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LOCAL SOLVABILITY OF NONSTATIONARY
LEAKAGE PROBLEM

FOR IDEAL INCOMPRESSIBLE FLUID, 2

W. M. ZAJACZKOWSKI

In this paper the existence and uniqueness of solutions of the initial
boundary value problem for the Euler equations for an incompressible
fluid in a bounded domain Ω C R3 is proved. As boundary conditions the
velocity vector and the pressure on boundary parts the fluid enters and
leaves the domain through are assumed, respectively. The existence of
solutions in Sobolev spaces for domains with dihedral angles ττ/w,
n — 2,3,.. ., is shown.

1. Introduction. The existence and uniqueness of the initial
boundary value problem solutions for the Euler equations (for an in-
compressible fluid) in a bounded domain with impermeable boundaries
has been proved in [1], [2], [5], [10], [14], [16]. In this case, the only
admissible boundary condition is the vanishing of the normal component
of the velocity on the boundary.

The problems with a nonvanishing normal component of velocity on
the boundary, which correspond to the flow through ducts and tunnels,
have been considered in [8]-[ll], [20], [21], [23], [24]. The investigations of
the above-mentioned leakage problems answer the question: What physi-
cal quantities (the velocity, vorticity or fluid pressure) should be known at
the inlet and outlet in order to determine the flow uniquely?

In this paper as a mathematical idealization, a leakage problem for an
incompressible ideal fluid described by the Euler equations is considered.
We consider the domains with the following parts of boundaries: Sx — the
part through which the fluid enters the domain: S2 — the part through
which fluid leaves; and So — the part on which the normal component of
a velocity vector is zero. We assume Sx Π S2 — 0.

It has already been stated [8]-[ll], [20], [21], [23], [24] that when only
the normal component of a velocity is given on the boundary, the leakage
problem is not well posed. The uniqueness and existence of solutions of
this problem when, additionally, the tangent components of the vorticity
vector were assumed on S{ have been proved in [10], [11], [12], [20], [21].
In [8] the tangent components of the velocity vector on Sλ were addition-
ally assumed.
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In this paper we prove the uniqueness and existence of the leakage
problem solutions for a given velocity vector on S{ and a pressure on S2.

In §2 we introduce some notations about considered domains and
some Banach spaces. In §3 the leakage problem for the Euler equations is
determined, and a method of successive approximations, which is used to
prove the uniqueness and existence of solutions, is formulated. In §4 we
obtain some a priori estimates, and at last in §5 we prove the uniqueness
and existence of the considered leakage problem solutions. The author is
very indebted to Professor J. Heywood for fruitful discussions.

2. Notations. In this paper we shall consider the following two
kinds of bounded domains Ω C R3:

(I) nonsimply connected domains with a smooth boundary 3Ω =
S{ U S2; Sx Π S2— 0 ; Sι9 i — 1,2, are smooth surfaces of class Ck

9

k > 1 an integer;
(II) simply connected domains with a nonsmooth boundary 3Ω =

So U Sλ U S2\ Sy9 v = 0,1,2, are smooth surfaces of class Ck

9 k > 1 an
integer; 5, Π S2 — 0 the dihedral angle between tangent spaces TXSO

and

Γ Λ ^ V - st n 5 Ό , / = 1,2,

is equal to Ή/YI, n = 2,3,
In a neighbourhood U(q), g E ^ , we introduce an orthonormal

curvilinear system of coordinates, (r^x), τ2(x)9 n{x)), x E U(q). The
surface S{ Π U(q) is determined by the equation «(;c) = 0. Hence, for
n(x) — 0, τ l9 τ2 are coordinates on SΊ (^(x), f2(x), π(x)) be the orthonor-
mal basis corresponding to the coordinate system such that for x E Sλ>
τx(x)9 τ2(x) are vectors tangent to Sλ9 and ή(x) is the outward vector
normal to S,.

We shall investigate the problem in Sobolev spaces. We denote the
norm of the Sobolev spaces Wr

ι(Ώ) and Lr(Ω) by || | | / r Ω and || | | r Ω ,
respectively, and the norm of the space Wr

ι~]/r(S) by || | |/_1/r rS. Let B be
a Banach space, /c a nonnegative integer and T some positive constant.
L^(0, Γ; 5) is the Banach space of functions f(t) on [0, T] which have
values in B for every fixed t E [0, Γ] and are &-times boundedly differen-
tiable with respect to / e [0, Γ] in the topology of the space B. Let us
introduce the space

Π
i=k
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where Ωτ = Ω X [0, T] (similarly, Π j ^ J S ^ ) , /' = / - 1/r, where S? =

Sv X [0, T]9 v = 0,1,2), with the norm

/

(2.1) W\l,k,r,ίΓ= SUp 2 l l A ' Ή ^ Ω '
*e[0,Γ] ι = *

and the space Γ£r(Ω) with the norm

(2-2) |«|α,Γ,0 = 2 ||A'"'4.r,o
i=k

The index Ω will be omitted in notation of all norms.

