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WHITNEY STABILITY OF SOLVABILITY

JOHN K. BEEM AND PHILLIP E. PARKER

The set of symbols which are both of real principal type and
pseudoconvex is shown to be open in the Whitney topology on the space
of symbols of order k. This yields sufficient conditions for the stability of
solvability of pseudodifferential equations.

1. Introduction. In a previous paper [3] we studied the stability of
solvability for pseudodifferential equations of real principal type in the
FS> topology of Michor [9] and in an analogous topology we defined, the
FSf topology. In particular, we considered the stability of real principal
type and of pseudoconvexity in the space of principal symbols of order k.
These two conditions together imply solvability and hence their stability
implies stability of solvability where the conditions hold.

We say that a condition is stable for a given topology if the set where
the condition holds is an open set in that topology. A condition is stable
at a point if it is satisfied on an open neighborhood of that point. Of
course, stability in one topology implies stability in all finer topologies. In
the present paper we consider the stability of real principal type and of
pseudoconvexity in the Cr-coarse and Cr-fine topologies on the space of
principal symbols of order k.

In §2 we first review the C'-coarse and C-fine topologies. We then
give examples showing that neither real principal type nor pseudoconvex-
ity is stable in the Cr-coarse, r > 0, or C°-fine topologies, and that real
principal type is not stable in any Cr-fine topology.

In §3 we first outline and then give the complete proof of Whitney or
Cr-fine, r > 1, stability of real principal type and pseudoconvexity jointly.
This establishes the Cr-fine stability of solvability of a pseudodifferential
equation with a corresponding principal symbol which is both of real
prinicpal type and pseudoconvex.

In §4 we consider pseudoriemannian manifolds (X, β) of dim > 3. If
β is given contravariantly, then β is naturally a principal symbol of order
2. We begin §4 with some new results on sectional curvature. In general,
everywhere negative timelike sectional curvature is not a Cr-fine stable
condition for any r > 0. However, if the Riemann-Christoffel curvature R
satisfies a nonvanishing requirement on all timelike and null planes, then
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we show everywhere negative timelike sectional curvature is C2-fine
stable. Using this result and some results from [3] we finish §4 with some
applications of Whitney stability.

Most of our notations and conventions are standard, and are the same
as in [3]. Except in part of §4, we regard a pseudoriemannian structure
tensor β as given in contravariant form (i.e., as a (2,0) tensor). $ denotes
the real valued smooth functions, 3> those with compact support, and
Smblr the principal symbols of order r. Manifolds are smooth, paracom-
pact, connected, and usually noncompact.

2. Topologies and instability. In this section we discuss the Cr-
coarse and Cr-fine topologies for r > 0. References to FQ and FSf
topologies will be for comparison only, and we refer the reader to [3] for
details. We shall give examples to show that real principal type is neither
C'-coarse nor Cr-fine stable for r > 0, and that pseudoconvexity is neither
C-coarse, r > 0, nor C°-fine stable.

First we consider the Cr-coarse or Schwartz Cr topology. Intuitively,
this is the topology of uniform convergence of the function and its
derivatives up through order r on compact sets. Let {Ki} be a countable
family of compact sets in X such that Ki c Ki+1 and X = UKr Choose
any compatible fiber metric dr on Jr( X) and define seminorms

^.(φ):= sup supdk(jx

k(φ),0x).
k<r K;

This defines a vector topology on S which makes it a nuclear Frechet
space. The usual Schwartz or C°°-coarse topology is the union of all these
Cr-coarse topologies.

