
PACIFIC JOURNAL OF MATHEMATICS
Vol. 109, No. 2, 1983

CHARACTERS VANISHING ON ALL BUT TWO
CONJUGACY CLASSES

STEPHEN M. GAGOLA, JR.

If the character table of a group G has a row (corresponding to an
irreducible character) with precisely two nonzero entries, then G has a
unique minimal normal subgroup N which is necessarily an elementary
abelian p-grovφ for some prime p. The group G/Op(G) is completely
determined here. In general, there is no bound on the derived length or
nilpotence class of Op(G).

1. Introduction. An old theorem of Burnside asserts that, for any

group G, any irreducible character of degree greater than 1 vanishes at

some element of G (for a proof of this fact, see p. 40 of [7]). The extreme

case will be considered here, namely, groups G for which a character exists

which vanishes on all but two conjugacy classes. Clearly no irreducible

character can vanish on all but one conjugacy class (unless \G\ = 1).

The remaining sections of this paper are devoted to determining the

structure of such groups G. Specifically, §2 is devoted to some preliminary

lemmas about the action of G on its unique minimal normal subgroup N.

The kernel of G on N is CG(N) = Op(G) for some prime/? and G/Op(G)

is determined by Theorems 4.2 and 5.6. The subgroup Op(G) can be quite

complicated and this, together with some examples, are discussed in §6.

2. Some preliminary results. As already mentioned in the previous

section, if a group Gΐias an irreducible character which does not vanish on

only two conjugacy classes, then G has a unique minimal normal subgroup

N. The first lemma of this section establishes this, in addition to some

properties of the action of G on N.

LEMMA 2.1. Let G be a group which has an irreducible character χ such

that x does not vanish on exactly two conjugacy classes ofG.If\G\>2 then

X is unique and is, moreover, the unique faithful irreducible character of G.

In all cases, G contains a unique minimal normal subgroup N which is

necessarily an elementary abelian p-group for some prime p. The character χ

vanishes on G — N and is nonzero on N. Finally, the action of G by

conjugation on N is transitive on N$.

Proof. The conclusion of the theorem is trivial if |G| = 2, so assume

\G\ > 2. Clearly χ does not vanish at 1 G G. Let JC E G be chosen so that
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x -φ 1 and χ(x) Φ 0. Now χ¥= lG since \G\ > 2 and so (χ, 1G) = 0. Hence

χ(x) < 0. If h is the size of the conjugacy class containing x and

χ(x) = —s then (χ, 1G) = 0 implies χ( l) — sh = 0. Let ψ be any irreduci-

ble character of G different from χ. Then (χ, ψ) = 0 and so χ(l)ψ(l) —

hsψ(x) = 0 and hence ψ(jt) = ψ(l). Thus x is in the kernel of every

irreducible character of G different from χ. Since χ is faithful, it is the

unique faithful character of G, and no other character of G can vanish on

all but two classes.

Let TV be the (normal) subgroup of G generated by the conjugacy class

of x. The argument in the preceding paragraph showed that TV < ker ψ for

every irreducible character ψ different from χ. If there exists a nonidentity

element, say y, of TV that is not conjugate to x9 then the second ortho-

gonality relation applied to the classes containing x and y yields a

contradiction.

Thus G is transitive on iV#, χ ( y ) = — s for ally ^ N^ and χ vanishes

on G — TV. Since all nonidentity elements of TV are conjugate in G, TV must

be an elementary abelian /?-group for some prime p. It remains only to

prove that TV is the unique minimal normal subgroup of G.

Let M be any normal subgroup of G different from 1, and let 36 be the

set of irreducible characters ψ of G with kernel containing M. Since χ is

faithful, we know x ί ϊ . Hence, by the second paragraph of the proof,

TV < ker ψ for every ψ E 3c and so

M = Π kerψ>TV,

proving that TV is the unique minimal normal subgroup of G. D

LEMMA 2.2. Let χ δe an irreducible character of G and TV a normal

subgroup of G. Assume χ vanishes on G — TV tffld let λ Z?e <zw irreducible

constituent of χN. Define m ~ (χN, λ) tfftd Γ = ί G (λ) (/Ae inertia group of

λ z>2 G). 77ze« λΓ A 5̂ α unique irreducible constituent, say θ. Moreover,

ΘG — X, Θ\N — mλ and \T: N\ — m2 so θ is fully ramified over TV.

Proof. If λ = λj, λ 2 , . . . ,λ, are the distinct G-conjugates of λ then

t = \G: T\ and χ^ = m(λ 1 + λ 2 + + λ r ) by Clifford's Theorem. By

that same theorem, there exists a one-to-one correspondence between the

irreducible constituents of λτ and those of λG, the correspondence being

the induction map. Thus, there exists a unique constituent of λΓ, say θ,

which satisfies ΘG — χ, and Θ\N — mλ. Now θ will be the unique irreduci-

ble constituent of λτ if χ is the unique constituent of λG.
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Suppose χ' is an irreducible constituent of λG. Then χ'^ =
k(λ] + +λt) for some positive integer k. As χ vanishes on G — N we
have

1
x(g)x'(g)

IG * N\ ' ' V / 5 # V V ' M • •'*/// \G'N\'

Thus (χ, χ') 7̂  0 so χ' = χ and hence χ is the unique irreducible con-
stituent of λG. As remarked earlier, this means θ is the unique constituent
of λΓ. The calculation above also proves \G: N\ = m2t so \T: N\ — m1.
Hence θ is fully ramified over N. D

COROLLARY 2.3. Let χ be an irreducible character of G which vanishes

on all but two conjugacy classes of G. If \G\Z=1 2 assume χ is the faithful

character of G. Then N = {x E G\χ(x) φ 0} is the unique minimal normal

subgroup of G, and N is an elementary abelian p-group for some prime p. If

x E JV* and λ is any nonprincipal irreducible character of N, then both

CG(x) and T— ί G (λ) are Sylow p-subgroups of G. Moreover, T has a

unique irreducible character θ which is a constituent of λΓ, and θ is fully

ramified over N. Finally, χ = ΘG.

Proof. That N is the unique minimal normal subgroup of G follows
from Lemma 2.1. Suppose λ is a nonprincipal irreducible character of N.
Lemma 2.1 implies G is transitive on N# and hence is transitive on the
nonprincipal characters of N. As χ is faithful, this implies λ is a con-
stituent of χ^. Lemma 3.2 now implies T — ί σ (λ) has a unique irreduci-
ble character 0, such that θ is a constituent of λΓ, and θ is fully ramified
over N. That same lemma also implies ΘG — χ.

