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NON LINEAR MULTIPLIERS AND APPLICATIONS

GEORGES PINCZON

Non linear multipliers, associated non linear representations and
non autonomous systems are studied. A notion of inducing of non linear
representation is defined. Various applications are given.

Introduction. A theory of non linear representations of Lie groups
was initiated in [5]. Non linear representations are related to non linear
physical equations, as shown in [7] where a general program of lineariza-
tion of a priori non linear field equations was sketched. This program is
based on a powerful criteria of linearizability given in [6] and used in
several papers to prove linearizability of some physically interesting non
linear representations ([6, 7, 8, 15, 17, 18, 19]). On the other hand, it is
well known, since Poincare's work on singular vector fields, that there
exist non linearizable non linear representations, and, moreover, it seems
true that nature may use representations of this kind when formalizing
some of its physical properties. Therefore, it seems interesting to develop
techniques for the construction of non linear representations. This was
initiated in [12] and [14], and this paper is continuation of this construc-
tive program. When one is concerned with linear representations, a
powerful constructive theory is indeed the theory of induced representa-
tions. To the author's knowledge, such a theory does not exist in the non
linear case, and the first goal of this paper is to define non linear inducing.
As we shall see, this definition is based on the notion of non linear
multipliers, and when developing our theory, it appeared that this notion
has some interest in itself, since it can be used to describe several non
linear problems. The second goal is to describe these associated problems
and how they can be solved.

We now give a brief description of the paper:
In §0 we recall needed definitions and results about non linear formal

representations of Lie groups and Lie algebras in Frechet spaces.
Let us note that in this short survey, the presentation is slightly

different from [5] (which, moreover, was devoted to the case of Banach
spaces): we try to keep as close as possible to the usual formalism of
differential geometry, using very simple notions of formal differential
calculus in Frechet spaces. For instance, the "Fock-space linear represen-
tation" associated to a non linear representation, was one of the main
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tools of [5], but was not given a geometrical interpretation. We give here a
natural realization of this representation on the space of polynomials on
the leading space, using the canonical duality between this space and the
space of formal power series, on which a linear action is obviously defined
from a non linear representation. For more details and developments, see,

Now let G be a connected Lie group, Γ a closed subgroup, 36 a
manifold with a C°° action of G, and E a finite-dimensional space.

In §1, having defined the notion of multiplier o n G x ϊ with values in
E (1.1), we associate to such a multiplier A a formal representation VA of
G on C°°(3E, E). Equivalence of multipliers is introduced in such a way
that equivalent multipliers lead to equivalent formal representations (1.4).
We describe the formal representation dVA of the Lie algebra g of G (1.2),
and then characterize which representations of g on C°°(£, E) are of the
form dVA (1.3). This last result can be considered as an existence theorem
for solutions of some systems of non linear evolution equations.

In §2 we assume 96 = G/T. Then any multiplier extends, in some
sense, a formal representation of Γ (2.1). The crucial point is that given
multipliers are equivalent if and only if the corresponding formal repre-
sentations of Γ are so (2,3). This gives a very simple criteria for instance
for linearizability of a multipler A and consequently of the formal
representation VA.

In §3 we introduce systems of non linear non autonomous differential
equations on G, with Γ-periodic coefficients which are naturally related to
multipliers over G X G/T. These systems are generalizations to the non
abelian case of ordinary total differential equations in R". Solvability of
such systems is studied in (3.3) and related to a Frobenius compatibility
condition. From the relation with multipliers, a natural equivalence of
such systems can be introduced (3.6), which turns out to correspond to
some kind of Backlund transformation of solutions.

In §4 we study the case when E = C, i.e. the so-called scalar multi-
pliers. Our principal goal in this section is to study the following problem:
given a formal representation of Γ in C, is it possible to construct a
multiplier over G X G/T extending this representation? To our knowl-
edge, except in the trivial case when there is a C00 section of the projection
G -> G/T (2.3), there is no general answer to this question, even in the
linear case. It is shown in (2.4) that if the answer is yes for the linear part
I1 of the given formal representation / of Γ, then it is yes for the
representation / itself (2.4). Therefore, the problem is reduced to the linear
case. We describe in (4.1) linear scalar multipliers over G X G/T as
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exponentials of 1-cocycles of the regular representation of the covering G
of G on G/T. These 1-cocycles are easily obtained by Shapiro's lemma
(4.4). Let us note that since G appears, it will not be always possible to
define continuous powers of a multiplier, and this explains why discrete
phenomena can appear when constructing multiplier representations (4.3).
As a corollary of the preceding results, we get (4.6), which can be
considered and used as a no-go theorem: several examples are given from
(4.6), where it is not possible to construct a linear scalar multiplier
extending a character of Γ (4.7). Alternatively, these are examples where it
is not possible to realize a C00 linearly induced representation as a
multiplier representation on the homogeneous space (4.7). Let us mention
that the given example of m2 = 0 discrete helicity representations of the
Poincare group is related to some problems which arise in the case of
massless particles (see [4]).

In §5 we give several criteria of linearization of multipliers. The first
kind is (5.4): if 36 is a product of homogeneous spaces of G, and if at least
one of the corresponding subgroups is compact, then any multiplier over
G X dί is linearizable. The second kind is (5.8), which is cohomological,
and can apply to cases which are very far from homogeneous spaces:
examples are developed in (5.9).

In §6 we develop the announced notion of non linear inducing: we
show how to associate to any class of formal representations / of Γ a class
of formal representations S of G with leading space the space HL of the
usual linear representations UL of G C00-induced by the linear part L of /,
and with linear part UL. By definition, equivalence is preserved by
inducing. Finally, we discuss possible realizations as multiplier representa-
tions on the homogeneous space (6.8).

In §7 we specialize to G = R", Γ = Zn and £ = G/T. We first show
that induced (non linear) representations can always be realized as multi-
plier representations over H (7.1).