3. Statement of the problem. Let us consider the Euler equations in

ΩΓ:

(3.1) vt + v vi? + Vp = / ,

(3.2)

with initial condition

(3.3) v\t

and boundary conditions

/ x v\sι — V s u c h thatη - n— —d,d>dQ — const > 0,
(3.4)

t; n\s0 = 0,

(3.5) p\s2 = <iτ{x\t), x ' G S 2 .

From (3.3) and (3.4) we have the following compatibility conditions:

(3.6) η\ί=o=a\sn a n\so = 0.

Our aim is to prove the existence and uniqueness of solutions of the

problem (3.1)—(3.5). As we do not know any method to solve our problem

directly from (3.1)—(3.5), we replace this problem by the equivalent system

of problems. At the beginning let us prove the following lemma:

LEMMA 3.1. Let v be a given function of class C ^ Ω ' ) , p E C2'α(Ω'),

Ί] E C1>α(S(), vectors τl9 f2, n belong to C1 in a neighbourhood of Sλ and

equation (3.2) is satisfied on Sλ.

Then the initial and boundary conditions (3.3), (3.5) and equations (3.1),

(3.2) determine the following well-posed elliptic problem for p:

(A) (3.7)

(3.8)
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+ Σ ( i n ^ + i . ^ d i v ^ -

= g(η,τ, Λ),

(3.10)

where/„ = / n, ηn — η n, ηp = η T,, ̂  = 1,2. In the case of nonsimply
connected domains, condition (3.10) does not appear.

Proof. Using (3.1) and v «|5o = 0, we obtain (3.7) and (3.10), respec-
tively [16]. It remains to obtain (3.9) only. Multiplying (3.1) by Jz,
projecting the result on 51 and using curvilinear coordinates we obtain

(3.11)
dp

μ=2

where η = 2 ^ = , ^ + ijn«. In (3.11) the unknown quantity vnn\Sι ap-
pears. To calculate it we apply the operator div to (3.1), and using (3.7) we
obtain

(3.12)
dxk

Now we introduce curves determined by the equations

(3.13) -£ = v{y(x, t\ s)9s)9 y(x, t\ t) = x,

where s is a parameter, 0 < s < ί. We classify these curves into two
disjoined sets (a), (b):

(a)y(x91; s) E Ω for every s E [0, t)9

(b) there exists a moment t*(x91) E [0, /) such that y{x, t; t*(x, t))
E 5 , .

Equation (3.12) implies only that divt> = const on curves (3.13).
However, according to (3.2), div v — 0 in Ω. (3.2) is satisfied on curves of
family (a) because the initial values are such that divι;| r=0 = diva = 0.
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Initial values for (3.12) for curves of family (b) are given by boundary
values on which (3.2) imposes the following restriction:

(3.14)

Using the curvilinear coordinate system, (3.14) yields

(3.15)

Using (3.15) in (3.11) we get

*VnU = ~ Σ (%,rμ

 + %di

μ=l

(3.16)
θ/i = ΛU ~ Inj + Σ (VnVμ, + V»» dίv Tμ -

which implies (3.9). This completes the proof.
Now let us consider the system of problems (A, B), where (B) is

defined as:

(B)

υt + v Vv = ~Vp+f,

υ\ί=o = a,

v\sχ = η, oΛ|sb
 = °

Lemma 3.1 imphes that problems (A, B) and (3.1)—(3.5) are equivalent.
To prove the existence and uniqueness of solutions of the problem

(3.1)—(3.5), we use the following method of successive approximations for
the equivalent problem (A, B):

(A a )

Dip = />>(*', f), *' eS 2 ,
s2

3 m
dn *

3 7 ^
~Γ~Dt P , ) !
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where for nonsimply connected domains (I) the boundary condition on 50

does not appear, g(η, f, ή) is determined by (3.9), and

(K)

(3.18)

(3.19)

( m +1 \ m

D? υ J + v

m +1

v
1 1

m+1= - 2 AJ"y» viy v -Dt

s(vp-f),

t=0

a for 5 = 0,
m+\

-Df'Ί υ V v +Vp-f

m + 1

where m = 0,1,..., v = a and 5 = 0,...,/— 1. For a given υ the

problem (As

m) constitutes an elliptic problem on p, and for a given p the

problem (B^) constitutes an evolution problem on v . Taking v, from
o l

(As

m) we can calculate p, then from (B\) we can calculate t;, and so on.
On each step a solution of the problem (B£) is such that

(Cm) (3.20)

(3.21)

(3.22)

m+1

div v t=o
= o,

m+1

div v = 0.

Problem (Cm) implies div v φ 0 for each m > 0.

Now let us consider problems (As

m), (B£,) separately. We shall prove
existence and uniqueness of solutions of these problems.

