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A SOLUTION TO A PROBLEM OF E. MICHAEL

T. C. PRZYMUSINSKI

A product space X X Y is rectangularly normal if every continuous
real-valued function defined on a closed rectangle 4 X B in X X Y can
be continuously extended onto X X Y. It is known that products of
normal spaces with locally compact metric spaces are rectangularly
normal. In this paper we prove the converse of this theorem by showing
there exists a normal space X such that its product X X M with a metric
space M is rectangularly normal if and only if M is locally compact, thus
answering positively a question raised by E. Michael.

Other related results are obtained; in particular, we show there
exists a normal space X and a countable metric space M with one
non-isolated point such that the product space X X M is not rectangular
(in the sense of Pasynkov).

1. Introduction. Let R, Q and I denote the reals, the rationals and
the unit segment. We say that a product space X X Y is rectangularly
normal if every continuous real-valued function f: A X B — R defined on
a closed rectangle 4 X B in X X Y can be continuously extended onto
X X Y. The concept of rectangular normality—being a natural weakening
of normality—first appeared implicitly in papers of Morita [M9], Starbird
[S, S2] and Miednikov [Mi] in connection with their successful attempt to
generalize the Borsuk Homotopy Extension Theorem. It turned out that
even though normality and countable paracompactness of X are necessary
(and sufficient) for the normality of the product X X I, only normality of
X suffices to ensure rectangular normality of X X I. More generally, the
following theorem holds:

1.1. THEOREM [Mo, S2, Mi). Products of normal spaces with locally
compact metric spaces are rectangularly normal. O

In this paper we prove the converse of this Theorem by showing that
there exists a normal space X whose product with a metric space M is
rectangularly normal if and only if M is locally compact (Example 2.5). In
particular, X is a normal space whose product, X X Q, with the space of
rationals Q is not rectangularly normal. This answers a question raised by
E. Michael.

The existence of the above space X is a consequence of Theorem 2.4,
which states that X X M is rectangularly normal for some non-locally
compact metric space M if and only if X is countably functionally Katétov
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(see the definition in §2), and the existence of a normal space which is not
countably functionally Katétov ([PW]; Example 3).

Other related results are proved; in particular, we give an example of
a normal space X and a countable metric space M with one non-isolated
point, whose product X X M is not rectangular in the sense of B. A.
Pasynkov [Pa, Pa2].

For all the undefined notions the reader is referred to [E]. For a
cardinal number k, we denote by J(k) the hedgehog with « spikes, 1i.e.
J(k) = {0} U {(a,t): «a €k and 0 <t =<1}, where points (a, ) have
basic neighborhoods of the form {{a,t): t — 1/n<t'<t+ 1/n},n=
1,2,..., and the point # has basic neighborhoods of the form

B(n)= {0} U {{(a,t):a Exandt < 1/n}.

By Jy(k) we denote the closed subspace {6} U {(a,1/n): a EKk, n =
1,2,...} of J(k). One can easily see that every non-locally compact space
contains a closed copy of Jy(w).

A subset of a space is an F, subset if it is a union of < k closed sets. A
subset 4 of a space X is C-embedded (C*-embedded) in X if every
continuous function f: 4 - R (f: A - I) can be continuously extended
over X. We say that a covering {W,} s of X is an extension of a covering
{G,},es of its subspace 4 if W, N A = G, for all s € S.

2 Rectangular normality of products. We will deduce our results
from Proposition 2.2 below. In its proof we will use the following result
due to E. Michael (see [S2]):

2.1. THEOREM ( Michael). If F is a closed subset of a metric space Z and
X is any space, then X X Fis C-embedded in X X Z. O

We remark that an analogous theorem holds for compact spaces Z
[S2], but is false for paracompact p-spaces [Wa].

2.2. PROPOSITION ( Main). For a cardinal number « and a closed subset
F of a normal space X the following conditions are equivalent:
(1) F X J(k) is C-embedded in X X J(k);
(it) F X Jy(k) is C-embedded in X X Jy(k)
(iii) every countable locally finite covering of F by open F, subsets can be
extended to a locally finite open covering of X.

Proof. The implication (i) = (ii) is an obvious consequence of Theo-
rem 2.1 and the fact that Jy(x) is a closed subspace of J(k).
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(ii) = (iii). Suppose that {G,}>-, is a countable, locally finite covering
of F by open F, subsets. Hence there exist zero sets F, , in F such that

G,=UF,,
a<K
and continuous functions f, ,; F—1I such that f, (F,,) C {1} and
fo.o F\G,) C {0}. Define a function f: F X Jy(k) — I as follows:

0, itz=0
flx,2) = {fn,a(x), ifz=(a,1/n).