We then give a series of reduction results concerning multipliers over
G X dί, and corresponding non autonomous associated systems of §3.
Using equivalence (3.6) we are able to reduce these systems to normal
forms as close as possible to autonomous systems. (7.2), (7.4) and (7.5) are
extensions to general n of results known for n = 1 (see [1]). (7.8) and (7.7),
which is a particular case) give minimal normal forms. Let us mention
that Lemma 7.6 (which shows how to extend formal representation of Γ to
formal representations of G under certain conditions) has some interest by
itself (especially since its proof is very simple!).
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REMARK. §7 shows how the computation of non linear representation
induced from Z" to R" gives the reduction to normal forms of systems of
non linear non autonomous formal equations with periodic coefficients,
satisfying the Frobenius compatibility condition, of type 9//9ίz = Ft{t, / ) ,
i = l,...,/i. Since it extends the classical non linear Floquet-Liapunov
theory [1], which is the case n = 1, one may ask some question concerning
this particular case: where is, in this picture, the monodromy (or Poincare)
mapping [1]? Obviously, it is the inducing representation. We hope that
this remark will show that the framework of non linear inducing is quite
natural in this context.

In §8 we compute up to equivalence non linear induced formal
representations of the hyperbolic group SU(1,1) with linear part a repre-
sentation of the continuous series. Explicit formulae for multipliers are
given (8.2). It can be seen that these formulae can be obtained from
general formulae given in (4.8).

Finally, let us mention that we hope to come back later to the
following two problems: first, introduce convergence in this theory, which
is, at this stage, formal; second, study non autonomous systems with
discrete periodicity subgroup Γ in non abelian cases.

Acknowledgements. I want to thank M. Flato, J. P. Labesse and J.
Simon for stimulating discussions.

0. Notations. We briefly recall some notation and results about
(non linear) formal representations of Lie groups in Frechet spaces. For
more details see, e.g., [11].

(0.1) Given two locally convex topological vector spaces (tlcvs) E and
F, we denote by L(E, F) (L(E) when E = F) the space of continuous
linear mappings from E into F. When L(E, F) is endowed with the
topology of convergence of finite sets (resp. on compact sets), we use the
notation Lσ(E, F) (resp. LC(E, F)). We denote by Ln{E, F) the space of
w-linear continuous mappings from E into F. In the following, we identify
Ln(E, F) and L( <g> E, F). We define the symmetrization σ n E i ( φ E)
by

en) = — eσ(n),

and the symmetric tensors ® E as the range of the projection σn. We
identify the space Ls

n(E, F) of continuous n-linear symmetric mappings
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from E into F with L(®nsE, F); we denote by F(E9 F) (F(E) when

E = F) the product space F xΠn>1L(<g>n sE, F); the elements of

F(E, F) are called formal series from E into F9 and we use the standard

notation T = Σn^T\ T° e F, Tn e L(&ntSE9F), n > 1. Fσ(E9 F)
(resp: FC(E, F)) is the tlcvs obtained when endowing F(E, F) with the

product topology. Formal series T such that T° = 0 will be called formal

vector fields, and the corresponding subspace of F(E, F) will be denoted

by C(E,F).

(0.2) We now assume that E and F are Frechet spaces and G is a tlcvs.

We define the composition product by

U e F(F, G), Γ e C(£, F),UOT<E F(E, G).

This product is linear with respect to U and sequentially continuous from

Fσ(F,G)XCσ(E,F) into Fσ(E9G). Moreover, if F e F(G9 H), U <Ξ

C(F, G), Γ G C ( £ , F), one has

Fo(l/oΓ) = ( F ° t / ) ° r .

Invertible elements D of C(E) are characterized by: Dι invertible in

L(E). We denote by D(E) the group of such elements, which we call

formal diffeomorphisms.

(0.3) Given a Frechet space E and a tlcvs F, we define the Frechet

derivative D(T) <E F(E9 L(E9 F)) of a formal series T e F(E9 F) in the

following way: first suppose T = T°; then D(Γ) = 0; now suppose T =

Tn; then D(T) is the unique continuous symmetric Λ — 1 linear mapping

such that

) = nTn{x9...9x9 e)9 x,e<ΞE;

when T=Σn>0T
n, we define Z)(Γ) = Σn>0D(Tn). Actually, D is a

continuous linear mapping from Fσ(E) into Fσ(E, Lσ(E, F)).

(0.4) Given a Frechet space E, and a tlcvs T7 we define a sequentially

continuous bilinear mapping x from JPσ(£, Lσ(E9 F)) X Fσ(E) into

/^(is, i7) in the following way: let

S= Σ
n>0 n>0
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we define

i-O

n > 1, ej

Vn=WnoO

n and Tx S

Given now t/<Ξ C(£), we have (Γ X S)<>U = (Γ<> U) X(S<>U).

(0.5) Suppose £ is a Frechet space. We define a Lie algebra structure
on C(E) by introducing the Jacobi bracket of vector fields:

Γ , S G C(E), [T, S] = D(T) X S - D(S) X Γ.

To each vector field T is associated a linear continuous mapping mτ of
F(E,F) defined by

X Γ,

Let us define a product on Fίls, C) by: let

Z= £ Z n , 7= L

set

ey eE,n>l,W° = Z°Y°, Vn = Wn <> σ» and Z Y = Σ Vn.

It turns out that F(E,C) is an abelian algebra and πτ> T G F(E), is a
derivation of it.

(0.6) Suppose £ is a Frechet space. Given T = ΣΠ>XΓW e C(£), we
assume there exists a one parameter group U e C°°(R? Lσ(E)) such that
d(Ut)/dt = TιoU(t). Then, the equation (</[K(/)]/ώ) = ^ ° ^ ( 0 , with
initial condition V(0) = A e C(£), has a unique solution F e
C°°(R, Cσ(J?)). Let 5 be the solution with initial condition ldE; one has
Sι = ί/, ιS/+// = 5r o st,, V/, ί' e R, and Vt = St°A. The one parameter
group S of formal diffeomorphisms is called the flow of the formal vector
field T.
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(0.7) Suppose E is a Frechet space, G a Lie group, g0 the Lie algebra
of G. A formal representation of G in E (resp. g0) is a morphism S:
G -* D(E) (resp. s: g0 -» C(£)) such that \/ev...,*?„ e £, « > 1, g ->
Sg(el9...,£„) is continuous from G into E. Sι (resp. Λ 1 ) is a continuous
linear representation of G (resp. g0) in E, called the linear part of S (resp.
s). If we assume Sι is a C00 representation, then any of the mappings
(g>e) ~* S?(e), g e G, e e ® £, is also C00, and therefore we can
define the differential dS of S1 by

dS is a formal representation of g0, and the one parameter group
St = 5e x p f Λ r is the unique solution of (d/dt)[St] = dSx° St with initial
condition S(0) = Id£.