LEMMA 3.2. Let us assume r > 3/1, I > 1, / £ Γ/+'(Ω), v e Γί+'(Ω),

7r e Γj'+^'/'ίSj), η £ T{+2-ι/r(Sx) and the smooth parts of the boundary
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are of class C . Then for t E [0, T] there exists a unique solution p E

Γ2 '+2(Ω) of problem (A s

m ), 5 = 0,. . . ,/, such that

2

(3.23) < C + C
/+2,2,r,Ω

w/zm> CΊ depends on /, r, Ω, | / | / + u , r > Ω , M/+ 2-IΛ,I,>-,S,> K ^

0« bounds of (/ + 3)//* derivative of the boundary, and C2 depends on r, Ω.

Proof. The existence of solutions of problem (A m ) for a domain with
edges was shown in [19]. For nonsimply connected domains the existence
of solutions of this problem is well known. Therefore, the following
estimate for these problems is valid:

(3.24)
7+2,2,r,Ω

7Γ

1,0, r,Ω

m ,m _ _

v v nxk + f n

IfίJ %Vn,T η.divT,,

-ηkη nχk- f n

l-l/r,l,r,Sb

ί)Mdiv«)

where C depends on /, r, Ω. (3.23) follows (3.24). This concludes the proof.

LEMMA 3.3. Let the initial data functions satisfy the restriction

(3.25) a - n\s2 ^aQ = const > 0,

and

where Ω Γ = Ω X [0, T]. If \υt\< C = const, m > 0, there exists a unique

solution of problem (B^)for t E [0, Tλ\ where

(3.26) _ ao
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such that mυl £ C 1 ' ^ 7 ' ) . Moreover, if Dt

σp E C 2 ' α (Ω Γ ), Dt

σf E

Cι'a(Ωτ), Dfη E C2-a(Sf), Dfv E C 1 'α(ΩΓ) ? Z>,σmt> * E C ! α (Ω r ) , σ =

0,... ,s — 1, απrf (3.26) is satisfied, there exists a solution of problem (B^)

/or / E [0, ΓJ ΛICΛ that D^V E C1'α(ΩΓ')-

Proof. At first we have to show that the fluid leaves the domain Ω

through S2. From the assumptions of the lemma vn\Si > <z0 — rt, so for

ί < Tl9 v n \Si > 0. To show that problem (B^) is well posed, we introduce

the characteristic curves of (3.17) determined by the equations

( 3 2 7 ) ~JS = S ( j ( x , ί; s)9 s)9 y(x, t; t) = c,

where Λ is a parameter, 0 < ,y < /. We classify these curves into two

disjoined sets (a), (b) (see the proof of Lemma 3.1). Then (3.17) can be

written as

(3.28) -^mΌl(y{x9t;s)9s) = - V y p ( y ( x , t;s)9s) +f(y(x9t;s)9s).

For each characteristic curve (3.27), equation (3.28) represents a corre-

sponding ordinary differential equation. The initial values for (3.28) on

characteristic curves belonging to (a) or (b) are determined by (3.18) or

(3.19), respectively. This shows that (B£) is well posed. The existence and

differential properties of the solution of (B£) result from the expression

obtained by integrating (3.28) with respect to s using initial values

determined by (3.18) and (3.19). Similar considerations are valid for

problems (B^). This concludes the proof.

4. A priori estimates. In this section we obtain some a priori

estimates of solutions

Dt

sp E
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of problems (As

m), (B^), respectively. We distinguish the case / = 2,
because then the solutions belong to the largest admissible Sobolev space.
Moreover, in this case calculations can be done explicitly.

LEMMA 4.1. Let us assume:

(c) Sx is of class C3;

(d) mp\ p E Γ2

3

r(Ω), υ E Wr\ti), m > 1;

(e) (3.25) is satisfied.

Let υ be a solution of(B^) then for t E [0, Tλ] the following inequality is

valid:

dt l2,r 13,r

112,/- I2,r

+CΛP
13, r

m - 1

P
3,r

m + 1
V

11/ 1

Il2,r

0,^,11,112,^), C4=C4(SX),

Proof. From (3.17) we have

(4.2) y y
m.m+\

where

.m+l r - 2
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From (4.2) we have
1 f m1 f m