The function fis continuous. Indeed, if x, € F then there exists an ny < w
and a neighborhood ¥; of x, such that ¥, N U, G, = @, and therefore
f(x,z) =0 for all {x, z) in V; X B(n,). By (ii) there exists a continuous
extension f: X X Jy(k) - I of f onto X X Jy(k). Define

G = {x € X: |f(x,z) — f(x, 8)|> 3/4 for some z € B(n)}
= U {xex:|f(x,z) = f(x,0)]>3/4}.

zEB(n)
Clearly, the sets G} are open in X. We will prove that the family {G}} is
locally finite in X and that G, C G;.
Suppose that x, € X. By the continuity of f, there exists a neighbor-
hood ¥, of x, and an n, such that

f(Vo X B(no)) - (f(xo,ﬂ) — 4, f(xo,ﬂ) + %)

and therefore ¥, N U, G* = @, which implies that the family {G};,
is locally finite. Suppose now that x, € G,. There exists an a < k such
that x, € F, , and, consequently, f(x,,(a,1/n))=f (x,) =1, but
f(xqy, 8) = 0, which implies x, € G}.

The covering {G}*},.,, where G¥* = G, U (G*\ F) for n > 1 and
G¥* =G, U (X\F), is obviously a locally finite open extension of
{Gn}:to=l'

(iii) = (1). Suppose that f: F X J(x) — I is continuous. (For the sake
of simplicity we assume that f is bounded; the proof for an unbounded f
differs only inessentially, but is technically more complicated.)

It suffices to show that there exists a continuous function 4: X X J(k)
— I such that f7'(0) CA7'(0) and f (1) C A~'(1). Since the space
J(k)\{0} is locally compact, by Theorem 1.1 there exists a continuous
function g: X X (J(k)\{0}) = I extending ft F X (J(x)\{0}). There also
exists a continuous function g,: X - I such that {x € F: f(x,0) <1} C
g5 '(0) and {x € F: f(x,0) = 3} C g, '(1).
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Foreveryn = 1,2,..., let
G,= {x € F: |f(x, z) — f(x, 8)|> %, for some z € B(n)}.

As above, one easily shows that the family {G,} is locally finite, decreas-

ing and consists of open F, sets. By (iii) we can find a locally finite family

{Gyx} of open subsets of X such that G N F = G, foralln = 1,2,....
Foreverya <kandn = 1,2,..., define

K, .= {x € F:|f(x,2) = f(x,0)| =4,
for some z € {a} X[1/(n + 1),1/n]}.

Clearly, K, , C G, and since the set {a} X [1/(n + 1),1/n] is com-
pact in J(k), one easily checks that the sets K, . are also closed. Let
F,,= U, K, ,. The sets F, , are decreasing, closed and F, , C G,. The
closedness of F, , follows from the local finiteness of {G,} and the
inclusion X, , C G,.

We define:
*® 1 1
F= U (R @ X5 )
% 1
— *
G, nL:Jl (G,, X {a} x(n+2,0”,
F: U Fa’
a<k
¢= UG,
a<k

One easily sees that the sets F and G are, respectively, closed and
open in X X (J(k)\{0}), and F C G. Using Theorem 10 in [Mi] it is not
difficult to construct a continuous function ¢: X X (J(k)\{6}) — I such
that (F) C {1} and ¢~ '((0,1]) C G.

Let h: X X J(k) — I be defined as follows:

h(x.z) = {go(x), ifz=246

o(x,z) g(x,z)+ (1 —9¢(x,2)) - g(x), ifz# .

Clearly h is continuous at all points of X X (J(k)\{€}). We shall
show that % is continuous at all points (x, 8), x € X. Let x, € X. There
exists an n, and a neighborhood Uj, of x, such that f, N U, ., GF = &.
Therefore, if x € U, and x € B(n, + 2)\{0}, then (x,z)& G and
¢(x, z) = 0. Consequently, A(x, z) = g,(x), which implies continuity at

(%0, 0).
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It remains to show that f~'(0) C 2~ '(0) and /(1) C A~ '(1).

Suppose that f(x, z) = 0. If z = 6, then clearly g(x, z) = 0. Assume
z # 0. There are two cases. Either, |f(x, z) — f(x, 6)|< 3% in which case
f(x,60) <%, go(x) =0 and, consequently h(x,z) =0, or |f(x,z)—
f(x,0)|= 3%, in which case (x,z)E F, ¢(x,z) =1 and consequently
hix,z)=g(x,z)=f(x,2)=0.

