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EQUIVALENT DEFINITIONS OF POSITIVE
DEFINITENESS

P. H. MASERICK AND F. H. SZAFRANIEC

Equivalent conditions for linear functionals, on a commutative alge-
bra & with involution, to be positive are proved by elementary methods
devoid of disintegration theorems. The theory is applied to present
straightforward verifications of, heretofore subtle, equivalences of
quadratic form and finite difference definitions of positive definiteness of
functions on semigroups.

1. Introduction. Let & be a commutative algebra with identity 1
and involution*. A subset r of & such that

(i) JC* = x for all x E r,
(ii) 1 — x is a positive linear combination of products of members of

T for each x E T (1 — x E Alg span"1" T for each x E T), and
(iii) each x E & is a linear combination of products of members of τ

{&— Alg spanτ>
will be called admissible. A linear functional / on β such that/(jc) >: 0 for
all x E Alg span+ T where T is admissible will be called τ-positiυe.
Following standard conventions, / is called positive if f(xx*) ^ 0 for all
x E &. If/is positive then we set \x\j = supy(f(xx*yy*)/f(yy*)) (0/0 =
0) and say / is bounded whenever | x \f < oo for each x E &. It is shown in
Maserick [8, Th. 1.1] that every τ-positive linear functional / admits a
disintegration

(1.0.1) f(x) = fp(x) dμf(p)

where μf is a non-negative regular Borel measure on a compact
(weak*-topology) subset Γ of the τ-positive multiplicative linear function-
als. From this it follows that every τ-positive linear functional is bounded
and positive. The point of this paper is to give an elementary and almost
completely algebraic proof of this latter fact, which does not appeal to the
disintegration theorem cited above. By way of motivation, consider the
following classical examples from analysis.

EXAMPLE 1.1. The "little" moment problem. Let β b e the real algebra
of polynomials in one variable with p* = p for all p E & and let τ consist
of the two polynomials/?^/) = / andp2{t) = 1 — /. The linear functionals
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L on & can be identified with the sequences a = [an}n via the moment

relation L(Σnanί
n) — Σnanan. Since Alg span+ T is the positive linear

span of the polynomials of the form tm{\ — /)", a positive linear func-

tional identifies with a sequence if and only if all finite differences of the

sequences are non-negative, i.e. {an}n is a completely monotonic sequence

cf. [12, p. 108]; the τ-positive multiplicative functional being identified

with the sequences {tn}n for 0 < t < 1 (0° = 1) cf. [8, p. 147]. Under this

identification, (1.0.1) reduces to

(1.0.2) an

the "little" moment problem of Hausdorff. On the other hand, a sequence

becomes positive under this identification when and only when the

moments of the squares of polynomials are non-negative, i.e. when all

quadratic forms of the type Σ ^ c ^ . α ^ . (c, G R) are non-negative. It is

well known and follows from (1.0.2) that a sequence {an}n=0 is completely

monotonic if and only if both {an}n=0 and {an — an+\}n=o are positive

definite. In [1, p. 325], Atzmon asks for a direct proof (i.e. a proof that

does not use (1.0.2)) of this fact. The theory of reproducing kernels can be

used to supply the direct proof that both positive definite conditions

together imply complete monotonicity, while the main theorem of this

paper yields the requested proof of the converse. This is done in Applica-

tion (4.2). More generality is obtained by replacing & above by the algebra

of shift operators on a commutative semigroup S. Atzmon's question is

then answered by specializing S to the additive semigroup of non-negative

integers.

EXAMPLE 1.2. The trigonometric moment problem of Herglotz. Let (£be

the complex algebra of trigonometric polynomials Σn ane
ιnθ and let

τ = (δ/2)e-")\σ4= l}.

Similar to the previous example, the linear functionals L can be identified

with functions / on the group / of integers via the moment relation

L(Σn (*ne
inθ) — Σn cίnf(n)\ the positive multiplicative functionals being of

the form n -» einθ (n E /, θ G [0,2π)). A characterization, in terms of

finite differences, of those functions f on I which correspond to the

τ-positive linear functionals on & is given in [7, p. 141] and the integral

representation (1.0.1) reduces to the form of the trigonometric moment

problem, namely

(1.0.3) /(»)=/ einθdφ).
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But Hergoltz [5, p. 773] has characterized those functions / satisfying
(1.0.3) as the positive definite functions on /. Thus a function / on / is
positive definite if and only if it satisfies the appropriate finite difference
condition. In Application (4.3) we give an alternate proof of this equiva-
lence, in considerably more generality, which does not depend on (1.0.3).

EXAMPLE 1.3. The non-negative, non-decreasing real functions on (0,1].