The other main topology is the Cr-fine or Whitney Cr topology.
Whereas the Schwartz Cr topology gives no control of the convergence at
oo, the Whitney Cr topology gives arbitrary amounts of such control. In
doing so, however, it is no longer a vector topology on S\ thus it cannot be
described in terms of seminorms. To compare these topologies, recall that

j r : S'-> C(X, Jr(X)). Now on the latter space we can place either the
compact-open or the graph topology. Via j \ these induce the Schwartz,
respectively Whitney, Cr topology on S\ see [9] or [11] for details. In terms
of a fiber metric dr on J\X), we can describe the Whitney Cr topology as
follows. Let ε e C(Jf,(O, oo)); then

JT(φ, r, ε):= {ψG^; dr(jrφ9 jrφ) < ε)

is a Whitney Cr neighborhood of φ, and as ε varies we obtain a basis of
Whitney Cr neighborhoods of φ. Later we shall also need a local version
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of these neighborhoods. In addition to the above data, let V c X be open
and define

Λ ^ φ , r, ε, V):= { ψ G ^ ; dr(jrφ9 /ψ) < ε on V}.

When F = X w e shall omit it from the notation to coincide with the first
definition. For convenience, we allow the following abuse of notation: if X
is a bundle over Y, then Fmay be a subset of Y and "on V" is replaced
by "over V".

If we define F2)r and FSfr topologies by analogy, then we can list all
four in order from coarsest to finest:

Schwartz Cr, FSTr, Whitney C\ F®r.

Thus C'-coarse stability => F5?r stability => Cr-fine stability => F3ιr

stability.
Since principal symbols are positive homogeneous in the fiber varia-

bles, the obvious Cr topologies on them are discrete. Thus we shall modify
them as in [3] to take homogeneity into account. Letting h be an auxiliary
complete Riemannian (positive definite) metric on X, a symbol is com-
pletely determined by its order of homogeneity k and its restriction to the
λ-unit cosphere bundle S*X. Thus, given k, there is a bijection /:
<?(S*X) -> Smbl^(X) between the smooth functions on S*X and the
space of principal symbols of order k. We shall say that a set U c
Smbl^X) is open in a Cr topology iff the corresponding set I~\U) c
#(S*X) is open in that Cr topology on #(S*X).

We now proceed with the examples mentioned above and to which we
referred in [3].

EXAMPLE 2.1. Real principal type is not Cr-fine stable, r > 0. Here we
use the example following Proposition 3.2 in [3]. For the convenience of
readers, we repeat the essential parts here. Let Xo be the open Mobius
strip {(x, y)\ — o c < x < o o , 0 < j < 4 } with the identification (x,0) ~
( —JC,4) and the metric tensor gQ = ^ 2 (i.e., ds2 = dxdy). The bichar-
acteristic curves of g0 lie on the null geodesies of g0 which are the
Euclidean linesy = const, and the circles |JC| = const. The manifold X will
be Xo less the two closed half lines Lx = {(x, 1); x < 0} and L2 = {(x, 3);
x > 0}. The metric tensor on X will be g = go\X. The Lorentzian mani-
fold (X, g) has no imprisoned null geodesies and hence g is a symbol of
real principal type. On the other hand, any Cr-fine neighborhood U(g) of
g in Smbl2(X) will contain some gr which has a periodic null geodesic.

EXAMPLE 2.2. Real principal type and pseudoconvexity are neither
jointly nor separately C°-fine stable. Let X = R4 with the pseudoeuclidean



14 JOHN K. BEEM AND PHILLIP E. PARKER

structure β:= £x

2 4- ξj - £f - ξj. Notice that the plane Π = {xι = x\
x2 = jc4} is totally null; hence any curve of the form (γ1? γ2, γ l5 γ2) is null.
The Hamiltonian vector field of β is

which has solution curves

Y l(/) = {2cxt + β l , cx)

γ 2 ( 0 = (2c2ί + a2, c2)

in induced cotangent coordinates (x, ξ). If we choose cλ = — c3, c2 = c4,
ar = a3, and a 2 = α4, then the curve

γ ( 0 = (2ctί + α l 5 2c2t + a2, 2cλt + aλ, 2c2t + a2, cα, c2, -cx, -c2)

is a bicharacteristic strip.
Let ε: R4 -• (0, oo) define a C°-fine neighborhood jV(β,0, ε) of β

and let ε': R2 -> (0, oo) be a continuous function such that

0 <ε'(x\x2)

