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QUOTIENTS BY COMPLEX CONJUGATION OF
NONSINGULAR QUADRICS AND CUBICS

IN P<5 DEFINED OVER R

MAURIZIO LETIZIA

If X is a complex algebraic variety defined over R, complex conjuga-
tion in C induces an involution τ: X -* X which we shall still call complex
conjugation. If X is nonsingular and of complex dimension 2, T is an
orientation preserving diffeomorphism and the quotient X/τ of X by T is,
as X, a naturally oriented smooth manifold without boundary. Our aim is
to describe X/τ, up to diffeomorphisms, in case I is a nonsingular
quadric or cubic in P^.

Our results can be summarized in the following:

PROPOSITION. If X is a nonsingular quadric or cubic in P^ defined
over R then X/τ is, up to diffeomorphisms, obtained from the 4-sphere S4

by a connected sum with copies of P<?.

The proof is based on an analysis of the change of diffeomorphism
type of X/τ when X varies in a generic pencil of surfaces of degree d of P^
defined over R (see §2).

Our results can be seen as an extension of Kuiper's theorem [3], which
says that Pc/τ is diffeomorphic to S4, in the direction of a discussion of
the general problem of describing the quotients by conjugation of nonsin-
gular surfaces of P^ defined over R.

A propos we remind the reader that the diffeomorphism type of the
real loci of such surfaces has been classified only when their degree is < 4
(actually in the degree 4 case there are still some lacunae [2]) and
practically nothing is known for higher degrees. Nevertheless we feel that
some general statements about the diffeomorphisms type of X/τ might
possibly be proved independently of such classification. For instance it
might turn out to be possible to single out in each degree d a reasonably
small set of manifolds such that every X/τ is obtained from one of them
by a connected sum with copies of P<?. By the way we mention that in
degree 4 it seems that the set consisting of S2 X S2 and P<? has this
property.

Anyhow before starting the proof of the proposition we want to recall
some general facts which place the particular cases we shall be dealing
with into perspective at least from a purely topological point of view.
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If X is any complex algebraic variety defined over R the natural
projection π: X -» X/τ is a 2-covering branched along the real locus XR of
X. If Λ'is smooth connected with dim Xc>2 and XR φ 0 , π*: πλ(X) -*
πx(X/τ) is surjective. The cohomology ring H*(X/τ, F), with coefficients
in any field F of characteristic φ 2, is mapped isomorphically by π* onto
the subring of H*(X, F) consisting of the elements left fixed by r.
Moreover, one has, for each n > 0, estimates

(•) dim Hn(X/r9v(XR)9Z2) + Σ dim Hi(XR,Z2) ^ 2 H i x z i )
i>n i>n

provided by Smith theory ([1]). Whatever the characteristic of F9 we have
the following relationship for the Euler-Poincare characteristics:

(**) χ(XR, F) = 2χ(X/τ, F) - χ(X, F).

If X is projective nonsingular, r* maps C°° forms of type (p, q) into
ones of type (q, p), and, in case dim c X = 2, π* maps the cohomology
class of a hypeφlane section defined over R into minus itself. Hence we
have, in this case, dimR H\X/τ,R) = \ dim Hέ(X9 R) for i = 1 or 3. Let
us write

H2(X/τ,R) = H2(X/τ,R)+ ®H2(X/τ,R)~ ,

the sum being orthogonal with respect to the intersection form, this one
being positive definite on the first addend and negative definite on the
second. Since the intersection pairing of H2( X, R) is positive definite on
H\X9R) Π (H°(X9Ql)QH2(X9Ox)) and negative definite on the or-
thogonal complement of the hypeφlane class in H2(X,R) Π Hι(X, Ώι

x),
we have:

dim R i/ 2 (Λ7τ,R) + = dimcH°(X,Q2

x)

( = i (2J 3 - βd2 + Id) - lifJrcP<2 of degreed).

Here Ω^ denotes the sheaf of holomoφhic /-forms on X. In particular if X
is a quadric or a cubic in P^ the intersection form is negative definite on
H2(X/τ,R). Adding (**) and (*), for n = 0, we get an estimate for the
number of connected components of XR for a X C P<2 of degree d, namely
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(compare [4]). On the other hand if we suppose XR connected we must
have

dimRHι(XR,R) <~\{2d3 - 6d2 + Id)

(actually we can add a — 1 to the right side if d is odd; notice that this
estimate is in fact sharp \id—2,3).