Given formal representations Sx and S2 of G in E (resp. ^x and s2 of
g0), we say that Sτ and S2 (resp. sλ and 52) are equivalent if there exists
A e Z>(JE;) such that S2 = ^ ° S 1 o ^ - 1 (resp. s2 = (I>(^4) X ^ ^ o ^ " 1 ) . A
formal representation S of G (resp. 5 of g0) is linearizable if it is
equivalent to its linear part Sι (resp. sι).

Let us assume that the linear parts of our formal representations are
C00 linear representations. Then, as soon as Sλ and S2 are equivalent, dSλ

and dS2 are also equivalent. On the other hand, if we assume that G is
connected, then Sx and S2 are equivalent if and only if dSx and dS2 are
equivalent.

(0.8) Keep the assumptions of (0.7). We give a natural introduction to
the "Fock-space linear representation" associated to a formal representa-
tion, which is probably one of the most useful tools for this type of
problem (see e.g. [5]). We denote by Aa the abelian algebra Fa(E,C),
a = σ or c. Let H be the strict inductive limit H = (Jn^0Hn, where
Hn = ®^0H\ H° = C, H1 = E, H* = <g>.sE, Vi > 2. Introducing the
duality heH,feA,h = Σfinite/*",/= ΣfK(f \h) = Σfn(hn% one has

Each T e D(E) (resp. I G C{E)) defines a continuous automor-
phism (resp. derivation) stfτ (resp. nrx) oί Aa by sfτ(f) = /© 77"1 (resp.
***(/) = -Dfx X), V/ G v4. j/(resp. TΓ) is an injective morphism from
the group D(E) of formal diffeomoφhisms (resp. the Lie algebra C(E) of
formal vector fields) into the group of automorphisms (resp. the Lie
algebra of derivations) of A.

Since Aσ = //*, by transposition, we define for any T e D(E) (resp.
I G C(E)) a continuous linear mapping Lτ (resp. T^) from H into i/ by

(resp. τΎ = - V x).
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One has LT(HH) c Hn (resp. τx{Hn) c Hn) and

VΛ e H", Lτ(h) = Σ Σ fl^T"1 ® ® 7"*(Λ)]
A: = l ΪX -h - - - +ik = n

(resp.

« A:-l

k = l /? = 0

whereIn = Id ® E).
P p '

Given now a formal representation S of G (resp. s of g) in E, we
define two associated continuous linear representations by

The first one acts by automorphisms (resp. derivations) on Ac, and the
second acts on H. If we assume S1 is C00, then S and 5 are also C00, and
one has

V

d{S)=dS and d(S) = dS.

S is the announced natural realization of the "Fock-space linear represen-
tation associated to S " intensively used in [5]. Let us now point out why S
(and not S) is, in our opinion, the good linear object associated to S. The
useful property of S is the following: denoting Sn the restriction of S to
Hn, one has an exact sequence

0 -> (Hn9 Sn) -> (Hn+19 Sn+1) -> (jy", ® 51) -> 0,

which means (Hn+V Sn+1) is an extension of (Hn, Sn) by (Hn, ® S1)
(see [9] for details about extensions of representations). Since extensions
of representations can be described in terms of 1-cohomology, it turns out
that, using 5, many problems concerning S will be easily translated into
1-cohomological problems, for which much information is known. For
instance, splitting of the above extensions will correspond to linearization
of S, and this leads to a simple criterion of linearizability that we shall
give in (0.9). As a second application, one has the following integrability
theorem which generalizes (0.6).

Given a formal representation s of g in E, assume there exists a linear
representation Sι of G (the universal covering of G) such that dS1 = s1.
Then there exists a unique formal representation S oί G such that dS = s.
Assume, moreover, that Sι is a representation of G and Hλ(G) = {0} (de
Rham's cohomology); then S is a formal representation of G.
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(0.9) Keep the notation of (0.8). We now describe a useful criterion
for linearization. Let us mention that the old Poincare condition of formal
linearization of a singular vector field in C" is a particular case of this
criterion. We need some notation: given a linear continuous representa-
tion L of G in E, we define a continuous linear representation L ( n ) in
Le(&HE,E) by

L™(T)(el9... , O = L8[T{ I r A , . . ,Ln-A,)] >

TeL(&nE,E), ejtΞE, g e G.

We denote by H\G, Lc(®nE, E)) the first group of continuous
cohomology of G with coefficients in the representation L ( w ) (see e.g. [9]
for details about cohomology). Now, here is the condition of linearization:
if we assume H\G> Lc{ ® E, E)) = {0}, \fn > 2, then any formal repre-
sentation S, such that Sι = L, is linearizable. Similar results hold (using
the corresponding cohomology group of g0) in the case of formal repre-
sentations of Lie algebras. Obviously, our condition of linearizability is
satisfied when G is compact, or when G is semi-simple connected and E
finite dimensional. It is also satisfied in many cases of physical interest
(e.g. [7], [17], [18], [19]).

(0.10) Assume that g is a nilpotent Lie algebra, and s a formal
representation of g in a finite-dimensional space E. Given λ e g*, we
define Eλ = {e e E\(sx

x - \{X))n{e) = 0 , V I E g, for sufficiently large
«}. It is well known that Eλ is invariant under s\ and we can find
λ l 5... 9λp e g* such that £ λ Φ {0}, Vi = 1,... ,p, and E = φ ^ £ λ [2].
Given N = (n l 9... 9np) e N^, we let

| J V | « n 1 + ••• + !!,, and f

PROPOSITION. // (N9 λ> # λy, ViV e N^ 5wcΛ ίAα/ \N\ > 2, Vj =
1, ...,/>, /Λew 5 is linearizable.