Let T be the characteristic functions {\(a h]\0 < a < b < 1} and & the real

algebra, with trivial involution, spanned by T.The equation L( 1 ( 0 a]) = f(a)

identifies the linear functional L on β with the real functions/on (0,1 ];

the positive linear functional being identified with the non-negative,

non-decreasing functions. The main theorem (Th. 3.1) then implies that a

function / on (0,1 ] is non-negative and non-decreasing if and only if the

matrix (/(minfx,, Xj]))nXn is positive definite for every n.

2. τ-positiveness of bounded positive functionals. For each x E $,

define the shift operator Ex on the linear functionals/ on & by Exf{y) =
f(χy) (y €= $)• Let/be a fixed bounded positive linear functional and set
Hf = {EJ\x E &}. Parts (i) and (iii) of §1 imply/(x*) = / (* ) . Thus Hf

can be made into a pre-Hilbert space in a manner similar to the Gelfand-
Segal-Naimark (GNS) construction [9, p. 215] by defining (Exf, Eyf) =
/(jcy*). The Cauchy-Schwarz inequality shows

\EJ(y)\2 =\(EJ, Ey.f)f < (EJ, EJ) (E^f, E,.f)

or

(2.0.1) \EJ(y)\^\\Ey.f\\-\\EJ\\.

Thus if 1125̂ /11 = 0 then Exf=0, so ( , •> is a non-degenerate inner
product. Substituting (EXn — EXJ for Ex in (2.0.1) shows that every
Cauchy sequence in Hf is weak*-Cauchy and thus the completion Hf is a
subset of the linear functionals on &. For each x E &9 Ex is then a
bounded linear operator on the pre-Hilbert space Hf (i.e. Ex E B(Hf))
with operator norm

(2.0.2) py=M.

Since Cauchy sequences in Hf are also weak*-Cauchy, it follows that the
extension of Ex to the completion Hf of Hf is again the translation
operator Ex. Thus the map x -* Ex of & onto B(Hf) is a (*-preserving)
representation of & such that Eλ is the identity operator /. The following
proposition summarizes the pertinent facts.
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PROPOSITION 2.1. Let f be a bounded positive linear functional on &.
Then:

(i) The operator Ex E B(Hf) is positive if and only if Exf is a positive
linear functional on &.

(ii) If T is admissible and Exf is positive for each x E τ then f is
Ί-positive.

(iii) // ax is any positive number such that ax >\ x \f then

τ = { ! ( / + (σ/2ax)x+ (ό/2ax)x*)\x E &, σ4 = l}

is admissible and f is τ-positive.

Proof. Assertion (i) is obvious from the foregoing remarks. For (ii), let
x , , . . . , ^ G τ . If / satisfies the hypothesis of (ii) then Ex is a positive
operator on H, for each j — 1,... ,k by (i). Since products of commuting
bounded positive operators are again positive (cf. [6, p. 280] for a proof of
this latter fact which does not depend on the spectral theorem), one has
f(UjX.) — (Eu x /, / ) ^ 0 or/is τ-positive. Admissibility of T in assertion
(iii) is easily verified. But if A is any non-zero bounded operator on a
Hubert space and a > \\A\\ the / + (σ/2a)A + (σ/2a)A* is positive.
Thus (2.0.2) implies the operator / + (σ/2ax)Ex + (σ/2ax)E* is positive
on Hf so that (iii) follows from (ii). D

3. Positiveness of bounded positive functional. We now give the
elementary proof promised in the introduction. Namely,

THEOREM 3.1. If f is τ-positive for an admissible r, then f is positive and
bounded, and Exf is positive for each x E τ.

Proof, (i) The central idea of the proof revolves around the theory of
Bernstein polynomials. If p(tl912) is any complex polynomial in two
variables, xx, x2 E & and n is any positive integer, we define

(3.1.1) B,(p(x,,x2))

Lettingp(xx, x2) = (x, - x 2) 2, we get

Bn(x\ ~ xif = £«(*? - 2x,x2 + x2

2)

) - 2(BH(xi))(Bl,{x2))
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But, Bn(x2) = x/n + ((« - l)/n)x2 (cf. Davis [4, p. 109]) so that

(3.1.2) Bn(Xι-x2)
2

If we impose any locally convex topology on &, such as the weakest in

which all linear functionals are continuous, then we have

\imExf(Bn(xι - x2f) = ]imf(xBn(xι - x2f)
n n

= f{x(x]-χ2)
2)=Ej{(xι-χ2)

2).