Let us incidentally observe that if dim c X = 1 and X is of genus g, by
a previous remark we must have dimR H\X/τ,R) = g. Now the compo-
nents of XR become boundary components of X/T, and for any compact
smooth real surface S with boundary, dimR Hι(S,R) + 1 is an upper
bound for the number of its boundary components so we get Harnack's
theorem.

2, Let us parametrize as usual the set of all surfaces of degree d in
P<2 defined over R by points of

and let

CV)

be the discriminant hypersurface of the surfaces of degree d. If Xx and X2

are parametrized by points belonging to the same topological connected
component of

there is a diffeomorphism φ: Xx -* X2 which commutes with T SO that Xx/τ
and X2/τ are diffeomoφhic. We now want to investigate what relation-
ship there is between Xx/τ and X2/τ when Xx and X2 belong to two
different but adjacent components of

We can assume there is a family {Zλ}, λ G R, | λ | < ε, of surfaces
given in some affine system of coordinates by f(xyz) — λ = 0 such that
Λ^ is nonsingular for λ φ 0; Xo has a unique singular point which is at
(0,0,0) and is a nondegenerate quadratic point; and Xx is Xλχ for any
λ, < 0 and X2 is Xλ for any λ 2 > 0.

Furthermore, 'ύ\ = {(*, y, z) G C 3 | | x | 2 + |j>|2 + \zf < δ}, we can
assume ε and δ so chosen that there is a diffeomorphism between
Xx — B8 Π Xx and X2 — Bδ Π X2 commuting with T and there is a diffeo-
morphism commuting with T of Bδ onto itself carrying Xλ Π B8 onto
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Yλ Π Bδ, the family {yλ), λ E R, | λ |< ε, being given either by x2 + y2 +
z2 = λ (we shall refer to this as the first case) or by x2 + y2 — z2 — λ
(second case). (Since / restricted to R3 is real analytic, the Morse lemma
provides a real analytic change of coordinates in a neighborhood of
(0,0,0) in R3 which reduces / to the quadratic part of its Taylor expan-
sion: this change of coordinates can be extended to a complex analytic
change of coordinates in a neighborhood of (0,0,0) in C3 which will serve
our purposes.)

Let us write x — xλ + ix2, y — yx + ίy2, z — zλ + iz2 with xi9 yι9 zx G

R. In the first case, and i f λ > 0 , x2 + y2 + z2 = λ is equivalent to the
system:

x2 + y2 + z2 = λ + x2 + y2 + z\9 xxx2 + yxy2 + zλz2 = 0,

and the map

, yl9 y2, zλ9 z2) -> \ —, —, -p , x2, y2, z2j,
2,

where D — yλ + x2 + y2 + z2, exhibits Yλ Π Bδ, if λ is small enough, as
diffeomorphic to the tangent bundle ΎS2 of a 2-sphere *S2; through this
diffeomorphism complex conjugation becomes the involution of TS2,
which is the identity on the base and multiplication by — 1 on the fibres.
Considering S2 as P^, ΎS2 as the bundle associated to the sheaf 0Pi(2)
and the map OPi(2) -* OPi(4) given by σ ^ σ2, we see that Yλ Π B8/τ is
diffeomorphic to the degree 4 complex line bundle over P^. If λ < 0 we
have again, in an analogous way, a diffeomorphism of Yλ Π Bδ with ΊS2;
this time, however, conjugation becomes the antipodal map on the basis
and minus the map induced on ΎS2 by the antipodal map on the fibres so
that yλ Π Bδ/τ is diffeomorphic to the degree 1 disk bundle over P£, i.e.,
to the normal bundle to P£ in P<?.