Proof. The condition implies that the linear representation deduced
from sι on L( <g>Λ E, E), n > 2, does not contain the trivial representation.
Since g is nilpotent, we conclude that H\ g, L( ®π E, E)) = {0}, VH > 2,
and then apply (0.9). D

REMARK. When g = R, (0.10) is the well known Poincare theorem of
linearization of a formal singular vector field.



368 GEORGES PINCZON

In the rest of the paper, G is a connected Lie group, Q O its Lie algebra,

g the complexification of g0, and E a finite-dimensional (complex) vector

space.

1. Multipliers and associated formal representations. Let ϊ be a

differentiable manifold denumerable at infinity. We suppose that G is a

Lie transformation group of 36. We denote by (g, x) ~* g x, g G G,

x G £, the action of G on 96, and by [/ the regular representation of G

on C°°(£, £ ) .

We define an associative product on COO(36, C(E)) by

and a Lie algebra structure by

A, Be C°°(£, C(E))9 [A, B](x) = [A(x)9 B(x)].

We define a linear mapping Λ from C°°(3e, C(£)) into C(C°°(3E,

by

A <= C°°(9

where

It is easily seen that A° B = A° B, and

1.1. DEFINITION. An element A of C°°(G X £,C(E)) is called a

multiplier if

', x) = A(g9 x)oA(g'9 g-χx)9 Vg, g' e G, JC G X,

x) = Id £ , Vx e £ .

Set ^ g = ^(g , •) and Vf = Ag °Ug,g<Ξ G. From (1.1) VA is a formal

representation of G in C°°(3£? i?), which we call the (formal) representa-

tion associated to A. Obviously A1 is a (linear) multiplier and the linear

part of VA is VA\ Moreover, VAl is a C 0 0 linear representation of G in

C°°(£, £ ) , and therefore (by (0,7)), we can introduce the formal represen-

tation dVA of 0.

1.2. PROPOSITION. Let U denote the regular representation of G on

C">(X, E), and set dAx= (d/dt)[AexptX]t=0, I e 9 o . Then dVA = dU

+ dA.
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Proof.Let B(g9x) = A(g,gx),g(Ξ G, x G dίyandBg = B(g, •)• Since

Vg = Ug° Bg and Ug is linear, when differentiating we obtain V i e g0,Vg

£ where
f_Q.

Setting J 5 ^ = (d/dt)[BexptX]t=0, we have d(B)x = dB^. Denoting by °U

the regular representation of G on C°°($, F(E)), we obtain 5 g = °tig_x(Ag)

and, therefore,

since Aλ(x) = Id£, V x E l D

1.3. PROPOSITION. Denote by °U the regular representation of G on

C°°(3e, C(E)). Given F e L(β, C°°(X, C(^))), wercί J = dU + F.

(1) 5 Z5 α formal representation of Q in C°°( X, 2?) // απJ cw/y //

^[^Π = ^ x ( ^ y ) - dVγ(Fx) + [Fx, Fγ], V I j G g .

(2) W^^« (1) is satisfied, there exits a unique multiplier A on G X X

(G the universal covering of G) such that s = dVΛ.

Proof.

(1) [Sχ9 Sy] = dU[χ,γ]+{dUχθFy ~ D{Fy) X dUχ)

+{D(FX) X dUγ - dUγ°Fx)

Since <&g(F) = Ug ° F° Ug_l5 we have

dUx°F= D{F))

Therefore

[Sχ, j y ] = dUlXtY] + [d<*x{Fy) - <Wy(Fx) + [Fx, Fy

and (1) follows.

(2) We must show that there exists a multiplier A such tht dA = i7.

We first prove there exists a linear multiplier Λl1 such that dA1 = F1: For

fixed X G g0 and x e j , denote by C^( c) the vector field on £ defined

by Cx(x)(f)(e)= -df{e){Fx{x,e)\ where / G C M ( £ ) , e E f . w e can

consider the vector fields JC/^ on 36 and C^(x) on £ as vector fields on

3i X E by setting

where feC°°(XxE),fx=f(x,-),fe =
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Introducing τx = dUx + Fx and using (1), we obtain

T[X,Y] = [TX> Tγ] > V ^ > Y G 8θ•

For fixed X in g0, let jB1(ί, x) be the solution of the linear differential
equation

jt[Bι(t, x)] = FfcxptX x)[Bι(t, x)]9 W G R ^ G Ϊ ,

The flow of τx is the mapping (x, e) ~* (exp tX x9 B\t9 x)(e)), and
therefore τx is a complete vector field. Using Palais's theorem [3], we
conclude that there exists an action T of G on 3£ X E such that r is the
differential of T. Let Tg(x9 e) = (g x9 B\g9 x, e))\ when developing
Tgg, = Tg o Γg,, we obtain ΛHgg', x) = ̂ ( g , g^)° ^ ( / ? * ) , and there-
fore ^4x(g, x) = B(g, g~λx) is a linear multiplier on G X 36. Obviously,
dA1 = F\

We now construct A. We begin by the construction of A (exp tX9 x)
for fixed X in g0. Given H e C°°(dί, C(E)), we solve the equation

(i) jt [C(t, x)] = Fx(exp tX x)o C(t9 x), C(0, x) = H(x).

Set F(t, x) = F^(exp /X, x), F\t, x) = Fj(exp /X, x),
Aι(exp tX, x), and D(ί, x) = ̂ x ( - ί , x)°C(ί, x); we see that C is a solu-
tion of (i) if and only if

(ϋ)

= -A1(-t,x)oF1(t,x)oA1(t,tx)oD(t,x)

+A1(-t,x)oF(t,x)oA1(t, tx)oD(t,x)9

Setting D(t, x) = Σn^1D
n(t, x)9 we obtain D\t9 x) = H\x)9 and then

we compute Dn{t, x) by induction, since (at the wth order) the right
member of (ii) only contains terms of order strictly less than n.