< / v n
m + 1

+ max
Ω

+ max
Ω

m+1
V

m + 1 II m

v J\\v,

m + 1

H— max
r Ω

m+1

υ

m

div υ

ds

m + 1 |Γ

Il2,r

m+1
V

i i r - 1

+ 2 max
Ω

m + 1

113, r

m + 1 r - l

2,r

Using curvilinear coordinates introduced in §2 and boundary condition
(3.4), the surface integral in (4.3) is estimated by

m _ / I m + 1
- / v - n\\ v

m+1
V

m+1
V ds

••!,

m + 1
7 I

d\ v

m+1
V

m+1
V ds

m + 1

υ ,τn

m + 1
V + υ

1
+

m + 1

υ ds

From (3.17) restricted to 5, for s — 0 we calculate

so

(4.4)

m + 1

m+1
V

m+1
V

ηt + ημη τ + V p ~ f

,nτv

m + 1

= -d'2d,A + d~xAt,

m+1 m m+1
» r + « μ V

m _λ m + 1 m m + 1 m m + 1 m

~ ϋ + + +

m / m + 1 m+1
ϋ Λ
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Knowing that

m _i / m~ 1 \
tt M = rf M l , + T?,,T7 „. + V P ~ f ,

1̂ \ /

we obtain

m+l
V

mm m

239

where

and [T^, fμ] is the commutator of vector fields ί,, fμ. Substituting (4.4) into

/ we obtain the estimate

(4.5)
3,r

II HI h""1

2,r II Il3,rll 3,r

where Ci9 i = 1,...,4, are the same constants as in (4.1). Using the

Sobolev imbeddings in (4.3) and using (4.5), we obtain(4.1). This ends the

proof.

In estimate (4.1) the norm ||i?,||2,r appears, so we have to consider

problem (A^) and, consequently, problem (B^), also. Therefore, we

formulate

LEMMA 4.2. Let the assumptions of Lemma 4.1 be satisfied. Then for

t E [0, ΓJ the following differential inequality for solutions t>, v E

Wr

2(Q)of(Bl)isvalid:

+c, 0 \ 2,r||

I m + l |Γ || m m + l || II m + lv IJ ϋ

m+l
V

ι.r-1

Ί l l , r '
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C7 = CΊ(d0, r, Ω, SΊ,|η b.o.r.s,, l/b.i.r.o).

C9 = C9{dQ,r,Sx,U\\2,r,sX C l o = C l o ( r , Ω ) , Cu = |l/,lli,r

(4.7)

From (3.17) of (B^) we have

/* / m + l m , m + l

/> ; + *

m+\ m + l
D

r-2

dx = 0,

which, after applying Holder's inequality, implies

(4.8) λ-±-\%\
v } r dt\\ t

\,r

1 /• m _ / | m + l

< / v - n\\ v V . ds

H— max
r Ω

div v
m+\

V + max
\,r Ω

m + l I II m II I m+\

+ max
Ω

+ max
Ω

m + l

m + l

m + l

m + l

r~\

+ max
Ω

m I II m + l
V J\\ V

l2,r

m+l
V

πr—1

Using the curvilinear coordinates and (4.4), the surface integral in (4.8) is
estimated by

/ / I Λ , Cm m+l

(4.9) - / vή[\ v t
+

m+l
V ds

dl\Vt(+\ηj
m + l

,/?/ ds

2,r
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where constants C7, C8, C9 are described in (4.6). From (4.8) and (4.9) we
obtain (4.6). This concludes the proof.

Lemmas 3.2, 4.1, and 4.2 imply a priori bounds on elements of
sequences { v}, { v,}, {/?},{/?,} of the solutions of problems (As

m), (B^),

s = 0,1. These bounds are local in time and independent of ra, which is a
consequence of the following theorem:

THEOREM 4.1. Let us assume St E C 4 , i = 0,1,2, η e Π?7J//"(S1

Γ),
7r E Π ^ ί S Γ ) , / e Π^ r ? 0 0(ΩΓ) a

(4.10) Γ < m a x m i n

>Γ, |k(0)||2-, / r,,A, \η(0)\2-l/rΛ,r,Sι),

and y(y) = C(y4 + 1). Moreover, we denote by p0 > 1 ίΛe value for which
the function

α maximum. Then the solutions of problems (As

m), (B£J, s — 0,1 are
estimated in the following manner.

(4.11)

Moreover, from Lemma 3.2 we have the estimate of\p |3f2>r:

(4.12) p ^C[
3,2,r

C/, / = 1,2, are explained in (3.23).
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Proof. From inequalities (4.1) and (4.6) we have, for m > 1,

(4.13) 1
m+1

2,1,r

2,1,/

3,2,r

m+1
V

3,2,r

m - 1

P
3,2,r

2,1, r

+
3,2,r 2,1, r

where C/, / = 1,...,6, are constants dependent on Q, fc= 1,...,11.
Moreover, Lemma 3.2 implies

(4.14)
3,2,r

< C,2 + C
2,1, r

m

where Q2, / = 1,2, are described in (3.23). Assuming y{t)

from (4.13) and (4.14) we get, for m > 1,

(4.15)
m+1

τ,
m-1 \ / m+1 + ' i

where γ ( j , ^ ) = C(y4 + y 4 + l ) and C is the upper bound of all

constants appearing in (4.13) and (4.14). Using the method of induction,
we will show that y(t) is bounded independently of m. We have to obtain

a differential inequality similar to (4.15) for the function v, knowing that

v — a. From (3.17) for m = 0 and s = 0,1, similarly as in Lemmas 4.1,
4.2 we obtain