Since λ is invariant in T, ker λ < T and jV/ker λ is central in
Γ/ker λ. Choose any prime q Φ p and let <2/ker λ be a Sylow ^-subgroup
of Γ/ker λ. By Lemma 2.2 of [3], ΘNQ is a multiple of some unique
irreducible character of NQ9 say ξ, and of course, kerf contains kerλ.
Since iV/ker λ is central in Γ/ker λ, that same lemma implies ζQ is fully
ramified over N Π Q — ker λ. Thus β/ker λ has an irreducible character
which is fully ramified over the identity subgroup. This can only happen if
<2/ker λ is itself the trivial group. Hence, q does not divide |Γ| for any
prime q different from/?, implying that G is a/?-group.

Since G is transitive on the nonprincipal irreducible characters of N9

\G: T\ = \N\ — 1 is prime top and hence Γis a Sylow /^-subgroup of G.
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If x G TV#, then \G: CG(x)\ = |TV| - 1 as G is transitive on TV#, and

this proves CG(x) is also a Sylow/^-subgroup of G. D

LEMMA 2.4. Let G be a group which acts on an elementary abelian

p-group TV. Assume G is transitive on TV* and the centralizer of any element

o/TV* in G is a Sylow p-subgroup of G. Let S be any normal subgroup of G

and P a Sylow p-subgrokup of S. Define W = CN(P) and U = [TV, P].

Then:

(a) {ϊf g |g E G) is a partition ofN. In particular, \N\ is a power of\W\.

(b) N C ( P ) = NG(W) — N c ( l/) , and this subgroup is transitive on the

nonidentity elements of both W and N/U. In particular, the order of this

subgroup is (\W\ — 1) \G\p, where \G\p is the p-part of the order of G.

(c) \W\ = \N/U\ and W and U are the unique minimal and maximal

subgroups, respectively, of N that are normalized by NG(P).

Proof. Suppose W Π W8 is nontrivial for some g G G. Then w8 = w

G W% for some wx G W*. Now C{wλ) Π S and C(w) Π S are both

/7-subgroups of S which contain the Sylow /7-subgroup P of S. Therefore,

P = C(w{) Π S = C(w) Π S and henceg G N(P). Clearly, N(P) < N(W)

and so W8 = W, proving that the distinct conjugates of W intersect

trivially. Since G is transitive on TV*, the conjugates of W cover TV and,

hence, partition N. The above argument also shows N(W) < N(JP) and,

hence, equality holds.

If wλ and w2 belong to W* then transitivity of G implies w8 = w2 for

some g G G. By the preceding paragraph, g G N(P) = N(W) and hence

N(W) is transitive on H *̂. As CG(w) <N(W) and CG(w) is a Sylow

/^-subgroup of G for w G H *̂, the group order formula of part (b) follows.

Clearly, Wis an irreducible N(P)-submodule of N.

The hypotheses of Lemma 2.4 are satisfied if TV is replaced by the

dual group TV (which is the set of irreducible characters of TV). Hence

N(P) acts transitively on the nonprincipal characters in Crf(P) which is

naturally isomorphic to the dual group of N/U. Therefore, N(P) acts

transitively on the nonidentity elements of N/U. Clearly, N(P) < N(t/)

and a comparison of their orders shows that equality holds. Clearly

\W\ = \N/U\.

Finally, as any maximal N(P)-submodule of TV contains [TV, P] — U

and any minimal submodule of TV is contained in CN(P) = W, part (c)

follows. D

If G is a group which contains an irreducible character which vanishes

on all but 2 conjugacy classes, then Lemma 2.4 applies, where TV is the
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unique minimal normal subgroup of G. The special case S — G is worth
pointing out. Here, P is a Sylow/?-subgroup of G, and NG(P)/[N, P] is a
group satisfying the same hypothesis that G does.

THEOREM 2.5. Let G be a group which has an irreducible character x
which vanishes on all but two conjugacy classes of G. Let N be the unique
minimal normal subgroup of G guaranteed by Corollary 3.3 so that N C
O (G) for some prime p. Finally, let P be a Sylow p-subgroup of G. Then:

(a) For every x E G — N, the order ofCG(x) is the same as the order of
CG/N(xN).

(b)Z(P) c N andZ(P) = N if and only if P < G.
(c) N is a term of the upper central series of P. In particular, N is a

characteristic subgroup of P.

Proof, (a) is immediate from the second orthogonality relations in G
andG/ΛΓ, asχ(x) = 0.

Suppose Z(P) φ N and choosey E Z(P) - N. Then the/?-part of the
order of CG(y) is divisible by \P\ and the same must be true of CG/N(yN)
by (a). But \P\ does not divide the order of G/7V, and this contradiction
proves Z(P) < N.

lΐy E Z(P)#, then Corollary 3.3 implies C c(y) = P so P = CG(Z(P)).
Thus, if Z(P) = N9 then P = CG(N) <J G. Conversely, if P <ι G, then
N < Z(P) as N is the unique minimal normal subgroup of G, and hence
# = Z(P).

It now remains to prove that N is a term of the upper central series of
P. Let Z,(P) denote the /th term of the upper central series for P, and
choose / so that Z,(P) < N and Z / + 1(P) ̂  N. From the earlier part of this
proof we have i > 1. Let}> E ZZ + 1(P) — N. Now the conjugacy class of y
in P is entirely contained in j>Z,(P) so \P: CP(y)\ < (Z^P)). Hence,
|CP(^)| is divisible by |P/Z,.(P)|, so \P/Zt(P)\ divides the /?-part of the
order of Cc( j>). Now |Cσ(j>)| == \^G/N(y^% an<^ a Sylow /7-subgroup of
G/7V has order \P/N\. Hence, jP/Z^P)) divides \P/N\9 proving |Z#.(P)| >
|iV|. This proves Z7(P) = N, and the proof of Theorem 2.5 is complete. D

3. A digression on doubly-transitive Frobenius groups. The simplest
example of a group which possesses an irreducible character vanishing on
all but two conjugacy classes is a doubly-transitive Frobenius group. In
this case the minimal normal subgroup Λ" is the Frobenius kernel. Using
the notation of the introduction, N — Op(G) — CG(N), and of course,
G/Op(G) is isomorphic to the Frobenius complement. It is clear that the
determination of G/Op(G) in the general case will have to involve
Frobenius complements of doubly-transitive Frobenius groups.
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Although not essential for this paper, the class of doubly-transitive

Frobenius groups is in one-to-one correspondence with the finite near-

fields. Indeed, if (K, + , ° ) is a near-field, then the multiplicative group

of nonzero elements acts by right multiplication as a group of automor-

phisms of the additive group K, and the resulting semidirect product is a

doubly-transitive Frobenius group. Conversely, suppose HK is a doubly-

transitive Frobenius group with kernel K and complement H. If e E K is

any nonidentity element of K then {ex — x~ιex\x E H) is the set of all

nonidentity elements of K. Let + denote the group operation within K

and 0 the identity element of K. If o is defined on K by setting

eχ o e

y = ex\ as well as O o O ^ O o e ^ ^ o O ^ O for all x9 y E H,

then (K,+9 ° ) is a near-field. (The conjugation action of H on K implies

the right distributive law, and the other axioms of a near-field are easy to

check.) The correspondence given above allows for the degenerate

Frobenius group (\H\= 1, |ϋΓ| = 2) which corresponds to the field GF(2).