< inffείx1, x\ x\ x4) \(x\ x\ x\ x4) -(x 1 , x\ x\ x2)\ < l},

where | | denotes the usual Euclidean norm in R4. Intuitively, ε' is smaller
at points in R2 than ε is at all points within distance 1 of the correspond-
ing points of Π c R4. Now choose any Riemannian (positive definite)
metric g e .yΓ(go,O, ε'), where g0 is the usual Euclidean metric on R2.
Regard Γ*Π = R2 Θ R2 and define jS/ = g θ ( - g ) o n JΓ*Π. Then on Π,

Finally extend β' from Π to R4 with β' G JΓ(β, 0, ε).
Example 5.1 of [2] can now be modified to show that g can be chosen

so that β' is not of real principal type and so that R4 is not β'-pseudocon-
vex. We change g0 on small discs centered at (1,0), (0,1), and (0, — 1) so
that a closed geodesic joining these three points is introduced, and then
change g0 on small discs Dk centered at (k, 0) for k = 2,3,4,..., so that
geodesies from (0, -1) to (0,1) are introduced which pass through each
Dk. To complete our description of g, we declare that outside these discs
the geodesies are the usual straight lines. It follows that we can produce a
desired β' which is C°-fine close to /?, but not C1-fine close.
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EXAMPLE 2.3. Real principal type is not Cr-coarse stable, r > 0. Let
X = R3 and η the usual Minkowski structure. For any compact K c R3,
let Bκ be a closed Euclidean tube centered on the f-axis which contains K
in its interior Bκ. Choose ψ e <f(R3) such that:

1. ψ = 0 outside Bκ\
2. ψ = 1 on a closed tube which contains K;
3 . 0 < ψ < l ;
4. ψ is a function of r only, and is nonincreasing.

We are using cyclindrical coordinates (t, r, θ) where r is the Euclidean
distance from the /-axis. For our symbol β, we choose the line element

ds2 = ψ(dt2 - dr1 - r2dθ2) + (l - χp)(dtdθ - dr2 - r2dθ2).

By adjusting the size of Bκ relative to { ψ = 1} and the derivatives of ψ in
between, we can produce such a β in any Cr-coarse neighborhood of η. β
is not of real principal type, since it has closed null geodesies outside Bκ.

EXAMPLE 2.4. Pseudoconvexity is not Cr-coarse stable, r > 0. This is
obtained by using a cut-off function as in Example 2.3 to modify Example
2.2; we omit the straightforward details.

3. Whitney stability. In this section we consider the stability of real
principal type and of pseudoconvexity in the C1-fine (Whitney) topology.
Let p be a principal symbol of order k > 0 which is of real principal type
and psuedoconvex. We show that all principal symbols of the same order
k which are sufficiently close to p in the C -̂fine topology are also of real
principal type and pseudoconvex. Thus the set of principal symbols which
are both pseudoconvex and of real principal type is open in the space of
principal symbols using the C1-fine topology.

We always assume the manifold X is not compact because no symbol
is of real principal type of a compact manifold. Also, pseudoconvexity is
trivially true for symbols on compact manifolds.

Examples 2.1 and 2.2 show that the conditions of real principal type
and pseudoconvexity fail to be C°-fine stable. The fact that real principal
type fails to be stable in the Cr-fine topology for all 0 < r < oo (cf.
Example 2.1) is somewhat surprising since the bicharacterics come from
the Hamiltonian vector field Hp which only involves the first derivatives
of p. One would expect a priori that real principal type would be C1-fine
stable.