Let B(t, x) be the solution of (i) such that 5(0, x) = Id£. Since
B(t, x) o H is still a solution of (i), with initial condition H{x), we obtain
C(ί, JC) = J5(ί, JC)O if(jc). Now, for fixed tf e R,

£ ( * , * ) = 5(/ + r',exp - t'X x)

is the solution of

f , x)] = Fx(expX)oE(t, x), E(0, x) = B(t'9ap - t'X JC).
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Therefore

E(t9 x) = B(t9 x)o B(t',exp - t'X x),

and we obtain

B(t + t\ JC) = £(ί,expt'X- x)oβ(t, x).

Setting A(t, x) = B(t, exp — tX - x), we get a multiplier on R X X such

that dA = Fx. Let V = VA; we get a formal representation of R on

C°°(£, £ ) . By (0.7), Fis the unique solution of

(iϋ) -Jt[Vt\ = sχoVn Vo = Idc*>iX9E).

On the other hand, s1 is a linear representation of g0, integrable to the

representation VAl of G. Owing to (0.8) or [5], there exists a formal

representation W of G on C°°(£, £ ) such that dW = s. WexptX and Vt are

both solutions of (iii), which proves that Vt = Wcxp tX.

We introduce some notation: given e e E, set ζe(x) = e, Vx e 36,

Fw(g, x) = H^[ |J(x), and F(/, x) = Σ ^ ^ ^ g , x)L Since Vt =

we have

A"(t, x)(e) = Vt"(ϊe)(x) = F"(exp tX, x)(e).

We conclude that A(t, x) = F(exp tX, JC). Since X is arbitrary in g0, we

have proved there exists an element A e C^ίG X3E,C(£)) such that

Ax(t, JC) = ̂ 4(exp tX, x) is an R X 36 multiplier for each X in g0. More-

Using the mappings ξe, e e E, and the fact that Wis a representation

of G, it follows that y4 satisfies the conditions of a multiplier in a

neighbourhood of 1 in G. Therefore, VA satisfies the conditions of a

representation in a neighbourhood of 1 in G. Since G is simply connected,

we conclude that VA is a representation of (5, and 4̂ is a multiplier over

G X 96. Since W = VA and, by definition, dW = s, we obtain dF^ = s. D

1.4. DEFINITION. Multipliers yί and ΛΓ on G X 36 are equivalent if

there exists F e C°°(a£, C(£)) such that

and

We say that A is linearizable (resp. trivial) if it is equivalent to a linear

multiplier (resp. to the trivial multiplier), i.e. a multiplier with values in

L(E) (resp. A(g9 x) = Id£, Vg e G, x e X).
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Note that VA and VA' are equivalent as soon as A and A' are

equivalent (the intertwining mapping is F).

2. Multipliers on homogeneous spaces and applications. In this

section we fix a closed subgroup Γ of G and assume that H = G/Γ with

the canonical action. The following lemma is easily obtained from (1.1).

2.1. LEMMA. Given a multiplier A on G X 96, we set b(g) = A(g~ι, i);

IΎ = A(y, ί),B(g, x) = A(g, gx),c(g) = B(g,ΐ)forg e G j e Γ . x e ϊ .

/ is a formal representation of Γ in 2?, called the formal representation

associated to A. Moreover, one has:

g , Λ e G , γ e Γ ,

',x) = B(g,g'x)oB(g,x),

/ γ , c(l) = Id£,

2.2. PROPOSITION. Multipliers A and Af are equivalent if and only if the

associated representations I and Γ are equivalent.

COROLLARY. A is linearizable if and only if I is linearizable.

Proof. Assume A and A' are equivalent, then obviously / and / ' are

equivalent.

Conversely, assume there exists U e D(E) such that / ' = U ° I °U~ι.

Using the mappings b and br of (2.1) we set /(g) = b(g)~ι ° U~ι ° b\g).

We see that/(I) = C/~\ and since/(gγ) = /(g), Vg e G, γ e Γ, we can

find F e C°°(3e, C(£)) such that F(g) = /(g), Vg e G. One has b\g) =

A'(g, x) = Fix)'1 o A(g, x)o

2.3. DEFINITION. Given a formal representation / of Γ in £, we say

that / extends to the multiplier A on G X H if / γ = A(y, ί), Vγ e Γ.

Note that / might extend to several multipliers on G X X, but, owing

to (2.3), they are all equivalent.
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2.4. PROPOSITION. Assume there exists a C°° section s of the projection
π: G -* G/T = 3£; then any formal representation of Γ extends to a
multiplier on G X 36.

Proof. Set γ(g) = ^ ( g ) ) " 1 ^ and defineΛ(g, x) = J-(*-i,(Jc)), g e G,
x e £. Λ is a multiplier on G X £ which extends /. D

2.5. PROPOSITION. Given a formal representation I of Γ in E, assume
that I1 extends to a (linear) multiplier on 6 X $ ; then I extends to a
multiplier on G X $.

Proof. Choose / e C°°(<5) such that γ ~»/(gγ) is compactly sup-
ported in Γ, and /Γ/(gγ) dy = I for any g ^ G [21].

Let F(g) = !Tl)f(gy)l;ldy. We first note that /*(*) = Id£, Vg e
G, and, using the invariance of dy, that F(gγ) = I*_ιF(g)Iγ, Vg e G,
y e Γ . Let us now introduce d(g) = (^(g))" 1 ° ^(g) (see (2.1) for nota-
tion). By (2.1) and the preceding results, d(gy) = d(g)° Jγ, V g e Γ ,
γ E Γ , and έ/Hg) = (b\g))~\ Therefore, d(g) G ! )(£), Vg <Ξ G, and we

define fe(g) = (ίZ(g))"1 ° d(l). From the properties of d, we now
Juce that b(gy) = / γ - 1 o b(g), Vg G G, γ e Γ, 6(1) = Id£, and Z>(γ) =

V
Let us now define a multiplier A over G X G by the formula

i(g,Λ) = (6(Λ))-1ofe(g-1Λ), Vg,AeG.