The finite near-fields have all been classified by Zassenhaus [8], and

one possible source for this is [5, see especially pp. 182-183].

For convenience we state below the main result on doubly-transitive

Frobenius groups (or near-fields) that is needed in this paper. Recall that

a group H is metacyclic if there exists a normal subgroup L such that both

H/L and L are cyclic.

THEOREM 3.1. Let HK be a doubly-transitive Frobenius group with

kernel K and complement H. Then either H is metacyclic, or else \K\ — p1

for some prime p and one of the following cases occurs:

/ι = 7, i/-GL(2,3),

p= 11, #^SL(2,5),

p = 239 #^GL(2,3) X Cπ,

p = 299 H^SL(295) X C7,

p = 599 H^SL(2,5) X C29.

We have used the notation GL(2,3) to denote a nonsplit cyclic

extension of SL(2,3) by an element of order 4 which acts as an outer

automorphism of order 2 on SL(2,3) and which squares to — / E SL(2,3).

In the case of p — 11 there are actually two inequivalent nontrivial actions

of SL(2,5) on an elementary abelian group of order 121, and this gives

rise to two nonisomorphic near-fields of this order.

It is useful to record some information in the metacyclic case which

will be used in the next section.
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THEOREM 3.2. Let HK be a doubly-transitive Frobenius group with

kernel K and complement H, and let \K\be a power of the prime p. Assume

H is metacyclic. Then \Z(H)\ — q — \ where q is a power of p and \H\ = qv

where v is an integer such that every prime divisor of v divides q — 1.

Moreover, if # = 3mod4 then 4 does not divide v. If # ^ 3 m o d 4 or

q = 3 mod 4 and v is odd, then a Sylow 2-subgroup of H is cyclic. If

q = 3 mod 4 and v is even, then a Sylow 2-subgroup is generalized quatern-

ion.

The proof of this result is easily verified following the near-field

construction given beginning on p. 182 of [5].

4. The solvable case. We saw in §2 that if a group G has an

irreducible character that vanishes on all but 2 conjugacy classes, then G

contains a unique minimal normal subgroup N which is contained in

Op(G) for some prime p. Clearly, Op(G) must centralize N as N is minimal

normal in G. Moreover, the results of §2 show CG(x) is a /?-group for

x E JV*, and hence CG(N) is a normal /?-subgroup of G. Therefore,

Op(G) — CG(N). In this section, the structure of G/Op{G) is determined

when G is solvable.

LEMMA 4.1. Let H be a solvable group acting on a vector space V over a

field of characteristic p such that H is transitive and faithful on V$ and

CH(v) is a p-group for every v E V%. Then H has a normal p-complement

which is isomorphic to a Frobenius complement of a doubly-transitive

Frobenius group, and a Sylow p-subgroup of H is abelian.

Proof. Since H is solvable, it contains a /^-complement, say Hλ. The

semidirect product HXV is a doubly-transitive Frobenius group and it

remains to prove H] < H and H/Hι is abelian.

Let F= F(H), the Fitting subgroup of H. Since H is faithful and

irreducible on V, Op(H) — 1 and hence F has order relatively prime to p.

The hypotheses imply that F acts Frobeniusly on V, and hence F is cyclic,

or a direct product of a characteristic generalized quaternion group Q of

order > 8 and a characteristic cyclic subgroup C. If F is cyclic, then H/F

is abelian, and the result follows. Otherwise, F = Q X C and H/Z(F) is

isomorphic to a subgroup of Aut(β) X Aut(C). Notice that/? Φ 2 in this

case. If p > 3 or if \Q\ > 8 then both Aut(g) and Aut(C) have normal

/^-complements and abelian Sylow /^-subgroups, and the result follows.

Suppose then p = 3 and \Q\ = 8. Then Aut(β) X Aut(C) has a

subgroup of index 2 which has a normal 3-complement and abelian Sylow
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3-subgroups. Let L = Oy(H). Clearly, L < Hλ and \H} : L\ < 2. It re-

mains only to prove L — Hv

Since p = 3, the Frobenius complement //j is not one of the excep-

tional possibilities listed in Theorem 3.1. Hence Hλ is metacyclic. Let q

and v be the parameters given by Theorem 3.2 for Hλ. As the Sylow

2-subgroups of Hλ are not cyclic, we necessarily have q = 3 mod 4 and v is

twice an odd number. But q is a power of p = 3, so q must be an odd

power of 3 and ̂ Ξ 3 mod 8. Thus qv/2 = 3 mod 8, and hence \HX\ — qv —

1 = ( 4 ϋ / 2 - I K ? " 7 2 - 1) ΞΞ 8mod 16. Therefore, the 2-part of the order

of Hx is 8, and as Q < L < i/ l 9 g must be a Sylow 2-subgroup of //",. Thus

\HX : L| is odd, and since li/j : L\ < 2 we have L = //,, as desired. D

THEOREM 4.2. Assume G is a solvable group which has an irreducible

character that vanishes on all but 2 conjugacy classes of G. Then there exists

a unique prime p for which O (G) Φ 1. Moreover, G/O (G) has a normal

p-complement which is isomorphic to the multiplicative group of a near-field,

and a Sylow p-subgroup of G/Op(G) is abelian.

Proof. By Lemma 2.1, G has a unique minimal normal subgroup TV

which is an elementary abelian /?-group for some prime p. Hence N C

Op(G) and the uniqueness of N implies p is unique. Moreover, G is

transitive on iVft, and by Corollary 2.3, CG(x) is a /?-subgroup of G for

every x E TV*.

As the kernel of the action of G on TV is Op(G), the hypotheses of

Lemma 4.1 are satisfied with H— G/Op(G) and V — N, and we are

finished. D

Lemma 4.1 has another immediate application which is not related to

the theme of this paper, but which is interesting in its own right.

COROLLARY 4.3. Let (K, +, ° ) be a finite near-field of characteristic p,

and let G — Gdλ(K, + , ° ) {the full group of automorphisms of(K,+, ° )).

Then a Sylow p-subgroup of G is abelian.

Proof. Let P G Syl^G) and let H be the multiplicative group of

nonzero elements of K. The natural semidirect product PH may be

formed and since P is faithful on H we have Op(PH) = 1. Moreover, P

and H separately act on the vector space V = K, and these actions are

compatible with the action of P on H. Hence PH acts on V and if H is

solvable, Lemma 4.1 applies, and P is abelian. If H is not solvable, then K
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is an exceptional near-field and \K\ = I I 2 , 292 or 592. In each case, H

does not have an automorphism of order p and so P = 1. D

Notice that even though Lemma 4.1 was used to prove Corollary 4.3,

the Galois group of a near-field of characteristic/? need not have a normal

/^-complement. For example, if (K,+9 ° ) is the unique near-field of

order 9 which is not a field, then Gal( K, +, ° ) is S3 and so does not have

a normal 3-complement.