The basic tool used in establishing the C1-fine stability of the two
conditions jointly is a standard estimate from differential equations [4, p.
155]. This result implies that when p and p' are principal symbols of the
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same order k which have values and first derivatives which are close on
the unit cosphere bundle S*K of some compact K c X, then bicharacter-
istic curves of Hp and Hp will remain close in K for some compact
domain [0, a] provided that the initial values of the corresponding bichar-
acteristic strips are chosen close. The idea is to use pseudoconvexity to
construct an expanding sequence {An} of compact sets: at each step, take
the pseudoconvex hull of the preceding step; this has compact closure by
pseudoconvexity; finally, enlarge it if necessary to enclose a suitable
neighborhood of the previous step. Then use the differential equations
estimate above and real principal type to choose a corresponding sequence
{εn) of positive numbers: intuitively, εn measures how far/?' can be from
p on An and still be of real principal type and pseudoconvex. The pairs
{An, εn} determine Cx-fine neighborhoods of/?, any one of which will
serve. The actual construction is more complicated because we must keep
careful track of the bounds in order that they interweave properly. In
Lemma 3.1 we show how to achieve all but one necessary bound in a
uniform manner in the index n. We then choose a neighborhood, and
obtain the other necessary bound in Lemma 3.2. Finally, Theorem 3.3
assembles the parts.

We now begin the technical details. Recall that the space of principal
symbols of order k is denoted by Smbl^X). If yλ and γ2 are two complete
bicharacteristic strips of p e Smbl^(Z) with γ^O) = (x, ξ) and γ2(0) =
(JC, λ£) for some positive constant λ (i.e., γx and γ2 start over the same
x e X and in the same codirection), then the bicharacteristic curves π ° γx

and m ° γ2 only differ by a reparametrization. Thus for our purposes it is
sufficient to consider only one bicharacteristic curve for each codirection
at each point x e X.

As in §2, let h be an auxiliary complete Riemannian metric on X and
use it to topologize Smbl^(X) with the Cx-fine topology from <$(S*X).
The metric tensor h induces a complete metric distance function dh on X.
The Sasaki lift of h to T*X induces a distance function on Γ* X and the
restriction of this distance function to the h-urάt cosphere bundle will be
denoted by d0. There is also an induced distance function on Jr(S*X)
which will be denoted by dr. As in §2, we use J^(φ, r, ε, V) to denote a
basic Cr-fine neighborhood of φ over the set V. Hence,

, r, β, V) = {ψ

foraU(jc,{) e S*V}

where ε: S*V -» R is a continuous positive valued function, φ e &(S*X),
and VQX.



WHITNEY STABILITY OF SOLVABILITY 17

The distance function d0 may be used to recover the topology on the

cosphere bundle S*X. The open balls of S*X are given by B(υθ9 8) =

{v G S*X; do(v, υ0) < 8} where υ0 G 5*Xand δ > 0 are arbitrary.

The bicharacteristic equations for the principal symbol p involve the

first derivatives of p with respect to xt and ξi9 but no higher order

derivatives. Thus, if γ: [0, a] -> T*x is a fixed bicharacteristic strip ofp in

T*X with γ(0) = υ0 e 5*X and if γ: [0, Λ] -» Γ*X is a bicharacteristic

strip of/?' with γ(0) = v, then dΛ(τ7 o γ(/) ? n- © γ(*)) < 1 for all 0 < t < a

provided that υ is chosen sufficiently close to v0 and that p' is sufficiently

close to p in the C1-fine topology. Using this fact and the compactness of

S*Kλ when Kx is compact, we obtain the following lemma.

LEMMA 3.1. Assume Kx is a compact set contained in the interior of the

compact set K2. Let V be an open set containing K2 and let p be a symbol in

Sϊήb\k{X) which is of real principal type. There exist cotangent vectors

vl9... 9υm G S*Kλ and positive constants δ l 9 . . . ,δ m , av... 9am9 ε such that if

p' G Jf(p91, ε, V) then the following hold:

1. ifγ is a complete bicharacteristic strip ofp with γ(0) e B(vi9 8t)9 then

π o γ([0, aJ) c Vandττoy{ai) e F\.K:2;