In the second case we also have a diffeomorphism of 7 λ Π Bδ with
TS2, but complex conjugation now becomes reflection around an equa-
torial plane on the base and minus the map induced by this reflection on
the fibres if λ > 0, and a rotation of angle π on the base and minus the
map induced by such rotation on the fibres if λ < 0, so that Yλ Π Bδ/τ is
diffeomorphic to a 4-ball B4 if λ > 0, and to the degree 1 complex line
bundle over P^ if λ < 0. If we also keep track of the orientations we see
therefore that in the second case there is an orientation preserving
diffeomorphism between X2/r and Xx/τ#Y*2 — where as usual # stands
for the operation of connected sum and Pj for P^ endowed with the
orientation opposite to the standard one. In the first case we can only say
that X2/τ is obtained from Xλ/τ by removing a degree 1 disk bundle over
P | and putting in its place a degree 4 complex line bundle over P^.
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3. Let us now deal with the first specific objective of this paper:
there are 3 connected families of nonsingular quadrics in P^ defined over
R, a representative of each, say Ql9 ζ?2, ζ)3, being given by the equation
x\ + x\ + x\ + x\ = 0, x\ + x\ + x\ - xl = 0, x\ + x\ - x\ - x\ =
0, respectively. It is β 1 R = 0, β 2 R » S2, β 3 R « P ^ X PR, where « stands
for "is diffeomorphic to".

There is an algebraic isomorphism defined over R between Q3 and
Pc X Pc If we let complex conjugation act separately on the factors of
Pc X P^ we get a group of order 4, G, of diffeomorphisms of this
manifold and we have:

Pc x p c/G ~ p c Λ x PcA ™B2XB2~B4

(Bl is the closed /-ball).
Hence we obtain a map P 1 X P ' / T -> 5 4 which exhibits P1 X P ! / τ as

a double cover of 2?4 branched precisely along the boundary of B4: we are
so led to the conclusion that Q3/τ is diffeomorphic to the 4-sphere S4.

Considering the family xj + xj + λ c,2 — xl — 0 we get from §2 that
<22/τ is diffeomorphic to S4#P<?, i.e. to P<?. Again consideration of the
family x3 + x\ 4- x\ + λx% = 0 shows that Qλ/τ is obtained from P^ by
removing a certain degree 4 complex line bundle over P<1 and replacing it
with a degree 1 disk bundle over PR; actually we can describe the
complement of that degree 4 complex line bundle over P^. In fact
Xλ — Xλ Π Bδ is diffeomorphic to the normal bundle of the hyperplane
section at infinity which is, in this case, again diffeomorphic to ΎS2

through a diffeomorphism which carries complex conjugation into the
map which is the antipodal map on the base and minus the map induced
by the antipodal map on the fibres. This more or less already follows from
the fact that the degree of the normal bundle of the hyperplane section at
infinity equals its self-intersection, which in our case is 2, and the fact that
the hyperplane section at infinity has no real points. Anyhow we can
exhibit an explicit diffeomorphism with the stated properties between
Vo - {(1 : 0 : 0 : 0)} and TS2 as follows: write Xi = X} + iX2 with i / " ε R
and consider Xέ = (x{, x'2, x'3) (i — 1,2) as vectors of R3. The map φ:
Vo - {(1 : 0 : 0 : 0)} -» R3 X R3 given by

X3J) —
\

Λ Y II J || Y A Y || '
/ X Λ2\\ \\Λ\ / X Λ2\\ I

where Λ stands for the ordinary vector product and || || for the ordinary
norm, has the desired properties. In conclusion we have that the comple-
ment in question is the degree 1 disk bundle over P R and Qλ/r is the
double of this bundle.
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Before passing on to deal with cubics we want to remark that it is

possible to give another proof of Kuiper's theorem ([2]) in the following

way: if ε: Q3 -» Q3 is the blowing up of Q3 in one of its real points P,

projection of Q3 from P onto a complex plane defined over R induces a

morphism π: Q3 -> P<?, defined over R, which is an isomorphism except

two complex lines, defined over R, of Q3 get contracted to two points, ε

and π induce maps έ: Q3/τ -> Q3/τ and π: Q3/r -> P<?/τ which are

diffeomorphisms except one or two submanifolds of Q3/τ, each diffeo-

morphic to a closed 2-ball, are contracted to points. This implies S4 »

β3 A « δs A ~ Pc A
4. Finally there are 5 connected families of nonsingular cubics in P<?