The proof for f(x, z) = 1 is similar. This completes the proof of the
Proposition. O

REMARK. It follows from the above proof that in statements (i) and
(i1) C-embedding can be replaced by C*-embedding. O

The notions of a countably Katétov and countably functionally
Katétov space were defined in [PW] in answer to questions raised by M.
Katétov in 1958. It turns out that these notions are closely related to
rectangular normality.

DEFINITION. A normal space X is countably ( functionally) Katétov if
every countable locally finite open (cozero) of any closed subspace can be
extended to a locally finite open covering of X. O

Normality and countable paracompactness implies countably Katétov;
countably Katétov implies countably functionally Katétov, which implies
normal, but none of these implications can be reversed [PW].

2.3. THEOREM. The following conditions are equivalent for a topological
space X:

(1) X X J(k) is rectangularly normal for every k € Card,

(11) X is countably Katétov.

Proof. Implication (i) = (ii) follows immediately from Proposition 2.2.
The implication (ii) = (i) follows from Proposition 2.2 and Theorem
2.1. |

2.4. THEOREM. The following conditions are equivalent for a topological
space X:
(1) X X J(w) is rectangularly normal,
(1) X X M is rectangularly normal for some non-locally compact metric
space M
(iii) X is countably functionally Katétov.
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Proof. The implications (i) = (ii) is obvious. If (i) holds then M
contains a closed copy of Jy(w) and therefore also X X Jy(w) is rectangu-
larly normal, which in view of Proposition 2.2 implies (ii1). The implica-
tion (iii) = (1) follows from Proposition 2.2 and Theorem 2.1. O

The following example answers positively a question raised by E.
Michael.

2.5 ExaMPLE. There exists a (collectionwise) normal space X such that
the product space X X M with a metric space M is rectangularly normal if
and only if M is locally compact.

In particular, X X Q is not rectangularly normal.

Proof. By [PW] there exists a collectionwise normal space which is not
countably functionally Katétov, hence it suffices to apply Theorems 2.4
and 1.1 O

2.6. EXAMPLE. (V' = L). There exists a Dowker space X such that
X X J(k) 1s rectangularly normal for every k € Card.

Proof. By [PW], under V = L there exists a Dowker countably
Katétov space. a

It would be interesting to characterize the class of spaces X such that
X X M is rectangularly normal, for every metric space M (see [P]). The
author believes that there exists a Dowker space in this class. The
existence of such a space would even more strongly underscore the
difference between normality and rectangular normality of products. For
information on this and related matters the reader is referred to [P] and
[Wa].

3. Rectangular products. In [Pa, Pa2] B. A. Pasynkov introduced
the notion of a rectangular product and proved that for rectangular
products dim( X X Y) =< dim X + dim Y. A product space X X Y is rect-
angular if every two-element cozero covering of X X Y has a o-locally
finite refinement consisting of cozero rectangles, i.e. sets of the form
U X V, where U and V are cozero subsets of X and Y, respectively.
Pasynkov proved that every normal product X X M, with M metric, is
rectangular. On the other hand, the following example shows that even the
product of a countable metric space and a normal space need not be
rectangular. For related examples, see [HM] and [Wg].
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3.1. ExaMPLE. There exists a (collectionwise) normal space X and a
countable metric space M with one non-isolated point such that X X M is
not rectangular.

Proof. By [P2] there exists a collectionwise normal space X and a
countable locally finite family {G,};-, of its cozero subsets such that there
is no locally finite family {W,}:>, of open subsets of X such that
G, C W, foreveryn =1,2,.... Let M = J(w).

Define a continuous mapping f: X X M — I as in the proof of the
implication (ii) = (iii) in Proposition 2.2, for F = X and k = w. If X X M
were rectangular, then there would exist a o-locally finite refinement
(U, X V,: s € S} of the cozero covering { ([0, %)), /~'((3, 1])}, consist-
ing of cozero rectangles. For every n = 1,2,... define

H,= U {U:s€ Sand B(n) C V,}.

Since the family {U,: s € S and B(n) C V,} is o-locally finite for every n,
the sets H, are cozero subsets of X and obviously the family {H,} is
increasing and U?_ H, = X.

We claim that for every n the sets H, and G, are disjoint. Indeed, if
x, € H, then for some s € S we have x, € U, V, D B(n) and either
U XV,Cf0,2)or UXV,Cf 3 1). Butif x, € G,, then x, €

* = {x € X: |f(x,z) — f(x,0)|> 3, for some z € B(n)}, which is im-

possible.

Let 4, ,, m=1,2,..., be open sets such that H, = U’_ 4, , and
A, niy DA, Clearly we can also assume that 4,,, , D 4, , for all n,
m. The sets

W, = X\4,,
are clearly open, G, C W, and the family {W,} is locally finite. This
contradiction completes the proof. O
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