5. The nonsolvable case. The goal for this section is to obtain the

analogue of Theorem 4.2 in the nonsolvable case. The result is Theorem

5.6 below.

It is convenient to begin with some representation theory in character-

istic p. If φ is a Brauer character of a group G corresponding to a

representation over a field of characteristic /?, define φ ( 7 ) to be the

function defined on the /^-regular elements of G by setting ψu\x) —

φ(xpJ). Thus φ ( 0 ) = φ, and for all j \ φϋ) is a Brauer character of G.

Moreover, if φ is irreducible, so is φ ( 7 ) for every j .

THEOREM 5.1. Let G — SL(2, pa) where p is a prime and set F =

GF(pa). Then G acts naturally on the F-algebra of polynomials in 2

variables. Let Vi be the submodule of homogeneous polynomials of degree i,

and ψj the Brauer character afforded by Vt. Then the pa Brauer characters

ψT^ΨΫ^ ''' Ψ^Γ^ for 0 — ij— P ~~ 1 a r e aH distinct, irreducible, and every

irreducible Brauer character of G has this form.

A proof of Theorem 5.1 may be found in [2, §30, pp. 588-589].

Let V=Vλ (the natural module of SL(2, pa)). The algebraic con-

jugates Vu\ 0 < 7 < a - 1, are all isomorphic as GF(/?)[SL(2, /?*)]-mod-

ules, and any one of these will be referred to as the standard module for

SL(2, pa). Clearly, the standard module has the property that every

element of order/? in SL(2, pa) has a quadratic minimal polynomial. By

examining the complete list of absolutely irreducible modules of SL(2, pa)

(given by Theorem 5.1) the following converse is easy to check.

COROLLARY 5.2. Assume p is an odd prime. Let W be an irreducible

GF(/?)[SL(2, pa)]-module in which every element of order p has a quadratic

minimal polynomial. Then W is the standard module for SL(2, pa).
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The analogue for p — 2 of the above corollary is

COROLLARY 5.3. Assume p — 2 and W is an irreducible

GF(2)[SL(2,2a)]-module for which [W9 P] Φ 0 and [W9 P, P] = 0, where P

is a Sylow 2-subgroup of SL(2,2a). Then W is the standard module for

SL(2,2β).

THEOREM 5.4. Let p be an odd prime and assume H is a nonsolυable

group which acts faithfully on a vector space V over a field of characteristic

p. Assume H is transitive on K* and CH(v) is a p-group for all v E V%.

Then one of the following cases holds.

(i) There exists S < H with S — SL(2, q) where q is a power of p and

CH(S) = Z(S). Moreover, V is the standard module for S, and H/S is a

cyclic p-group.

(ii) p — 3, \V\ — 3 4 and H contains a normal subgroup S of index 2

with S - SL(2,5) and CH(S) = Z(S). S is not split in H.

(iiϊ)p = 3, \V\ = 36 andH ^ SL(2,13).

(γ)p = 29,\V\ = 292 and H^SL(2, 5) X C7.
(vi) p = 59, \V\ = 592 and H ^ SL(2, 5) X C29.

Proof. Let S = H{ao) be the last term of the derived series of H. By
hypothesis, S > 1. Define L ~ O2,(S). By hypothesis, any involution of H
must invert K, and hence H has a unique involution, say z. The Sylow
2-subgroups of H and S are necessarily generalized quaternion and so
S/{z)L has dihedral Sylow 2-subgroups (allowing C2 X C2 as a dihedral
group). From the classification of groups with dihedral Sylow 2-subgroups
([4], or more recently [1]) S/(z)L — PSL(2, r) or A7, where r is an odd
prime power. Now S/L is a nontrivial double cover of the perfect group
S/(z) L and so is a homomoφhic image of the unique covering group of
S/(z) L. Hence, S/L ^ SL(2, r) or AΊ, where AΊ is the unique nontrivial
double cover of AΊ. We shall now prove that L — 1.

Let M ~ Op(L). As Mis a group of odd order acting Frobeniusly on
V, M is necessarily a Z-group. Hence, H/CH(M) is solvable and this
implies M < Z(5). Now H is irreducible on V as it is transitive on F#,
and since H is faithful on K we have Op(H) — 1. Hence Op{L) — 1. As L
is solvable and M — Op,(L) is central in L we must have M = L. Now
L < Z(S') Π S" so L is isomorphic to a subgroup of the Schur multiplier
of S/L. \iLΦ\ then \L\ = 3 and S/L is either SL(2,9) or AΊ. In either
of these cases, a Sylow 3-subgroup of S is noncyclic. As every //-subgroup
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of H acts Frobeniusly on Fwe must have/? = 3. But then L < O3(H) = 1,

a contradiction.

Hence L = 1 and S — SL(2, r) or AΊ. We now show 5 is not isomor-

phic to AΊ.

Suppose S — λΊ. Recall S acts on F i n such a way that the subgroups

of p' order act Frobeniusly. Since a Sylow 3-subgroup of λΊ is not cyclic,

this means p = 3. Let 0 be any irreducible constituent of the Brauer

character of S afforded by V. Then 1 does not appear as an eigenvalue

under the action of any 3'-element of S in the representation affording 0.

This condition on 0 remains valid for θ\x for all subgroups X of S. A

contradiction will be reached by showing AΊ has no irreducible Brauer

character satisfying the requirements of 0.

Notice that A6 ^ SL(2,9) embeds as a subgroup of AΊ. Using the

notation of Theorem 5.1, the irreducible Brauer characters of SL(2,9) for

p — 3 are φf)ψjl\ 0 < i9j < 2. The only irreducible Brauer characters of

SL(2,9) satisfying the same condition as 0 are φ ^ and φ ^ . For ease of

notation, denote these two characters by φ and φ. Hence, θ\j is an

integral combination of φ and φ. By standard properties of characters (the

Nakayama relations), θ must be a constituent of either φAl or φAη. Now

φ I 2 — 2φ + 2φ -

and

φ ^ l ^ = 2φ + 2φ + φφ(

2

0).

This implies 0|^6 is a subcharacter of 2φ + 2φ, and in particular, 0(1) < 8

and 0(1) is even.

Let X be the Frobenius group of order 21. Then X embeds as a

subgroup of AΊ. Moreover, X has exactly 3 irreducible Brauer characters

for/? = 3, namely the principal Brauer character, and two others of degree

3. As θ\x cannot contain the principal character, we have 3|0(1). Combin-

ing this with the above, we have 0(1) = 6.