defined over R ([5]). If we blow up in P<2 6 real points (in general

position), or 4 real points and 2 conjugate nonreal points, or 2 real points

and 4 conjugate nonreal points, or 6 conjugate nonreal points, we obtain 4

surfaces defined over R which we shall call, in order, C^ C2, C3, C4. There

is an isomorphism defined over R of Ci with a nonsingular cubic of P^,

defined over R, which we shall also denote C, . This isomorphism can be

constructed as follows: consider the linear space of all the cubic curves in

P<? passing through the six points in question. Since the configuration of

the six points is invariant under conjugation if a cubic passes through

them so will the conjugate: hence that linear space will have a basis

composed of cubics defined over R. If G£xθ9 xl9 x2)9 i = 0,1,2,3, is such

a basis we consider the map

(x0: xλ: x2) -> {G0(x09 xl9 x2): G,(* o , xu * 2 ) : ' ' ' :G 3 (x 0 , x}9 x2)).

This map is, as easily seen, well defined on the complement of the set of

the six points and is therefore an open immersion; the closure of its image

will be a surface defined over R, since φ commutes with conjugation, and

will be in fact our surface Cr Let P<? be the variety obtained from P<? by

blowing up the six points: conjugation of P<? will extend to conjugation of

P^ and φ will extend to an isomorphism of P<? with C, which commutes

with conjugation. So CiR will be diffeomorphic to P£: this manifold is

obtained from P^ by replacing a disk around each of the real points which

are blown up with two copies of R2 glued together by x' = xy9 y' = l/x9

i.e. with a Mόbius strip. Hence we have that C / R is a connected compact

nonorientable real surface which has dimR Hι(CiR9R) — 8 — 2/ (/ =

1,2,3,4). We shall call Fi the family to which C, belongs.

Let C5 be defined by

(•**) 2x3 + y3 + z3 ~ x2 + y2 + z2 + λ = 0

where λ is any real number s.t. 0 < λ < 1/27.
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If we put x' = x + \, y' = y9 z' — z, (***) becomes:

2xr3 + y'3 + z'3 + xrl + y'2 + z'2 + λ - 1/27 = 0

and we know from §2 that the real solution locus of this equation has an
S2 as component (for 0 < λ < 1/27); on the other hand there is an ε > 0
s.t. if -e < λ0 < 0 the cubic given by 2x3 + y3 + z3 - μx2 + y2 + z2 +
λ 0 = 0 is nonsingular for 0 < μ < 1. Now the real locus of 2x3 + y3 + z3

-fj>2 + z2 + λ0 = 0 i s diffeomoφhic to P£ as seen by considering the
projection (x, y9 z) -* (y9 z). It follows that C5R « P R U S 2 (the union
being disjoint) and C5 belongs to the remaining family F5. Also we see that
C5 can be connected to a C4 through a family which satisfies the condi-
tions of the second case envisaged in §2. If C, and Cj belong to adjacent
families we must have, as we have seen, |χ(C / R, R) — χ(CJR, R) |= 2 so
that Fj can only be adjacent to Fi_ι or Fi+l. Moreover since C/R is
connected for i < 4 when we connect through a family as in §2 an element
of Ft_λ with an element of F( for i < 4 we must always be in the second
case. As in the above proof of Kuiper's theorem we can get at once
Cx/τ «* S4; from this and from what we just remarked it follows that
Cy/τ » connected sum of / — 1 copies of P^ for i — 2,3,4,5.

(One can also proceed directly if i: < 4 since one has maps έ^
C,./τ -> Pc/τ ^ S4 which are diffeomorphisms except that 8 — 2/ closed
2-disks and i — 1 P<? get contracted to points.)

As a final remark we mention that a cubic surface

3 + y3 + z3 + x2 + y2 + z2 + λ = 0x

belongs to the family F4 for λ > 0 and to the family F5 for -4/27 < λ < 0.
So C5/τ can also be seen as obtained from C4/τ by removing a degree 1
disk bundle over PR and replacing it by a degree 4 complex line bundle
over P<1.

We wish to thank Professors H. Clemens and R. Stern for their most
helpful advice.
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