Owing to the properties of b, A satisfies
Λ~(γ,l) = /γ, A(g,hy) = A(g,h), Vg, Λ G G, γ e Γ.

It results from the last equality that there exists a multiplier A on G X £
such that ^(g, Λ) = A(g, h\ Vg, Λ G G. Since A(y9 i) = /γ, Vγ G Γ, the
proof is complete.

3. Systems associated to multipliers. In this section we let Γ be a
closed subgroup of G, and 1 the homogeneous space G/T.

Given a tlcvs F, to each element Z of g0 we associate the vector field
X acting on C°° (G, F) by

We identify C°°(3£, F) and the subspace of Γ-periodic functions in
C™(G, F)9 i.e. { / G C°°(G, F)//(gγ) =/(g), V g G 6 , γ G Γ}. Using
this notation, a multiplier over G X X is actually a multiplier over G X G
which is Γ periodic with respect to the second variable.
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We will now study the solvability of some systems related to multi-

pliers, as we shall see. Given F e L(g, C°°(£))), we consider:

(X(f)g= -Fx(g)°f(g), Vge^leg,

ίX(h)g= -πFχ(g)(h(g)), VgeG, I e g (notation (0.5)),

\A(1)-Γ,

where T is a given element of C(£) (the initial condition), and the

unknown/(resp. h) is an element of C°°(G, C{E)).

3.1. DEFINITION, (i) (resp. (ii)) is integrable if there exists a solution c

satisfying c(l) = \άE (resp. b{\) = Id^); c is called the fundamental

solution. We say that the Cauchy problem for (i) (resp. (ii)) can be solved

if there exists a unique solution satisfying the given initial condition for

any initial condition in C(E).

We often make use of the following technical lemma.

3.2. LEMMA. Given f,h e C°°(G, C(E)) and X e g0, one has

h)g = X(f)goh(g)+(D(f(g))oh(g))xX(h)g, VgGG.

3.3. PROPOSITION. The following statements are equivalent:

(1) (i) is integrable.

(2) (ii) is integrable.

(3) The Cauchy problem for (i) can be solved.

(4) 77*e Cauchy problem for (ii) am Z>e solved.

(5) ΓΛere exίrfj a unique multiplier A over G X 9£ swcA /Λύtf F = dA.

Whenever these conditions are satisfied one has

(6) F satisfies the Frobenius compatibility condition

Moreover, the fundamental solution c of (i) satisfies c(g) e D(E), Vg e G

tfm/ e(gγ) = c(g)° c(γ), Vg E G, γ G Γ. c w related to the fundamental

solution b of (i) by b(g) = c(g)~\ Vg e G. 7%̂  general solution f of (i)

{resp. h of(ϊ)) isf(g) = c(g)oT(resp. h(g) = Tob(g)). The multiplier of

(5) is

Finally, if G is simply connected, (6) is equivalent to (l)-(5).



NON LINEAR MULTIPLIERS 375

In order to prove (2.7), we first prove the following lemma.

3.4. LEMMA. Suppose there exists a solution f of(i) (resp. h of (iΐ)) such
that /(I) e D(E) (resp. h(l) e D{E)). Then (i) {resp. (ii)) is integrable,
and there exists a fundamental solution c (resp. b) such that c(g) e D(E)
(resp.b(g) ^ D(E)\\/g ^ G.

Proof. fι is a solution of the linear system X(fι)g = — F\(g) <> fι(g),
VgG G J E g, which can be written

ft[fι(εxptX g)] = Fι

x(εxptX g)o f\eχp X g),

from which we deduce that

det[/x(exp/X.g)] =

Recalling that/(I) e D(E) if and only if άe\(f\\)) ^ 0, we obtain

and, by induction, detί/^exp ^ exp A^)) # 0, VX1?. ..9Xp G g.
Therefore /(g) e ΰ ( £ ) , Vg e G (G is connected !). We now introduce
c(g) = /(g)°(/(l))~ 1 and see that c is a solution of (i) satisfying c(l) =
I d £ (i.e. a fundamental solution) and c(g) e D(E), Vg e G. Similar
arguments hold in case (ii). D

o/ (2.7). Assume (5). Using (1.2) and (1.3)(1), we obtain (6).
With the notation of (2.1), we have

^ [ 6 ( e x p - tX g)]t=0 = jt[b(g)o A(exptX,

= D(b(g)) X dAx(g) = -πdAχ{g)(b(g)).

It is proved in the proof of (1.2) that dA = dB. Moreover, c(l) = b(\) =
lάE ((2.1)). Therefore we obtain (1) and (2).

Assume (6) and G simply connected. Using (1.3)(2), we obtain (5).
Assume (1). Given a fundamental solution c, we apply (3.4) and see

that c(g) e D(E% Vg e G.
We introduce B(g, x) = c(gx)o c(x)'1, A(g, x) = 5(g, g - 1x), and

easily verify that A is a multiplier over G X G. Using the definition of B,
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we have

ft[c(cxptX ^ g)]t=0 = jt[B(cxptX, g)o c(g)] = dB

It is proved in the proof of (1.2) that dA = dB, and we obtain

X(c)g= -dAx(g)oC{g).

Comparing with (i), we deduce that F = dA.
Now set b(g) = c(g)~ι. Since A(g, x) = b(x)'1 <> b(g~1x), we have

— [fc(exp - tX - g)] ,_0 = jt[b(g) ° Λ(exp tX, g)} t=0

= D(b(g)) X dAx(g) = -πdAχ(g)(b(g)) = -*Fχig)(b(g)).