But if x, xx, x2 G Alg span+ T then [8, Prop. 2.1.1] implies both 1 — xx/M,

1 — x2/M G Alg span+ T for sufficiently large M > 0. Since the coeffi-

cients of Bn(xx/M — x2/Mγ are non-negative, linearity of / implies

Exf((xx/M - x2/M)2) > 0 so that

(3.1.3) 1

Let j G l By condition (iii) of the definition of T, y = (x, — x2) +

(x3 — x4)i where Xj G Alg span+ τ for each j — 1, 2, 3 or 4. Thus >y* =

(x, — x 2 ) 2 + (x3 — JC 4) 2 so that (3.1.3) and linearity of is^/imply

(3.1.4) -^/( jy*) > 0 .

Hence Exf is positive for each x G Alg span+ r. But if x G T then

1 - χ G Alg span+ r, and since E(λ_x) — I — Ex we have / = Exf +

(I — Ex)f, so that / is positive. This establishes the first and last asser-

tions.

(ii) To see that / is bounded, let z be an arbitrary member of r and

replace x in (3.1.3) by 1 - z2. Clearly 1 - z2 = (1 - z){\ + z) G

Alg span+ T SO that (3.1.4) and Proposition 2.1 (i) imply Eλ_zi — I — Ezi

is a positive operator on Hf. It follows that Ez is bounded in norm by 1

for all z G T. But since T generates &, Ex is bounded for all j ί G i

Therefore / is bounded. D

4. Applications to semigroups. Let S be a commutative semigroup

with identity e and involution*. To apply the theory presented in the

foregoing sections, define the shift operator Es on the space ty(S) of

complex-valued functions φ on S by (Esφ)(t) = φ(st) (s, / G S ) and set

&= span{Es\s G S}. Since is,, = EsEn & is an algebra with identity

I = Ee and involution (Σ, c , ^ )* = Σ, ̂ ^ 5 * . The linear functionals/on β
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can be biuniquely identified with the functions φ E f (S) by f(Σ ciEs) =
Σ ^φί s,-); the positive functional being identified with those φ satisfying

(4.0.1) Σctcjφ(Sis*)>Q

for all finite subsets {ej, C C and {si}ι C S. Consistent with standard
terminology when S is a group, we call those functions which satisfy
(4.0.1) for an arbitrary semigroup S, positive definite. In this generality,
bounded positive definite functions were first introduced and studied in
[5] under the name '""-definite". The GNS-construction used in §2 carries
over to the set Hφ — {Tφ\ T E &} giving a pre-Hubert space with
(7φ, R(p)— TR*φ(e). Moreover the operator Eτ on Hf corresponds to
the operator T on Hφ defined by T(Txφ) = TTx(φ). In particular Es is an
operator on Hφ which corresponds to the operator E{Es) on Hf. This
construction on & reduces to the theory of reproducing kernels on S X S

relative to the positive definite kernel k(s, t) = φ(st*). The following
preliminary proposition is needed.

PROPOSITION 4 . 1 . / / φ E ί ( S ) is positive definite in the sense of (4.0.1)

and bounded in the usual sense, then Es, as an operator on Hφ, is bounded in

norm by 1.

Proof, (i) If ψ is any positive definite function on S then the Cauchy-

Schwarz inequality yields

Thus

(4.1.1)

so that setting t — e gives

(4.1.2)

(ii) If ψ is bounded and positive definite then |i//(.s)|< ψ(e) for all

s G S. Indeed, we may assume ψ(e) = 1 without loss of generality. For

5 E S and a — ss*, we find by p successive applications of (4.1.2) that

|ψ(j) | 2 ' < ψ(a1P~ι). But if ψ is bounded by K, then \ψ(s) |< tf2"' -> 1 =

ψ(β) (cf. Szafraniec [10, 11] or Berg-Maserick [2]).
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(iii) Let T E &. Then TT*φ is positive definite since Eττ*f is a

positive linear functional. Thus

TT*φ(ss*) =

Setting φ — TT*φ in (4.1.2) shows TT*φ is bounded, from which (ii)

implies | TT*φ(s) |< TT*φ(e). Thus

\(E,Tφ9Tφ)\=\TT*φ(s)\^TT*φ(e) = (Tφ,Tφ)

s o | | £ J | < l . D

The applications depend on appropriate selections of T which in turn

may depend on the choice of S. In the interest of brevity we have selected

two representative examples below for illustration. However, virtually all

of the applications appearing in Berg-Maserick [2, §4] could be recast in

this more elementary point of view, in lieu of the disintegration theorems

used therein. Throughout G will denote a generator set for S in the sense

that every s E S is a finite product of the form Π, si9 where either st E G

or s* E G for each /.