Now let X be a Sylow 5-normalizer in A 7. Then X contains the central

involution z, and X/(z) is the Frobenius group of order 20. As 3 \ \X\9 θ\x

is an ordinary character of X. The eigenvalue condition on 0 implies that

θ\x is a multiple of the unique faithful character of X and so 4|0(1) = 6.

This contradiction eliminates AΊ and shows S — SL(2, r), where r is an

odd prime power.

Cαsel./M|SL(2,r)|.
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By definition of S, H/S is solvable and so has a /?-complement Hλ/S.

Then Hι is a /^-complement in H. Moreover, Hx is transitive on F # and so

HλV is a doubly transitive Frobenius group. Theorem 3.1 implies, since H]

is nonsolvable, that one of the following three possibilities holds:

\V\= I I 2 ,

Hλ ^

= 592, i/, ^SL(2,5) X C
2 9 .

Thus, 5 — SL(2,5) in this case, and since S has no automorphism of

order p, H — SCH(S). The group CH(S) is necessarily /?-closed and as

Op{H) — 1 we have H — Hv Thus, Case 1 leads to one of the last three

possibilities of Theorem 5.4.

Cα?e2./?||SL(2, r)\b\xtp\r.

Sincep\(r3 — r) we have/?|(r + ε) for ε = 1 or — 1. Let/?* be the full

power of p dividing r + ε, and let / be the //-part of the index \H: S\.

Since the normalizer in S of a Sylow /^-subgroup, say P, has order

2(r + ε), Lemma 2.4(b) and the Frattini argument imply

2(r + ε)l/pa = p« - 1,

wherep a — |C K (P) | . By Lemma 2.4(a), \V\ is a power of /?α, say paβ, and

hence

follows by the hypotheses of Theorem 5.4. Dividing this by the first

equation yields

r 2 - εr = 2σ where σ = (pα)β~] + ••• +/?α + 1.

Hence,

+ 1 + ε) and r + ε = ^(/8σ + 1 + 3ε).

Now /?" divides r + ε so pα divides (/8σ + 1 - 3ε) (/8σTT + 3ε) =

8(σ — 1) so α < α.

Suppose β > 5. Then
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and hence, as/? \ r, r + ε >p2a. Therefore,

p" ~ 1 = 2(r + ε)l/pa >: 2/?2β//pβ >P*>

as α > α. This is a contradiction, so we must have β < 4.

Subcase ε = — 1. As all /?'-subgroups of // act Frobeniusly on F, r

must be a prime. Moreover, in the subcase we are in (ε = — 1), the Sylow

/^-subgroup P of S normalizes some Sylow r-subgroup of S, say i?, and PR

is a Frobenius group. Since Pi? acts on Fwith CV(R) — {0}, P must act

semiregularly on a basis for F Hence

dimV = paώmCv(P) = paa.

Hence, β — pa and, since p is odd and β < 4, we must have jβ = 3, /? = 3

fl = 1. I f / > 1 then

/ 7 α - 1 = 2 ( r -

and, hence, r < / s o r + 1 < /7α. Then

This forces the contradiction /?3α < 2 and so in fact / must be 1. We now

have

2(r - l )/3 = 3α - 1 and 2 + r = 2(3 2 a + 3" + 1).

Solving for r and 3α we have r = 13 and 3 a = 9. Hence, 5 =* SL(2,13)

and |K| = /7α^ = 36. Also, H/S is a 3-group (as / = 1). Since all automor-

phisms of 5" of order 3 are inner, and O3(H) — 1, we have H = S. Hence,

this subcase leads to possibility (iii) of Theorem 5.4.

Subcase ε = + 1. In this case, r is still a prime. If r — 1 is divisible by

an odd prime, say t, then S contains a Frobenius subgroup of order tr.

This is impossible as the /('-elements of S act fixed point freely on V.

Thus, r — 1 is a power of 2 and r is a Fermat prime.

We also have (r - l)/2 r = {pa)β'x + ••• +pa + 1, where 2<β

< 4 .

If β = 4 then

( r - l )/2 r = ( / > β + \){pla+ 1).
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As p2a + 1 = 2 mod 4, and r is the unique odd prime factor on the

left side of the equation, we must have

r = έl±l mά ^

Solving for r and pa we have r — 41 and pa = 9. Hence p = 3 and

a — 1. However 2(r + 1)//?Λ = /?α — 1 implies the contradiction 28/ = 8.

If β = 3 then (r - l)/2 r = />2tt + pa + 1. As the right side is odd,

this implies (r — l)/2 = 1 and/?α = 1, a contradiction.

This leads to β = 2 and (r - \)r/2 = pa + 1. Now 2(r + 1)///?" =

/>" - 1 implies /?α = 1 mod 4 so (r - l)r/2 = /?α + 1 = 2 mod 4. Hence

(r — l)/2 = 2 and this leads to r — 5, p — 3, α = 2, α = 1, / = 2 and

β = 2. Thus | F | = / ? ^ = 3 4 and S - SL(2,5) has index in H equal to

twice a power of 3. As in the other subcase, all automorphisms of S of

order 3 are inner, and as O3(H) = 1 we have \H: S\ = 2. A Sylow

2-subgroup of H must be generalized quaternion and so S is not split in

H. This is possibility (ii) of Theorem 5.4.

Case 3. S — SL(2, r) where r is a power of /?.

Let P be a Sylow /?-subgroup of S and let / be the //-part of \H: S\.

By (a) and (b) of Lemma 2.4 again, we have

(r - 1)/ = q - 1 and (r + l)(r - 1)/ = qβ - 1,

where 9 = |C K (P) | and |K| = qβ. Thus r + 1 = qβ~ι + / " 2 + • . - + £ +

1. Now r and q are powers of the same prime /?, and so by uniqueness of

representation in base p we have β = 2 and r — q. This also implies / = 1

and so H/S is a />-group. As Op(H) = 1, we have C^(S) = Z(S). The

outer automorphism group of S is well known so H/S is cyclic. It remains

to prove V is the standard module for S.

By Lemma 2.4(c) we have \V/[V, P]\ = \Cy(P)\ = q and as β = 2 we

must have [V9 P] — CV(P). Hence, every element of order p in S has a

quadratic minimal polynomial in its action on V and Corollary 5.2 implies

V is the standard module for 5*.

This completes the entire proof of Theorem 5.4. D

It is possible to show that each of the exceptional cases mentioned in

Theorem 5.4 actually occurs. This is certainly true for the possibilities

(iv)-(vi) since these cases correspond to near-fields. If H — SL(2,13) then

H has an ordinary complex character of degree 6 which remains irreduci-

ble mod 3 (since the defect is zero). Moreover, all character values lie in
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GF(3) so that, as Schur indices are trivial in characteristic/?, H acts on a

vector space V of size 36. The character of this representation shows that

the elements of order prime to 3 act fixed point freely, and hence, CH{υ)

is a 3-group for all v E F*. The transitivity of H easily follows from this.