2. // γ i5 a complete bicharacteristic strip of pf with γ(0) G ^ ( ^ , , δ,-),

rΛe« 77 © γ([0, α.]) c Vandπ<> γ( f l .) G F \ # 2 ;

3. ίwί? complete bicharacteristic strips γ αwJ γ 6>//? and p\ respectively,

with γ(0), γ(0) G 5(y / ? δf) 5αto^ ^Λ(ττ o γ(^)9 77 o γ(/)) < 1 /or all 0 < t <

If Λ:0 G JΓ and 4̂ is some subset of X, then the dh distance from x0 to

4̂ is given by dh(x0, A) = inf{ dh(x0, y)\y ^ A). Using dh we now define

an increasing sequence Aθ9 Al9 A2,..., of compact sets which exhausts the

/7-pseudoconvex spaceX. FixingxQ G X, letA0 = {x0} andAλ = {x G X;

dh(x0, x) < 2}. If yl0, τ4 1 ?... ,^4n have been defined, let ^4n + 1 be a compact

set containing the pseudoconvex hull of An with dh(x, X\An+ι) > 2 for

all x G ^4n; i.e., if γ: [Λ, έ] -> M is a segment of a bicharacteristic strip of

p in Γ * ^ with both endpoints 77 ° γ(«), 7r © γ(6) G ̂ 4n, then 77 © γ|[α, Z>]

hes in the interior of An+ι. [The pseudoconvexity of p impUes that the

sequence { A n} may be constructed.]

We now construct a sequence {εn} of monotonic nonincreasing

positive constants. Let ε_3 > 0 and let ε_2 be the minimum of ε_3 and the

ε of Lemma 3.1, using Kλ = Al9 K2 = A5 and V = interior (A6). Assume

p' G JΓ(p91, ε, F) and υ0 G S * ^ . If γ and γ are bicharacteristic strips of
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p and/?', respectively, with v0 = γ(0), γ(0) e B(υi9 δ, ) then by Lemma 3.1

both π°y(ai) and 7r°γ(α ) lie in A6\A5 for some at. Furthermore,

dh(π © y(t), π o γ(/)) < 1 for all 0 < t < at. Using this fact and the fact

that any bicharacteristic strip γ of p with π © γ ( ^ ) , π °y(t2) ^ A2 must

satisfy TΓ © γ([ί1 ? ί2]) c yί3, we find that any bicharacteristic γ of p' which

satisfies m © γ([0, Z>]) c A59 π © γ(0) e Al9 and 7r © γ(/>) G y41 must also

satisfy TΓ © γ([0, ft]) c A4.

Assume now that ε_ 3 ,ε_ 2 , . . . ,ε r t _ 3 have been defined. Let εn_2 be the

minimum of εn_3 and the ε of Lemma 3.1 using Kλ = -4W + 1, K2 = An + 5

and V = interior(^4n+6). Recursively, this defines the sequence {εn}. Let

δ: X -> R be a positive valued continuous function such that δ(x) < εn

for eachx e An\An_v

LEMMA 3.2. Assume p is of real principal type and pseudoconvex, and let

p' e JΓ{p, 1, 5, Ύ). Ify:(a,b)-+ T*X is a complete bicharacteristic strip

of p', there do not exist values a < tx < t2 < t3 < b with π © γ(/1) G An,

π o y(t3) e An andπo y(t2) e ^ r t +

Proof. We may assume without loss of generality that π © γ|[fl5 r3] c

^4 r t + 4\y4w_ 1 and that γ(^) e ιSMw. Let γ be a complete bicharacteristic

strip of the original symbol p with γ ^ ) , γ(*i) G ^(^/? δ, ) a s i n (3) of

Lemma 3.1. Then by the above construction of δ the inequality

dh(iroy(t)91Γoy(t)) < 1

must hold for all tx<t< t3. Consequently π © γ(/1) and m © γ(/ 2) both lie

in v4w+1. The construction of the sequence {At} yields <ττ°yi[t1, t2]) c

v4w+2. The inequality dΛ(ττ © γ(/ 2), TΓ © γ(ί 2 )) < 1 n o w yields TΓ © y(t2) G

