, gp \in U, p \in P$. Similarly a local function f on X can be considered as the function satisfying f(g) = f(gp). For these v(g) we define

(4.4)
$$(\tilde{V}_H v)(g) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \{ v(\exp(\epsilon H)g) - v(g) \};$$
then
$$= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \{ \phi(p)v(\exp(\epsilon H)gp) - \phi(p)v(gp) \}$$

$$= \phi(p) \lim_{\epsilon \to 0} \frac{1}{\epsilon} \{ v(\exp(\epsilon H)gp) - v(gp) \}$$

$$= \phi(p)(\tilde{V}_H v)(gp).$$

Hence $(\tilde{V}_H v)(g)$ is also a local section of \mathcal{E} . On the other hand, let f be a local function; then

$$(4.5) \quad (\tilde{V}_{H}(fv))(g) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \{ f(\exp(\epsilon H)g)v(\exp(\epsilon H)g) - f(g)v(g) \}$$

$$= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \{ (f(\exp(\epsilon H)g) - f(g))v(\exp(\epsilon H)g) \}$$

$$+ \lim_{\epsilon \to 0} \frac{1}{\epsilon} \{ f(g)(v(\exp(\epsilon H)g) - v(g)) \}$$

$$= (V_{H}f)(g)v(g) + f(g)(\tilde{V}_{H}v)(g).$$

This means \tilde{V}_H is a lifting of V_H to \mathcal{E} . Hence \mathcal{E} is V_H -equivariant. Let v(g) be a local section of \mathcal{E} which takes a constant vector v along the set v. Then

$$(4.6) \quad (\tilde{V}_{H}v)(w \exp Z) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \{v(\exp(\varepsilon H)w \exp Z) - v(w \exp Z)\}$$

$$= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \{\phi(w^{-1} \exp(-\varepsilon H)w)$$

$$\cdot v(ww^{-1} \exp(\varepsilon H)w \exp Zw^{-1} \exp(-\varepsilon H)w)$$

$$-v(w \exp Z)\}$$

$$= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \{\phi(w^{-1} \exp(-\varepsilon H)w)v - v\}$$

$$= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \{\exp(-\varepsilon d\phi(w^{-1}(H)))v - v\}$$

$$= -d\phi(w^{-1}(H))v(w \exp Z).$$

Therefore if we choose a basis of local sections of \mathcal{E} on $\mathbb{m}\overline{N}^*$ from these sections, we can write $\tilde{V}_{H,Z} = -d\phi(\mathbb{m}^{-1}(H))$ by using matrix notation. So we have

(4.7)
$$\det(tI - \tilde{V}_{H,Z}) = \det(tI - (-d\phi)(w^{-1}(H)))$$

$$= \sum_{d=0}^{r} (-1)^{d} \sigma_{d} (-d\phi(w^{-1}(H))) t^{r-d}$$

$$= \sum_{d=0}^{r} \sigma_{d} (d\phi(w^{-1}(H))) t^{r-d}.$$

The proof of Theorem 3 is completed.

REFERENCES

- [1] E. Akyilidiz, Doctor thesis, Univ. of British Columbia.
- [2] J. B. Carrell and D. Lieberman, Vector fields and Chern numbers, Math. Ann., 225 (1977), 263–273.
- [3] J. B. Carrell and D. Lieberman, *Holomorphic vector fields and kähler manifolds*, Invent. Math., **21** (1973), 303–309.
- [4] J. B. Carrell, Chern classes of the Grassmannians and Schubert calculus, Topology, 17 (1978), 177-182.
- [5] C. Kosniowsky, Applications of the holomorphic Lefschetz formulae, Bull. London Math. Soc., 2 (1970), 43–48.

- [6] A. J. Sommese, Holomorphic vector fields on compact kähler manifolds, Math. Ann., **210** (1974), 75–82.
- [7] G. Warner, Harmonic Analysis on Semisimple Lie Groups I, II, Springer Verlag.

Received November 6, 1980 and in revised form July 1, 1981.

Nagoya University 464 Furo-Cho Chikusaku Nagoya, Japan