If H is the nonsplit extension of S = SL(2,5) by a cyclic group of

order 2 then either of the two faithful characters of degree 2 of S induces

to an irreducible character of degree 4 of H, which is irreducible mod 3.

Again, all character values lie in GF(3) so H acts on a vector space V of

order 34. No element of order prime to 3 fixes any vector in F # and this

easily implies the transitivity of H on V$.

THEOREM 5.5. Assume the hypotheses of Theorem 5.4 except that in this

case assume p — 2. Then there exists S <1 H with S — SL(2, q) where q is a

power of 2 and q > 2. Moreover, H/S is a cyclic 2-group, CH(S) — 1, and

V is the standard module for S.

Proof. As in the odd prime case, let S = // ( o o ) be the last term in the

derived series of H, and let L be a minimal normal subgroup of H

contained in S. As H is nonsolvable, S > 1 so that L exists. Every

subgroup of H of odd order acts Frobeniusly on V and hence is meta-

cyclic. If \L\ is odd, then H/CH(L) is solvable s o L < Z(S) Π S\ How-

ever, all Sylow /-subgroups of S/L are cyclic for all odd primes /, so the

Schur multiplier of S/L is a 2-group. This implies the contradiction

L — 1, and hence \L\ must be even. As O2(H) — 1, L cannot be a 2-group

and hence L is a direct product of isomorphic nonabelian simple groups.

As the Sylow /-subgroups of L are cyclic for odd primes /, we must have

that L is in fact simple.

The simple groups having cyclic Sylow subgroups for all odd primes

are SL(2,2") (n > 2), Sz(22"+ 1) (n > 1) and Ja = Ju. The group Jn is

quickly eliminated as / π contains a nonabelian subgroup of order 21

which then cannot act fixed point freely on V.

Suppose L ^ Sz(q) where q = 2 2 / ί + 1 . Let P E Syl2(L) so |N L (P)| =

(q — \)q2. By Lemma 2.4(a) and (b) we have

{q - 1)/ = 2a - 1 and {q2 + \){q - \)l = 2aβ - 1,

where 2a = \Cy(P)\9 \V\ = (2a)β, and / is the odd part of \H: L\.

Dividing the second equation by the first yields

q

2+l = ( 2 a ) β ~ λ + ••• + 2 α + 1.

By uniqueness of representation in base 2 we have β — 2 and q2 — 2a.

Hence / = q + 1, |C K (P) | = q2 and \V\ = q\
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By Lemma 2.4(c), V>[V9 P] = CV(P) > {0} is an N(/^-composi-

tion series for V, and hence [V, P9 P] is trivial. This implies P' centralizes

V, which is a contradiction as a Sylow 2-subgroup of Sz(q) is nonabelian.

This leads to L ^ SL(2, q) where q is a power of 2 and q > 4. Again

with P E Syl2(L) and / equal to the odd part of \H: L|:

(̂ r - 1)/ = 2« - 1 and (<? + 1)( 9 - 1)/ = (2a)β - 1,

where 2a = \CV(P)\ and 2α/? = \V\. This leads to β = 2, 4 = 2α and / = 1.

Also [V, P] = C K ( P ) so Corollary 5.3 applies, and F is the standard

module for L. As / = 1 we have L = S and ///S is a power of 2. Also,

O2(H) — 1 so CH(S) = 1. As in the odd prime case, H/S is cyclic and

the proof of Theorem 5.5 is complete. D

An immediate consequence of the last two theorems together with the

results of §2 is the following extension of Theorem 4.2 to the nonsolvable

case.

THEOREM 5.6. Let G be a nonsolvable group which has an irreducible

character which vanishes on all but two conjugacy classes of G. Then

O (G) φ- 1 for some unique prime p. Moreover, the group H — G/Op(G)

has one of the following forms:

(i) There exists S < H with S — SL(2, q) where q > 2 is a power of p,

H/S is a cyclicp-group and CH(S) = Z(S).

(ii) p — 3, H contains a normal subgroup S of index 2 with S — SL(2,5)

and Cff(S) = Z(S). S is not split in H.

(iii)p = 3andH^ SL(2,13).

(v) p = 29 and H- SL(2,5) X C7.

(vi) p = 59 and H^ SL(2,5) X C2 9.

6. The subgroup Op(G). Under the hypothesis of Theorems 4.2 or

5.6, the group G/Op(G) was characterized. In this section some attention

will be paid to Op(G). The group Op(G) need not be a Sylow ^-subgroup

of G, however, the remarks following Lemma 2.4 show that a "small"

homomorphic image of a Sylow /?-normalizer always satisfies the same

hypothesis as G. In this subgroup, of course, a Sylow /7-subgroup is

normal.

In this special case (that Op(G) is a Sylow /?-subgroup of G) the

structure of Op(G) can be quite complicated. Theorem 6.3 below shows

that no bound can be placed on the derived length, or nilpotence class of

Op(G). The proof of this result generalizes a construction given in [3].

On the positive side, Theorem 6.2 completely characterizes G when

Op{G) is minimal normal in G.
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LEMMA 6.1. Let C be a cyclic p-group acting on a vector space V over a

field of characteristic p. Let r be a power of p such that \V\ > r | C |. Then

|CV(C)|>r.

Proof. We may assume that the underlying field is GF(p). Each

indecomposable summand of Khas size at most/? |C |, or equivalently, the

size of any Jordan block in the Jordan decomposition for a generator of C

is at most \C\ X \C\. Hence, there are at least log^r indecomposable

summands. As there is a one-dimensional subspace of vectors centralized

by C in each such summand, we have |CK(C)| >plogpr — r. D

THEOREM 6.2. Suppose G has an irreducible character which vanishes on

all but 2 conjugacy classes of G, and let TV denote the unique minimal normal

elementary abelian p-subgroup as guaranteed by Lemma 2.1. Then TV —

Op(G) if and only if G is a doubly transitive Frobenius group, or \G\ — 2.

Proof. If G is a doubly transitive Frobenius group, or \G\ — 2 (which

may be regarded as a degenerate Frobenius group) then the Frobenius

kernel is TV and the result TV = Op(G) follows.

Assume now TV = Op(G) and let P E Syl^G). If TV is complemented

in G by a subgroup H say, then the group TV is complemented in P by

P Π H. Now [TV, P Π H] < TV, and any linear character λ with kernel

containing [TV, P Π H] is extendible to P. However, by Corollary 2.3, λp

has a unique irreducible constituent, and this constituent vanishes on

P — N. This implies that P must equal TV. Thus, H has order prime to p

and is transitive and regular on the nonidentity elements of TV. If H Φ 1

then G — NH is a doubly transitive Frobenius group, while if H — 1 then

G is cyclic of order 2. Thus, the theorem is valid if TV is complemented in

G.