This proves (2).
Now set f(g) = c(g)° T, it is easily seen that/is a solution of (i) and

/(I) = T.
Conversely, suppose / is a solution of (i) and /(I) = T. Introducing

f'(g) = c(g)~λ ° fig) and using (2.6), we obtain

X(f')g = X(b)g°fig) +iDibig))°fig)) X X(f)s

= X(b)g*f(g) -(D(b(g))of(g)) x{Fx(g)°f(g))

= {X(b)g- Dibig))xFxig))of(g)

Therefore f\g) = T and f(g) = c(g)°T. This proves (3). Similarly, set
h(g) = Γ» &(g); it is easily seen that h is a solution of (ii) and Λ(l) = T.
Suppose now that A is a solution of (ii) and h{l) = T. We introduce
h'{g) = hig)°b{g)~ι and use (3.2) to obtain

* = X(h)g°c(g) +(D(h(g))oC(g)) X Jf(c),

= X(h)goC(g) -(D(h(g))oC(g)) x(Fx(g)oC(g))

= (Xih)g-Dihig))xFxig))°cig)

Therefore h\g) = Γand h(g) = Γ» ί>(g). This proves (4).

Let us now introduce, for fixed γ in Γ, cy(g) = cigy), g e G.

XiC)g= -Fxigy)oC(gy)= -Fχo
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Since eγ(l) = c(γ), using the preceding results, we get cy(g) =
c(g)°c(y)> i e c(gy) = c(g)°c(y)> Vg G G, γ G Γ. Going back to the

definition of A and using the last relation, we see that A is a multiplier

over G X £. This proves (5).

Summarizing, starting from (1), we have proven (2)-(5). Moreover, we

have proven the last assumption of (3.3) during the proof.

Finally, let us assume (2). Since the proof is quite similar, we omit

details:

Given a fundamental solution b of (ii), we introduce the multiplier

,x) = b(xy1ob(g-1x) over G X G, c(g) = b(g)'\ B(g9x) ( =

-> gx)) = c(gx)° c(x)"1. Differentiating the relation of the definition

of A, we obtain F = dA\ differentiating the relation of the definition of B

we obtain that c is a fundamental solution of (i). This proves (1). D

3.5. PROPOSITION. Suppose that a given F e L(g, C°°(£, C(E))) satis-

fies the Frobenius condition ((3.3)(6)) and define Fr by

F'x{g) = -X{l)gol{gγι +(D(l(g)) X Fx{g))ol{g)-\

for fixed I in C°°(£, C(E)) such that l(g) e D(E), Vg e G. ΓΛe« F' also

satisfies the Frobenius condition.

Proof. Using (3.3) there exists a multiplier A over G X H such that

dA = F. We define a multiplier A' over G X ϊ by Λ'(g, x ) =

l(x)oA(g, x)ol(g-ιχ)~\ Differentiating the equality A\g, x)ol(g~1χ)

= l(x) © v4(g, x) at the point 1, we obtain i7 ' = dA'. D

3.6. PROPOSITION. Given the integrable systems (i) and (i)' w//A

sponding functions F and F\ corresponding multipliers A and A\ fundamen-

tal solutions c and c', I = c\T and Γ = c'|Γ, the following statements are

equivalent:

(1) A and A' are equivalent multipliers.

(2) / and Γ are equivalent formal representations of Γ.

(3) There exists I e C°°(£, C(E)) such that: l(g) e D(£), Vg e G,
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(4) There exists I e C°°(X, C{E)) such that l(g) e D{E), Vg e G,

andf is a solution of(ϊ)' if and only if there exists a solution f of (ΐ) such that

Whenever these conditions hold, we say that (i) and (i)' are equivalent.

Proof. (1) and (2) are equivalent by (2.2).

Assuming (1), there exists / e C°°(£, D{E)) such that A'(g, x) =

l(x)oA(g,x)ol(g-1χ)-1. Differentiating the equality A\g, x)ol(g~1χ)

= l(x)o A(g9 x) at the point; we obtain (3).

Moreover, one has c\g) = l(g)° c(g) ° /(I)" 1; / ' is a solution of (i)' if

and only if /'(g) = c'(g)o Γ, Vg e G, for a given T CΞ C(E) (see (3.3)).

Setting/(g) = c(g)° /(I)" 1 ° Γ, we obtain that/' is a solution of (i)' and

only if /'(g) = /(g) o /(g), Vg e G, i.e. (4).

Assuming (3), we see that the multipliers Ar and ^4r/(g, x) =

/(x)o^4(g, x)° l(g~ιx)~ι satisfy dA' = <i4r/ and, therefore, coincide. So

we obtain (1).

Assuming (4), we get c\g) = /(g)°c(g)°Γ, Vg e G. Taking g = 1,

we get Γ = /(I)" 1 . From c'(g) = /(g)° c(g)° /(I)" 1, we deduce that

A'(g, x) = l(x)o A(g9 x)o l{g-ιx)~\ Vg,x^G

(see (2.1)). So we obtain (1). D

4. Scalar multipliers. In this section, 3E is a differentiable manifold,

denumerable at infinity, and G acts as a Lie transformation group of 3£.

We assume E = C. Multipliers over G X £ with values in C(C) are called

scalar multipliers.

We denote by U the regular representation of G on C°

4.1. PROPOSITION. Le/ £ Z>e α« element of Z\G, U) and T a formal

representation ofR in C; then

defines a scalar multiplier over G X X. Whenever T and T are equivalent

representations, or whenever ξ and £' are equivalent cocycles, then the

corresponding multipliers are equivalent.

We omit the proof, which is a trivial calculation. We next give an

answer to the inverse problem of (4.1) in the case of a linear scalar

multiplier.
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4.2. PROPOSITION. Given a linear scalar multiplier A over GX3E there
exists ξ G Z1(G, U) (G the universal covering of G) such that A(g, x) =
exp ξg(x\ V g G G , i G l IfH\G) = {0} (de Rharn's cohomology), then
ξ e Z\G, U).

Proof. Since A is linear scalar, one has

dA[χγ] = dUx(dAγ) - dUγ(dAx), V Z J e g ,

and therefore dA G Z\Q,dU). Using [16], there exists £ G Z\G,U)
(resp. Z^G, t/) if ^ ( G ) = {0}) such that dA = tff For fixed Xin g0, let
us note that θt(x) = ̂ (exp/X, JC), / G R, X G X Using the multiplier's
relation, we obtain

dθί/dt = θt.Ut[dAx]=θrUt(d£x).