4̂ π + 3 , a contradiction. D

This lemma shows that one cannot have a segment of some bichar-

acteristic curve TΓ © γ of p' which leaves An, reaches An+4, and then returns

to An. Consequently, a complete bicharacteristic curve TΓ © γ of p' which

leaves An and goes to An+4 must eventually reach An+5 after at most

returning to An+V

We now establish the stability of pseudoconvex symbols of real

principal type by showing that the set of all symbols in Smbl^X) which

are both pseudoconvex and of real principal type is an open set in the

C1-fine topology.

THEOREM 3.3. let p G Symblk(X) for k > 0 be a pseudoconvex symbol

of real principal type. Then there is some Cλ-fine neighborhood U(p) c

Smblk(X) such that each p' e U(p) is both pseudoconvex and of real

principal type.
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Proof. Let δ, {An}9 εn, etc. be as above and set U(p) = JΓ{p, 1, δ, X).
In order to prove/?' e £/(/?) is of real principal type, let γ: {a, b) -> Γ*X
be an arbitrary complete bicharacteristic strip of pf. Define m to be the
smallest integer such that the image of π ° γ intersects Am and assume
without loss of generality that y(t0) e SM m . The definition of εm yields
T Γ o γ ί ^ ) ^ A m + 5 \ A m + 4 f o r s o m e tι>t0. C h o o s e t[^[to,tλ] w i t h

7r °γ(*ί) e Am+1. Lemma 3.2 and the definition of εm+1 yields some
t2 > t[ with 7r°γ(/2) ^ Am+6\Am+5. Recursively, one may construct a
sequence {tn} with ίΛ -> b~ and ττ°γ(O e Λ W + 4 + Λ ^ + 3 + * Hence/>'
is of real principal type.

It only remains to show that each p' e U(p) is pseudoconvex.
Choose an arbitrary compact subset K of X. If K Q An, then Lemma 3.2
implies that any bicharacteristic curve of pf with endpoints in K must be
in the compact set A n+4. D

Using the fact that the metric tensor of a Lorentzian manifold is the
principal symbol of the d'Alembertian D, we obtain the following corollary
which guarantees the C^fine stability of solvability of the Klein-Gordon
equation at Lorentzian metrics which are both of real principal type and
psuedoconvex.

COROLLARY 3.4. Let (X, β) be a Lorentzian manifold such that β is
both of real principal type and pseudoconvex. There is a Cι-fine neighbor-
hood U(β) of β in the space Lor( X) of all Lorentzian metrics on X such that
for each β' e U(β) the Klein-Gordon equation is solvable on (X, βf).

If (X, β) is a Lorentzian manifold, the bicharacteristic curves of /? are
the null geodesies of β and β is of real principal type iff each (inextendi-
ble) null geodesic fails to be imprisoned. On the other hand, β may be of
real principal type and contain a null geodesic which is partially impri-
soned in some compact set /. This geodesic will have noncompact closure,
but leave and return to K an infinite number of times. Of course, if β is
both of real principal type and pseudoconvex, then partial imprisonment
of null geodesies cannot occur. Theorem 3.3 implies that if β satisfies both
of these conditions, there is a C -̂fine neighborhood U{β) such that each
βf e U(β) fails to have any partial imprisonment of null geodesies.

4. Applications. We begin with some new results on sectional
curvatures in pseudoriemannian manifolds (X, β) of dim > 3. If Π is a
plane in some fiber of T*X, we denote its sectional curvature by
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In general, Kβ is well-defined only for nondegenerate planes; when Π is

degenerate, Kβ is "singular" [1, p. 409]. Kulkarni [8] showed that if Kβ is

bounded below or above for all nondegenerate planes at JC e I , then X

has constant curvature at x. Several other boundedness conditions which

imply constant sectional curvature have also been obtained [5; 6; 10].