Assume first that G/N is solvable. By Theorem 4.2, G/N has a

normal ^-complement, say G0/TV, and TV is complemented in Go by a

subgroup, say H. The Frattini argument yields G = TV NG(H) and

TV Π NG(H) is centralized by H. Thus, for H φ 1, NN(H) = 1 and TV is

complemented in G, which implies by the preceding paragraph that we are

finished. If H = 1 then |TV| = 2 and G is a 2-group. Hence TV = O2(G) = G

and so \G\ = 2, completing the solvable case.

Suppose then that G/N is nonsolvable. If p > 2 then any involution u

in G must invert TV and hence uCG(N) is the unique involution of

G/CC(TV). Now CG(TV) = Op(G) = TV, so uN is the unique involution of

G/N. By the Frattini argument again, G = TV CG(u) and since u inverts
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TV, N Π CG(u) = (^(w) = 1. iV is complemented by CG(w) and we are

finished.

This leads to the case that G/N is nonsolvable, and p = 2. Using

N — O2(G) and Theorem 5.6, G/N has a normal subgroup S/7V isomor-

phic to SL(2, q) where q is a power of 2, and JV is the standard module for

S/N. In particular \N/[N9 Po]\ = |C^(P0)| = # where Po = P Π 5 is a

Sylow 2-subgrouρ of 5.

Suppose first that G = S. Then NG(P) = PH where | i/ | = q - 1 and

# acts fixed point freely on the groups P/N, N/[N, P] and CN(P). Let

x G P - N. By Theorem 2.5(a) we have # = \CG/N(x)\ = |Cσ(x)|. How-

ever, Cc(jt) D (jc,Ctf(P)) and so has order > q. This contradiction

shows that G > S.

Let l = \G: S\. By Theorem 5.6, / is a power of 2 so G = SP, and

CG/N(S/N) = ϊ . Hence G/N is isomorphic to a subgroup of Aut(S/N)

which contains lnn(S/N). In particular, Po/N splits in P/N, say by C/iV,

and the action of C/N on Po/N is that of a Galois group on a field. We

may write q — qι

0 and identify the action of C/N on Po/N with that of

Gal(GF(^)/GF(9 0)) on GF(qι

0). In particular, C/N acts semiregularly

on a basis of P/N viewed as a vector space over GF(2), and CP/N(C/N)

has order q0. It follows that the 2-part of the order of CG/N(C/N) has

order qol. By Lemma 6.1 applied to the group C/N acting on N, where

|JV| = qlι and r — q$9 we have |C^(C/iV)| > ql (in fact equality holds, but

we won't need this). Let c be a generator for Cmod N. Then |C^(c)| > ql

and as Cc(c) > (c,C^(c)>, the order of Cc(c) is divisible by lq\. How-

ever, we already saw that the 2-part of the order of CG/N(cN) was qol,

and this contradicts Theorem 2.5(a). This completes the proof of Theorem

7.2. D

THEOREM 6.3. Let Q be any p-group and let a > 0 be any integer. Then

a group G exists satisfying the following conditions'.

(a) G has an irreducible character which vanishes on all but two

conjugacy classes.

(b) G — PH where P < G is a Sylow p-subgroup and H is cyclic of

order pa — 1.

(c) Z(P)H is a doubly transitive Frobenius group of order pa(pa — 1).

(d) Q is isomorphic to a subgroup of P/Z(P).

Proof. The result is clear if Q — 1. Let Qo be a maximal (and hence

normal) subgroup of Q. By induction, assume a group of the form P0H

exists satisfying (a)-(d) above for Qo. Let £ b e a group written additively
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which is i/-isomorphic to Z(P0) and set E = homH(E,Z(P0)). Since
multiplicative notation is retained in Z(Po) we have (/ + h)(e) = f(e)h(e)
and f(e] + e2) = f{eλ)f{e2) for e, e,, έ>2 G E and / , A E £ . Let P/ =
{jc|x: £ -» Po} so that P<f is a group under pointwise multiplication
of functions, and Po

£ is isomorphic to a direct product of \E\ copies of Po.
Let

W=lx eP<f|x(/) EZ(P 0 ) for every/E£ and Π * ( / ) = U

and set U=Pf/WXE.
If x E />f, e E £ and / E E define ;ce?/ E P0

E by setting x e J

x(h - / ) for A^O, while xef(0) = f(e)x(-f). For (*W, e) E ί/ and
/ E E define

(xW9e)f=(xejW,e).

This is well defined since for x, y E Po

£ and w ξΞ W with x = ̂ w we have
xe f — yejW where w(/z) = w(h — f) for all h E £. Hence w E W, and so
x ^ and j^y lie in the same coset of W. The requirement that / E
hom^ίί1, Z(P0)) implies that the function u H> uf is an automorphism of
£Λ Moreover, for e E E and /, g E E we have ^^,/+^ = (xe y)e gmod W,
and hence the function (w,/)κ>w /isan action of E on U.

By the preceding paragraph, we have an action of E on U = PQ/W
X E by automorphisms. Let P = E K U denote the resulting semidirect
product using the action.Notice that since H acts on Po (by conjugation),
H acts naturally on Po

£ by automorphisms (via (xh)(f) — x(f)h for
/ E: E) and JFis stabilized by H. Hence, we may define an action of H on
P by setting

where we have used the action of H on E, but not the action of H on E.
The equation

for x E Po

£, e E E, f E E and h E H, is readily verified, and this implies
that the action of H on P is an action by automorphisms. Let G denote
the semidirect product H ιχ P with respect to this action. It remains to
check that G satisfies (a) — (d) of Theorem 6.3.

Let λ be any nonprincipal irreducible character of Z(P0) and let f be
the unique irreducible constituent of λp° (thus, ξP°H is the character of P0H
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which vanishes on all but 2 conjugacy classes of P0H). The character

V ~ £#?# #f is an irreducible character of P^vήth kernel containing

W, and hence we may regard η as a character of PE/W. Let ήί = η# \E so

that η is an extension of η to U — PQ/W X E. To prove that θ = ηp is

irreducible, it is enough to verify that ίf(τj) = (0).

Let/ G /f(ή). Then ήΠtjcϊF, e) = η(.x*F, e) for all (xϊF, β) G t/, and

so fj(xejJV, e) = ή(xW9 e) or η(xe fW) = η(xW). Dropping the W and

then restricting the equation to the subgroup Z(P0)
E of Po

£ yields

for all e G £ and x E Z(P0)^, where λ = λ # λ # • # λ (λ is the unique

irreducible constituent of v\z(pof) Now let x: E -^ Z(P0) be the trivial

map. Then dropping the factor of £(1) |£| we have

Hxe,f) = 1 for all eEE.

But xej(h) = 1 for h φ 0 and xej(0) = f(e), so the equation above

implies

λ(f(e)) = ϊ f o r a l l e e £ .