(4.16) i
^ J dt

+ CίJα||
2,l,r

4- C
3,l,r

13

r - 1

2,1,r

where C(2 = C(2(r, Ω), C(3 = | / | i A r To estimate the surface integral / in
(4.16) we consider

(4.17) so
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where an = —d(0), and then v n n υ n7v can be calculated. At last we can

get

(4.18) υtnn = β Λ ^ i , , + aμv^ + Vp -

Using (4.17), (4.18), the surface integral in (4.16) is estimated in the
following way:

(4.19) I^gγ(d09 \\a\\ι,r,sl9 hko,^,, |/|IΛΓ

2r

3,2,r

0 0
Now we calculate the functions p, p t from (A°o), (AQ):

(A°o) Δ/7 = div/— aι

xka^ι9

and

(A'o)

= w , ( x ' , t ) ,
dn

So

From problems (As

0), s = 0,1, we have the following estimate:

(4.20) ,r,S2, \η\3-l/r,l,r,Sι)

Therefore, from (4.16), (4.19), (4.20) we obtain

(4.21)
d i r

dt 2,\,r
< C 1 2 + C 1 3

2,1, r



244 W. M. ZAJACZKOWSKI

where C12, CI3 depend on \\a\\2^ \f\2Xr, \π\3_ι/r2rS2, \η\3-ι/ra,r,sι in-
tegrating (4.21) with respect to time we obtain

(4.22)
2,1, r

Demanding that y < py0, p > 1, we obtain the following restriction for t:

1
(4.23) In

Now we shall obtain the required estimate for m > 1. Assuming
m - l

PJo* y ( 0 — PJo (f°Γ w = 1 it has been shown above), we shall show
m+l

that y ( 0 — PJo for a sufficiently small time interval which depends on
m+l

p . I n d e e d , f r o m (4.15) w e o b t a i n y (t)<(l + y o ) e y i p y o ' P y o ) t ~ h a n d

m+l

demanding that y < py0, we get the following restriction for t:
1(4.24) In

JΌ+

The function t2{p) has a maximum for p = p^, where p* is a solution of
the equation

1 =
i + py0

i + P V
In +

+
Let ί'(p) - min{ί,(p), ί2(p)}. Then, assuming t < t'(p) and (3.26) is
satisfied, we conclude the proof.

Now we consider an a priori estimate for the solutions of problems
(B£J, s = 0,..., 1, where / > 2 is an arbitrary integer.

LEMMA 4.3. Let us assume
(a) T < Γ,, r > T^T, d > ί/0 > 0, / > 2,

(c)S, is of class C'
(d)p E Γ ^ ί Ω ) , υ eΓ[>Γ(Ω).

' + \

m+1
for t E [0, Γj], α« arbitrary solution v E Γ/^Ω)

0,1,...,/— 1, satisfies the following differential inequality:

(4.25)

(B^), j =

m + l r

\

m

r,/,Ω)
m

+ 1/1/,.,,
/+l,2,r

m + l r

Λ)|-;
/1

r - 1

l,\,r
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where I is the following surface integral:

(4.26) / = / 2

245

m+\

where

Di =
9''

dt

/. To prove this lemma we assume all derivatives of all functions
appearing in the problem are continuous. From (B£,), s = 0,1,...,/ — 1
we have

(4.27) 2 2 + + Vj - / '

. m+\

D/Dl v

r-2

From (4.27), using Holder's inequality and the Sobolev imbedding theo-
rems, we conclude the proof.

Now we shall estimate the surface integral (4.26) which appears in
Lemma 4.3.

LEMMA 4.4. Let (a), (b), (c) of Lemma 4.3 be satisfied, and let
a E W^(Ω). Then the surface integral (426) has the following estimate:

(4.28)

where

(4.29)

ι = 0

/'"<
lχ " l ι

m — i

p

where V = min(/,min(m, /))

f,O,r,S1? |/|/,l,r,Ω? ||"||/,r,Ω? " o j

Proof, Using curvilinear coordinates, from (4.26) we have

(4.30) /2SC(S,)2 Σ
z=0 I ι = 0
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where a is a multi-index and D"τ) denotes all possible derivatives of order

α, with respect to τl9 τ2, Dn = d/dn. To estimate (4.30) we have to

consider the form of D^υ , s < 1. From (3.17) of (B£) we have

, v m+1 m , | m+1 m m+1 m

(4.31) D n v = - v ; ι [ v t + υ μ v , T ( i + V / > -
μ

Differentiating (4.31) with respect to n we obtain

, x ~m+l m Ίm Γm+1 m m+1

(4.32) Dl v =v;
2vn^ v t + vμ v

m+\ m m+\ m m+1

m I m-V\ m+1

[ V r\+ V

\1

,Λ)J'
where avμ(x) = [n, TJ τμ, bμ = [n9 τμ] n and v n is described by (3.17)

of (B^_ j). Hence it has the form

, x m A W — 1 , Γ m A W — 1 m A W — 1 1
(4.33) o i B = - ϋ - 1 o , + o » t>, + V ,P - / •

At last the (s + l)st derivative with respect to n has the form

/ s , , AW+1 -̂« mΛ

(4.34) D;+* v =-2^v;ιD

To obtain the form of D^+λ v we shall use inductive considerations.