(A) Completely monotonic functions. We assume s — 5* for all s E S

and recall that finite differences of a function φ G f (S) are defined

inductively by

(4.1.3) Δk+ιφ(so;sι,...,sk+ι)

= Δkφ(so'> s\>- >sk) ~ Δkφ(sosk+\ ^l'- .**) (Λ = 1,2, . . . ) .

where so,sl9...9sk+ι E S. A non-negative φ E ̂ (S) is said to be

pletely monotonic if all of the differences (4.1.3) are non-negative. It is easy

to see that these differences can be redefined in terms of the shift operator

by

ΔAφ(50; sλ,...,sk) = £ S o Π (/ - Es)φ(e).
i

It follows that φ is completely monotonic if and only if the linear

functional / corresponding to φ is τ-positive with respect to r = {Es,

I — Es\s E S}. However, we can reduce the size of T to

(4.1.4) τG={Es,I-Es\sGG}
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without adding more τ-positive functionals because it follows (algebrai-

cally, cf. Maserick [8, Prop. 2.1.1]) that {Es, I - Es} C Alg Span+ τG for

each ί £ S . Hence Alg Span+ τG = Alg Span+ r. Thus φ G f ( S ) is

completely monotonic if and only if Πf=1 (/ — Es )(sQ) >: 0 for all

s0, sl9... ,sk E G where G is any generator set whatsoever.

The proof of the equivalence of (i) and (ii) below answers the question

of Atzmon, mentioned in the introduction, by taking S to be the additive

semigroup of non-negative integers.

Application 4.2. Let φ E ^(S). The following are equivalent.

(i) φ is completely monotonic,

(ii) Esψ and (/ — Es)φ are positive definite for each s E G, and

(iii) φ is bounded and Esφ is positive definite for each s G G U {e}.

Proof. The implication (i) implies (ii) follows from the foregoing

remarks and Theorem 3.1. Condition (ii) implies boundedness of φ on G.

This, in turn, implies boundedness of φ on S since / — Es is in the positive

linear span of {/ — Et \ t E G) for all s E S as mentioned above. Thus (ii)

implies (iii). Assuming (iii), Proposition (4.1) implies ||2?J| < 1 for all

s E G and since the operator Es is positive by (i) of Proposition 2.1, it

follows that I — Es is also positive. Commutativity implies all finite

products from the set {Es, I — Es\s E G] are also positive operators so

that

Π ( / - E s ) φ ( s 0 ) = ^ J o Π ( / - Es,)ψ, Ψj^ 0 f o r s 0 9 sl9...eG

and (i) follows from (iii). D

REMARK. The proof of implications (i) => (ii) => (iii), without appeal-

ing to disintegration theory, is new to the best of our knowledge. We do

not claim novelty here for the proof that (iii) implies (i); cf. [5, Cor. 4.4].

(B) Trigonometric moment problem. We now allow a nontrivial involu-

tion on S.

Application 4.3. Let φ be a bounded function on S, G a generator set

of S and τG = { £ ( / + (o/2)Es + (σ/2)Es*)\σ4 = l , j £ G}. The follow-

ing are equivalent:

(i) φ is τG-positive.

(ii) φ is positive definite.
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Proof. Since τG is admissible, Theorem 3.1 shows (i) implies (ii).
Assuming (ii), Proposition (4.1) implies ||J5^|| < 1 for all s E S, since φ is
bounded. Standard operator theory implies (/ + (σ/2)Es + (σ/2)Es*) is
positive for all 4th roots of unity σ and s E S. Using commutativity as
before, one finds

whenever Tj E τG so that (i) follows from (ii).

REMARKS, (a) It now follows that the definition of τc-positivity is
independent of the choice of G for bounded φ. This is not the case,
however, if φ is unbounded [7, p. 142].

(b) If a positive definite function φ is bounded on {ss* \s E S] then
(4.1.2) shows φ to be bounded on S itself. If, for example, (ss*) is
idempotent for each ί G S, then a second application of (4.1.2) shows that
every positive definite φ is bounded. Since without any boundedness
restriction τG-positivity implies positive definiteness, boundedness can be
waived for this rather general case. This idempotency occurs when s is a
group with inversion as involution as in Example (1.2), or when the
operation on S itself is idempotent such as Example (1.3) (st = min[£, /])
and S has the trivial involution or more generally when S is an inverse
semigroup with s* — s~λ (cf. Clifford and Preston [3]).

(c) If φ is T -̂positive then φ is bounded on {ss* | s E S} so that
boundedness is not needed to prove that (i) implies (ii) but is needed to
show the converse [7, p. 142].
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