Generically, |A^(Π)| -> oc as Π approaches a degenerate plane.

Let x e X and consider the Grassmann varieties of planes in T*X

and TXX9 denoted by G2(T*X) and G2(TXX) respectively. We frequently

refer to degenerate planes as null planes, and denote them by n2{T*X)

and n2{TxX). It is easy to check that n2 is a codimension 1 sub variety of

G2 at each x. The varieties G2 fit together to form the Grassmann bundles

G%(X) and G2(X) and Kβ is a rational function on G%(X), or on G2(X)

if we change from β to the more usual covariant β. Viewed this way, Kβ

has poles at almost all null planes; more precisely, in each fiber Kβ has

poles at all null planes except for at most a codimension 2 subvariety.

Consider R P 1 = RU{oo}, where one may regard this as the result of

identifying + oo and - oo in the extended real numbers. If Π o is a pole of

Kβ we set ^ ( Π Q ) = O O G RP1. If Π o is a plane (necessarily null) such

that Kβ(U) does not converge in R P 1 as Π -> Π o , we say that Kβ is

indeterminate at Π o or that Π o is an indeterminate plane. At each inde-

terminate plane the sectional curvature corresponds to the indeterminate

type 0/0.

We now temporarily adopt the more traditional viewpoint and work

in the tangent bundle TX with the covariant tensor β. Then for Π e G2( X)

spanned by u and υ9

K (Π) = R(u9υ9u9υ)
β β(u,u)β(v,v)-β(u,v)2'

where R denotes the Riemann-Christoffel curvature tensor. Now

R(u, υ, w, υ) depends on the particular choice of u and υ9 but its sign

depends only on the plane Π spanned by u and υ; in particular, it makes

sense to say that R vanishes or is nonvanishing at Π. An indeterminate

plane is always a null plane where R vanishes; however, there are null

planes where R vanishes which are not indeterminate.

For completeness and the convenience of the reader, we include the

following standard result; the proof is straightforward.

LEMMA 4.1. Each pseudoriemannian metric β on X has a C°-fine

neighborhood in Smbl2( JQ which contains only pseudoriemannian structures

of the same signature.
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Let 7r denote the natural projection G2( X) -» X.

LEMMA 4.2. Let K c G2(X) be a compact set on which R is nonvanish-
ing. If W is an open neighborhood of π(K) then there exists an open
neighborhood V of K and ε > 0 such that if β' e Jf(β, 2, ε, W) then the
Riemann-Christoffel curvature tensor R' of βr is nonvanishing on V.

Proof. By way of contradiction, suppose not. Then there exist se-
quences εn -> 0+, planes Πw -> Π e K, and structures βn -> β with βn e
JΓ{β,2, εn, W) such that the curvature tensor i?n of /?„ vanishes at Un.
Let w and v span Π and choose sequences un-+ u and ϋΛ -> y such that wrt

and t>nspan Π n for each n. Thus 0 = Rn(un, υn9 un, vn) -» i?(w, v9 u, v)
Φ 0. Π

We now show that the nonvanishing of R on a closed C c G2(X) is a
C2-fine stable property.

LEMMA 4.3. IfCQ G2(X) is closed with π(C) = X and R nonvanishing
on C, then there exists an open neighborhood V of C and a C2-fine
neighborhood U(β) in Smb^ί^) such that the Riemann-Christoffel tensor
R' of β' is nonvanishing on Vfor each βf G U(β).