From (4.31) we see that Dn v has the polynomial form of degree two
m m+1

with respect to Dι

tD{τ)υ, Dι

tD{τ) v , / +j < 1, and that it is linear with
W+ 1 AW

respect to DjDfo υ 9i +j <\9 pχ9f.

From (4.32) it follows that D^ υ is the polynomial of degree four

with respect to Z>/2>(

;

τ)

W v t9 where σ = 0,1,2, / +y < 2, and that it is

the polynomial of degree two with respect to Dι

tD{x) p , Dt

kD^x)f, where

/ + 7 < 2, / < 1, p = 0,1, fc + 1 < 1. We see that D^υ depends linearly
. . m+1

on Dt

lD(

J

T) υ , where / +j < 2.
m+1

Let us introduce the inductive assumption. Let Z>̂  ϋ be a poly-
. m+1—σ m—p

nomial with respect to DjDfo v , DjD{

J

x) p and Dt

kD[x)f, where
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i + j < s9 σ = 0,... 9s9 p = 0,... ,s — 1, k + 1 < 5 — 1. Then from (4.34)
, ,m+1 m+1

we see that D* υ , comparing with D* v , contains additional terms

m—s m—s
v p , and the order of all derivatives increases by one. Moreover, the

ra-M m — s m m~s

degree of the polynomial with respect to t; , . . . , v and />,..., p , /

increases by two and one, respectively. At last, if s > m9 then in Dξ+ι v

there appear the functions D,x

x)a9 0 < x < s9 in the power up to s — m.
, . m+ 1

From the inductive assumptions we obtain that D^ v is a poly-
m+ 1 —σ

nomial of degree 2(s + 1) and s + 1 with respect to Dι

tD{τ) v , / + 7 <

5 + 1 , σ = 0,... ,5 + 1, and DjDfa p , DJ"Dl

{x)f, i +j<s+ 1, / < 5,

m+\

p — 0,... 9s9 k + 1 < s9 respectively. We must underline that v with all

its derivatives appears there linearly. Hence, using the fact that Wr

ι(ίi)9

r > 3/1 — 1, is an algebra, we obtain (4.28), (4.29), so we have proved the

lemma.
m+\

Now we estimate the initial conditions Dt

s v \t=0 appearing in

problems (B^), s = 0,1,. . . ,/ - 1, / > 2.
LEMMA 4.5. Assume

( ) G Γ/.,

/or solutions of problems (As

m), (B^), 5 == 0,...,/ — 1, /Λe following

estimate is valid:

(4.35)
m + 1

\g(Q)\l+\-\/r,l+\-s,r,Sφ

where Fs is a polynomial of degree s + 1 with respect to its arguments and

Proof. To obtain the form of Df υ | f = 0 , s = 0,...,/ — 1, we use
m+l

inductive considerations. For 5 = 0 we have ϋ | / = 0 = a. For 5 = 1 we
m+1 m m

have Z>, ϋ | / = 0 — —a - va — V /?(0) + /(0), where /?(0) is a solution of
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problem (A°m) for t = 0. Therefore, we have

5(0) = f (div/(0) - < * 4 , g(u(0), f, π),

{f(O) ή+aka-nχk)\So,π(x\O)),

where ^ i s a linear functional which represents a solution of (A°m). Hence,

m+\

the function Dt v \tx=0 has the polynomial form of degree two with

respect to Dxa, i < 1, and it depends linearly on/(0), g(0), 7τ(0). For s — 2we have

7 m+l
Df v

t=0

m

= -Dtv
ί=0

m+\
a - VD{ υ ί = 0 ί=0

where Z>rϋ | ί = 0 , Dt υ \t=0 are calculated from the previous step (for
m

s — 1), and Dtp ) / = 0 , calculated from (A1^), has the form

D,P
/ = 0

mQ> Dtg\t=O>

( m j m

Therefore, D/ *t> | r = 0 is a polynomial of degree three with respect to

D/T)α, 0 < / < 2. Moreover, it depends linearly on D!D(

J

x,f\ί=0, i + j < 1,
DtPχ\t=o> P x(°) ^ l a s t ' t h e f i r s t a n d t h i r d arguments of Dtp | f = 0

constitute a polynomial of degree three with respect to D{^a, 0 < / < 2,

and they depend linearly on DfDfaf\t=09 i +j < 1, Dι

{x) p

Now we shall consider the s th-derivative of v :

5 - 1

U Q , * = 1,2.