Thus f(E) < ker λ. Now, if fφ 0 then / is surjective so f(E) = Z(P0) <

I ker λ. Thus,/is necessarily 0 and this proves that %(η) = {0}.

As \E\ = \E\ /an easy consequence of H being abelian) we have

0(1)2 = |P: Z(P0)V>F| and so θ is fully ramified over Z{P0)^/W. Hence,

0 vanishes on P — Z(P0)
E/W. As θ corresponds uniquely to λ, and λ is in

a regular orbit under the action of H on the irreducible characters of

Z(P0)
E/W, we have %(θ) = P and hence χ = ΘG is irreducible.

This implies that Z(P) - Z(P0)
E/W and that x vanishes on G -

Z(P). Clearly

χ ( g ) = - | P : Z ( P ) | 1 / 2 forgEZ(P)*

and

Thus x is the required character of G, and conditions (b) and (c) of the

theorem are evident from the construction of G. It remains to prove (d).

From the construction of P, P/Z(P) is isomorphic to a group of the

form EX ((P0/Z(P0))E X E) where (P0/Z(P0))E is stabilized by the

action of E, and this action itself is that of a wreath product. Thus,

P/Z(P) contains a subgroup isomorphic to the wreath product

(P0/Z(P0)) I E which in turn contains (P0/Z(P0)) I Cp where Cp is the
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cyclic group of order p. Now Q is isomorphic to a subgroup of Qo ι

(Q/Qo) ~ Qo I Cp a n < ί ^ s completes the proof. (Elementary properties

of the wreath product which were used may be found in [6]. See especially

pp. 98-99.) D

The hypothesis that H is isomorphic to the multiplicative group of a

field (rather than a general near-field) was used only once in the proof

given above (namely to prove \E\ — \E\). It may be interesting to find an

analogue of Theorem 6.3 which applies to general near-fields.

The examples that Theorem 6.3 generates are all /?-closed. It is not

hard to produce examples of this directly. Indeed, if F is any finite field,

say \F\ = s where s is a power of some prime/?, then let

a,b,c,d

1
0
0

a
1
0

c
b
d

Then

P =
1
0
0

a
1
0

c
b
1

a,b,c G F\

is normal in G, Z(P)$ is a single conjugacy class of G and χ defined by

χ ( l ) - s(s - 1), χ(g) = -s for g G Z(P)# and χ(x) = 0 for x E G -

Z(P) is an irreducible character of G.

We close this section with two examples which are not /7-closed.

Let p and q be the primes 2 and 3 in some order and let R be the ring

Z / p 2 Z . The natural map SL(2, R) -> SL(2, p) is surjective, and the kernel

K is elementary abelian of order/?3. Since/? is 2 or 3, the group SL(2, p)

has a normal /^-complement which is a Sylow g-subgroup, and hence,

SL(2, R) = K' NSL(2R)(Q) where Q is a Sylow ^-subgroup of SL(2, R).

If p = 2 then the group S — N S L ( 2 Λ ) ( β ) intersects K in ( — / ) and S

itself is the semidirect product of a cyclic group of order 4 with a cyclic

group of order 3. (For example, Q may be generated by (_°j i j . Then

(211) has order 4 and inverts Q. The entries are taken mod 4 of course.)

Let M = R Θ R so that SL(2, 7?), and hence S, acts naturally on M, and

let G denote the semidirect product S K M of S with M under this action.

Now let TV = Ωj(M) (the subgroup of M generated by the involutions of

M). The subgroup S transitively permutes the nonprincipal characters of

N. Let λ be one of these and set P — 5 c (λ). Then P is a Sylow 2-subgroup

of G. Notice that λ extends to M as M is abelian. If λ is an extension of λ

to M then λ is necessarily complex valued, and so λ is not fixed by —/.
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Hence, 5p(λ) = Aί and ψ = λp is an irreducible character of P, fully

ramified over N and uniquely corresponds with λ. As ί c ( λ ) = P we have

X = ψG an irreducible character of G. By construction, χ vanishes on

G-N.
Suppose now p — 3. For this case Q is the quaternion group of order

8, and NSL(2,/?)(£?) is a complement for K in SL(2, it), and hence is

isomorphic to SL(2,3). Let S = (4/>X NS L ( 2 / ? )(£>) < GL(2, i?), and as

before, let M = R θ /?, TV = 0,(M) and G = 5 ιχ M.

The group N S L ( 2 f Λ ) ( β ) contains an element of order 3, say g, which

maps onto (ι

0\) under the natural map to SL(2,3). As det g = 1 and

g 3 = /, g must have the form

1 + a 1 + β]

\ 6 7 — α

where a, β G 3R.

Let P = ( g ) and C = (47) so that PC = P X C is a Sylow 3-sub-

group of 5, and PCM is a Sylow 3-subgroup of G. Let λ be an irreducible

character of N with kernel 0 θ 3R. Then λ has an extension to a character

λ of M with kernel 0 θ R. Notice that λ has order 9. As ί G (λ) normalizes

ker λ = 0 θ R we have ί P C ( λ ) < NP C(0 θ i?) = C Moreover, C per-

mutes fixed point freely the characters of M having order 9, so $/>c(λ) = 1

and hence $PCM(λ) = M. Thus, θ — \PCM is irreducible, and as in the last

case, x = ΘG is an irreducible character of G vanishing on G — N.

In each of the two examples above, Op(G) is not a Sylow /7-subgroup

of G. However, G/Op(G) does have a normal p-complement, in accor-

dance with Theorem 4.2.

7. Concluding remarks. If G is a group which has an irreducible

character that vanishes on all but two conjugacy classes then Op(G) Φ 1

for some unique prime/?, and the group H = G/Op(G) is determined by

Theorems 4.2 (in the solvable case) and 5.6 (in the nonsolvable case). The

author, however, has no examples to illustrate that the first three cases of

Theorem 5.6 actually occur. The last three cases arise as examples in a

doubly-transitive Frobenius group.

If Op(G) is a Sylow /7-subgroup of G and G/Op(G) is cyclic, then

Theorem 6.3 shows that Op(G) can be arbitrarily complicated. When

G/Op(G) is noncyclic (in particular, when it is nonsolvable) the argument

in Theorem 6.3 breaks down. It may be possible to classify Op(G) in this

case.

Finally, when Op(G) is not a Sylow /^-subgroup, then N < Op(G)

necessarily holds where TV is the unique minimal normal subgroup of G
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(Theorem 6.2). It is natural to ask if Op(G) can be arbitrarily complicated
in this case. In the last two examples given in §6, Op(G) is nonabelian of
class 2. As already mentioned in the first paragraph, the author is not
aware of any nonsolvable examples in this case.

I would like to take this opportunity to thank the referee for simplify-
ing the proof of Lemma 4.1.
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