Proof. Let {Lt} be a locally finite compact covering of X and set
Kt = π~\Li) Π C. Since G2(Z) has compact fibers and C is closed, it
follows that each Kt is compact. Using Lemma 4.2, we obtain a locally
finite collection { Vi} of open sets with Kf c Vi and positive numbers {ε,}
such that if β' e JΓ(β^2, εz, ττ(F))) then its curvature tensor Rr is non-
vanishing on Vi for each ι. Choosing a continuous ε: X -> (0, oo) such that
ε < ε, on ττ(F ), letting C/(>S) = >Γ(i8,2, ε), and setting V=UVi9 the
result follows. D

In general, negative timelike sectional curvature need not be a Cr-fine
stable condition for r > 0. Indeed, if (JΓ, β) is a model space form of
constant curvature (e.g., de Sitter space, Minkowski space, or anti-de
Sitter space, in the Lorentzian case), then each Cr-fine neighborhood
U(β) contains β' such that the image under Kβ, of the timelike planes is
all of R. On the other hand, we can use the Riemann-Christoffel curvature
tensor R to describe manifolds for which the condition of negative
timelike sectional curvature is C2-fine stable. Let t2(TxX) denote the set
of all timelike planes in TXX, and define the bundles t2(X) and n2(X)
analogous to the definition of G2( X).
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LEMMA 4.4. // R is nonυanishing on t2(X, β) U n2(X, β) then there
exists a C2-fine neighborhood U(β) in Smbl2(X) such that each β' e U(β)
has a curvature tensor Rf which is nonυanishing on t2{X, β') U n2(X, β').

Proof. Apply Lemma 4.3 with C = t2(X, β) U n2{X, /?), noticing that
in each fiber G2(TXX) the set t2(Tx(X, β)) U n2(Tx(X, β)) is closed. D

We shall show elsewhere that the nonvanishing of R on t2 U n2 can
be used to characterize the C2-fine stability of everywhere negative (or
positive) timelike sectional curvature.

We now restrict attention to Lorentzian manifolds (X, β). In [2] we
called X principally causal iff no inextendible causal geodesic was impri-
soned. Since the null geodesies of the Lorentzian structure β are the
bicharacteristic curves of the symbol /?, principally causal implies real
principal type. We also called X causally pseudoconvex iff for each com-
pact K c X there exists a compact K' c X such that each causal geodesic
segment of β with endpoints in K lies in K'. Thus causally pseudoconvex
implies β is a pseudoconvex symbol. These conditions are more restrictive
than real principal type and pseudoconvexity, however. Indeed, the cylin-
der S1 X R with the Lorentzian structure β given by the line element
ds2 = dθ2 — dt2 is not principally causal (because the timelike geodesies
t = const, are imprisoned) but β is of real principal type (because no
inextendible null geodesic is imprisoned). Also, anti-de Sitter space [1, pp.
124f and 141f] is not causally pseudoconvex but the Lorentzian structure
tensor is a pseudoconvex symbol.

The arguments used to prove Theorem 3.3 did not use the fact that
the symbol vanishes along a bicharacteristic strip. Thus the same argu-
ments can be applied to principally causal and causally pseudoconvex
Lorentzian structures. We state this formally as

PROPOSITION 4.5. If (X, β) is a Lorentzian manifold which is princip-
ally causal and causally pseudoconvex, then there exists a Cι-fine neighbor-
hood U(β) consisting of principally causal pseudoconvex Lorentzian struc-
tures.

The rest of the results in this section now follow from Lemma 4.4 and
this proposition, using Theorems 2.4 and 4.6 of [2].

THEOREM 4.6. If(X,β) is a principally causal and causally pseudocon-
vex Lorentzian manifold then there exists a Cι-fine neighborhood U(β) such
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that with respect to any β' e U(β), the causal convex hull IK} of any

compact K c Xis compact.

THEOREM 4.7. Let (X, β) be a principally causal and causally pseudo-

convex Lorentzian manifold of dim > 3 with everywhere negative timelike

sectional curvature. If the Riemann-Christoffel tensor R is nonvanishing on

n2(X) then there exists a C2-fine neighborhood U(β) such that for each

β' e U{β) and each x e X:

1. the set of points which can be joined to x by a causal curve (including

x) is closed',

2. each of the points in (1) can be joined to x by a causal geodesic

(degenerate for x itself).
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