(4.36) Dt

s v
ί = 0

~VDΓλp

Knowing that ^ i s a linear functional with respect to its arguments, we can

treat Dt

s~ι v \t=0 as a polynomial with respect to a, /(0), ττ(O), g(0) and

their derivatives. Moreover, the derivatives of /, π, g, with respect to time

for / = 0, have to be considered also.

The expression Dt

s v | , = 0 , comparing with Dt

sl v | / = 0 , addition-

ally contains the derivatives Dt

s"ιf\t=0 and Dt

s | / = 0 , where Dt

s~λ p \t=0
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depends on Dt

s~ιπ\t=0, Dt

s~ιg\ί=0. In the end, because of the bilinear and
linear differential operators of the first order appearing in (4.36), the

m-M

expression D" v \ΐ=0 has a polynomial form (with respect to a, /(0), g(0),

τr(O) and their derivatives) of degree greater than Dt

s~ι v | r = 0 by one.

The order of derivatives of α, /, g, π appearing in Df v | / = 0 is greater by

one also. Therefore, from induction considerations, Df v \t=0 is a poly-

nomial of degree s+l with respect to α , . . . ,Z>(

s

Λ)α, Dι

{x)Dt

jf\t^0,

D{x)Dt

Jπ | r = 0 , Dix)D/g\t=0, for / + j < s — 1. At last, using Lemma 3.2 and

the fact that Wr

ι~\ r > 3/(1 — 1) is an algebra, we conclude the proof.

THEOREM 4.2. Let us assume

(a) i, E Πί+'j ACSfX/E EOO 7 1 ) , * E Π&£'/'(#), /^2, r >

(4.37) T < max m i n i — ^ - , /"(p)l,

wΛere p > 1 and y0 is defined in the assumptions of Theorem 4.1. Lei the
function t"{p) be a solution of

(4.38)

= W(pY(0),...,pY(0)),

where

W(aι,...,ai)= 2 Cii...lafri>--'a}ri; i = min(m, /),
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which is estimated in Lemma 4.5. We denote a value for which the function

has a maximum by pι

0. Then solutions of problems (As

m), (B^), s = 0,...,
/ — 1, are estimated by

(4.39)
ί,\,r,Ω

then, from Lemma 3.2 we Λaυe ί&e estimate

(4.40) < c,'+
C/, / = 1,2, are explained in (3.23).

Proof. Using the Young inequality in (4.25) we obtain

(4.41) I V
r

+ H
r - 1

Using (3.23) and (4.28) in (4.41) we have the inequality

(4.42) f
w + 1

•C<' ' ° > ( I S L + 1 ) I
. l m + 1

+ 1 v lΛ,r

where Wis described above. Assuming \υ \ίΛr. < pY(0), p > 1, / < m, then

integrating (4.42) over time and using (4.37), (4.38), we obtain

(4.43)
m+l

V
r] - (pΓ(0))r.

Therefore we have proved (4.39). This concludes the proof.

5. Unique solvability of the initial boundary value problem. In this

part we shall prove the existence and uniqueness of solutions of the

problem (3.1)—(3.5). At first we shall prove the main result:

THEOREM 5.1. Let the assumptions of Theorem 4.2 be satisfied. Then,

there exists a unique solution of the problem (A, B) such that

(5.1) t > e Π { f Γ > j Q Γ ) , / , e Π & : ^

where T is described by (4.37).
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Proof. We shall use the method of successive approximations. At first,
m m

w e s h o w t h a t t h e s e q u e n c e s { v } 9 { p } a r e s t r o n g l y c o n v e r g e n t i n s p a c e s
LJP, T; Wr\Ω)) and LJ09 T; Wr

2(Ώ)\ respectively. Let us introduce
m m m-\ ™ m m-\ n

» = v - v 9 Φ = p - p , / w > l , # ° = α.(5.2)

Then, from problems (A°m), (B£) we obtain

. , "1 m m, m - l . m "L

(5.3) Δ9> = - d ' ^ t ) * , - v ι

χkdχl, 9

d m

= 0 ' ΊΓs2 3Λ
= 0,

m - l , m

- V kΰ

and

(5.4) j t d + v • V = 0,

m + 1

= 0.

Using Lemma 3.2, from problem (5.3) we have the estimate

(5.5) <C ϋ
I l2,r

m - l

(5.6) I

where C is a constant. From (5.4) we get

m+1 m / m+1

< - / v - n\ ΰ

m+1 r ~

m+1

2,r

m + 1

ds

2,r l,^

m + 1 /•-I

where C is a constant. Using the boundary condition (3.4) in (5.4), the
m+1 m

estimate (4.39) and Dn & \S] = —d^xDτ^ |5i, the inequality (5.6) is re-

placed by

m + 1

1,/-

— ^ j

I 2 , r

m + 1

H ll.r

m + 1 r-\

I , ' *
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At last, using the estimate (4.39) in (5.5), from (5.5) and (5.7) we obtain

(5.8) d m + l m+l -m
— σ < a σ + βσ,

where α, β are corresponding constants, m > 0 and σ = eaΐy°, σ =
m+l

J>° = ||β|lί,r. Integrating (5.8), we have "σ * = eat^β"o{tf)e~at'dt\ so

after the inductive considerations we obtain σ < eat(βt)m/m\(y°)9 hence

the series Σ ^ = o σ converges. It means that the sequence {t>} converges

strongly in LJQ,T\ Wr\Ω)\ and from (5.5) that the sequence {p}

converges strongly in L^O, T\ Wr

2(Q)). Therefore, there exists the limit
functions υ, p in these spaces, and from estimates (4.39), (4.40) it follows
that they belong to spaces Π{ r?00(ΩΓ), Π/

2^.1

00(ΩΓ), respectively. To show
that the limit functions v, p are solutions of the problem (A, B) instead of
the problem (A, B), we consider the following integral identities:

(5.9) - f mυ ηtdxdt+ fa(x)η(x,0) dx + / v^υ χk η dx dt

= ί (f- Vp)ηdxdt,

where p — &(v) is a solution of the problems (A°m) for every continu-

ously differentiable function η such that TJ(JC, T) — 0, η \s = 0. Passing

with m to infinity, we obtain the same identities for the limit functions.

Thus the limit functions are solutions of (A, B). This concludes the proof.

As problems (3.1)—(3.5) and (A, B) are equivalent, it follows that the limit

function υ of the sequence {v} satisfies div v = 0. Apart from this,

considering problems (Cm), one can prove that property directly:

LEMMA 5.1. Let v, p be a solution of (A, B) described by Theorem 5.1.
Then

(5.10) divt; = 0 in Ω.

m + l m+1
Proof. Multiplying (3.20) by div v | div "v \r 2,

result over Ω and using (3.22) we obtain

I A
r dt

integrating the

m+l | | r 1 f m
div v = — / div v

m+l

div v dx

m+l

- v '
m+l

div v
m + l

div v
r-2

dx.
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Using Holder's inequality, we get, for r > 3,

253

m + i
-r div v <max
dt \\r Ω

m + l
div v div v

+r max
Ω

I m + l
V — v

i i r - 1

div v

Therefore, from Young's inequality we have

(5.11)
d II «+
^ div „ < r max

+ max

m I II m + l

v I div v

m I II m + l

Integrating (5.11) with respect to time, using (3.21) and (4.11) or (4.35), we
obtain

(5.12) div mvl (t)\\ <
II II

m+1
dt foriefO, T].

From the proof of Theorem 5.1, we know that υ converges strongly in

LJO, T\ Wr\Q)). Then (5.12) implies limm_00 div v(t) = divv(t) = 0 a.e.
in Ω. But from (5.1) it follows that divt; is a continuous function.
Therefore div υ = 0. This concludes the proof.

6. Remarks. In this paper the existence of solutions of (3.1)-(3.5),
local in time, (v(t\ p(t)) E Γ^O) X Γ ^ Ω ) , t e [0, Γ], r > 3/(1 ~ 1),
/ > 2, has been proved. The time T of the existence of these solutions is
determined in the assumptions of Theorems 4.1, 4.2. For / = 2 we have
solutions t>, p of the smallest smoothness. However, in this case vt(t)9

υx{t\pxx(t) belong to the class C*(Ω), t E [0, Γ], where a = (r - 3)/r, so
the Euler equations are still satisfied in the classical sense.

Condition (3.25), which assures that a fluid leaves the domain Ω
through Sx for t E [0, T] (see the proof of Lemma 3.3), is necessary to
obtain Lemmas 3.3 and 4.1-4.4. Consequently, this condition is necessary
to prove the existence of solutions of (3.1)—(3.5). Knowing that v is at
least of class Clfl£(ΩΓ), condition (3.25) implies that the considered
domain Ω must be either simply connected with edges or nonsimply
connected with a smooth boundary.

Let us note that the taking of pressure on S29 as it was done in this
paper, is not the only condition necessary for the uniqueness of problem
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(3.1)—(3.4). It is easily proved from (3.1)—(3.4) that the following inequal-

ity is satisfied:

(6.1) 4 W ^ m a x ^ \\nl+ ί ΰ

where ϋ> = v — v, 9 = p — p and v9 p, i — 1,2, are two solutions of

(3.1)-(3.4). Hence, knowing

(6.2) # k = 0, # «|so = O, ^ | ί = o = 0

and

(6.3) v n < 0 , v - n = 0, v - n
s2

Ϊ = 1 , 2 ,

we see that for a given normal component of the velocity on S29 there is

also a unique solution. Though the existence of solutions of this problem

in Sobolev spaces cannot be proved [24], it was done in Holder spaces [8].
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