Therefore

(see [16]).
This proves that A and the multiplier exp ξ coincide on a neighbor-

hood of 1, and therefore everywhere by connectedness. D

(4.3) Given a linear scalar multiplier A, and using (4.2), we can define
a continuous series Aa, Vα e C, of linear scalar multipliers if the associ-
ated cocycle lies in Z\G, U). If it lies strictly in Zι(G, U) we can only
define a discrete series A", V« e Z. Let us show by an example how to
translate this remark in terms of the theory of linear representations of G:

(1) Set G = SU(1,1), 3E = [z e C | \z\ < 1], with action

β β
= 1 .

β ά

We introduce the multiplier A(g, z) = (ά — βz). It is easily seen that
A = exp£, where ξ is a cocycle in Zι(G, U) which does not belong to
ZX(G, U). It is well known that the representations VA" are realizations
(when restricted to adapted subspaces) of the discrete series of representa-
tions of G.

(2) Set G = SU(1,1), X = {z e C | \z\ = 1), with action

β α i8 |2

We introduce the multiplier yl(g, z) = |α — yβz|2. It is easily seen that
A = exp£, where £ is a cocycle in Zι(G,U). The representations P4",
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a ^ C, are realizations of one of the continuous series of representations
of G.

4.4. LEMMA [13] or [11]. Assume H = G/T and define a linear mapping
Rfrom Z\G, U) into Z\T9 Id c ) by R(ξ)γ = ξγ(i), V γ E Γ ^ G Z\G, U).
R is onto and induces an isomorphism ofHι(G, U) and Hι(T, Id c ) .

Proof. Denote by U the left regular representation of G on C°°(G).
Given ξ e Z\G, U), we define T e C°°(G) by τ(g) = £g_i(i) and easily
obtain

Assuming that R(ξ) = 0, one has τgy = τg9 Vg G G, γ E Γ, and by the
later formula, ξ e ^ ( G , t/). Obviously, R(B\G, U)) = {0}.

We next prove that R is onto: given θ e Z1(Γ, Id c ), we choose an
element ψ of C°°(G) such that γ ^ ψ(gγ) is compactly supported in Γ
and /Γψ(gγ) ?̂γ = 1, Vg e G [21], and we set τ(g) = /Γ0γΨ(gγ) dy -
fΓθγ\p(y) dy. Using the invariance of dy, we obtain τ(gγ) = τ(g) + θγ_v

Vg E G, γ G Γ. Since τ(l) = 0, we obtain τ(γ) = θγ_l9 Vγ e Γ. Setting
ξg = Ug(τ) - T, we obtain an element of Z\G, U) satisfying | γ ( l ) = θy,
Vγ e Γ. Since | g,(gγ) = | g ,(g), Vg, g' G G, γ e Γ, there exists $ e
Z\G, U) such that ξg,(g) = lg,(g\ Vg, g' e G. Obviously, Λ({) = β. D

4.5. COROLLARY. Assume H = G/Γ. ^4^wme, moreover, that Γ ^
connected and H\T) = {0} (*fe Rham's cohomology). Then any (linear)
character ofT can be extended to a multiplier over G X 36.

Proof, di is a cocycle of the trivial representation of γ, and since
H\T) = {0}, there exists a cocycle 0 on Γ such that di = dθ [16]. Define
Jγ = exp 0γ, Vγ G Γ; Γ is a character of Γ. Since d/' = d/, the connected-
ness of Γ implies /' = /. From (4.4) we can find ξ e Zι(G, U) such that
R(ξ) = θ.

Now the multiplier exp ξ extends /. D

On the other hand:

4.6. PROPOSITION. Assume H\G) = {0} (de Rham's cohomology) and
H = G/Γ; let K be a compact subgroup of Γ and I a linear character ofT; if
there exists a linear scalar multiplier A over G X di extending /, then one has
I\K=UC.
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Proof, Let £ e Z\G, U) such that A = exp { ((4.2)). We have 7γ =
A(γ, i) = expi?(£)γ, Vγ e Γ. i?(£)(AΓis a cocycle of the trivial representa-
tion of K and, since K is compact, R(ξ)\K = 0 and / ^ = Id c . D

(4.7) In physics, linear induced representations are often realized as
multiplier representations on homogeneous spaces. This can be done
because one is dealing with unitary representations, and therefore the
involved functions (and multipliers) are only assumed to be Borel func-
tions. Since there always exists a Borel section of the projection G -> G/T,
realization on the homogeneous space follows. Nevertheless, as soon as
one is concerned with differentiability properties, singularities do appear,
and this is the case, for instance, for massless particles [4]. Let us show
how this can be seen using (4.6).

Given a (linear) character / of Γ, we denote by H1 the space

H1 = {/e C°°(G)|/(gγ) = IΎ_J(g)9 Vg e G9 γ e Γ}.

We define the C00 (linearly) induced representation U1 as the restriction
of the left regular representation of G to H1.

PROPOSITION. Assume that I extends to a multiplier A over G X Ϊ .
Then VA and U1 are equivalent {linear) representations of G.

Proof. We introduce the function c of (2.1). Recall that c(gy) =
c(g)IΎ, V g ^ G , γ E Γ , and set Γ(/)(g) = c(g)f(g),fe H1. Obviously
Tis an isomorphism of H1 onto C°°(X), and VA = T ° U1 o T'\ Π

We know cases where (4.7) can be applied (see (2.2) and (4.5)). Let us
now give some no-go examples, where U1 cannot be realized as a multi-
plier representation on C°°(GyT):

(1) Set G = SO(3), Γ = SO(2), and apply (4.6) to K = Γ: the only
(linear) character of Γ that can be extended to a multiplier over G X G/T
is the trivial one.

(2) Set G = SL(2, C), acting on R4 via the standard surjection SL(2, C)
-> SO0(3,1). Let x be a given point of the vertexless forward light cone,
and Γ the stabilizer of x. Actually, Γ is a semi-direct product K R2,
where K is a one-dimensional torus. Using (4.6) we see that characters of
Γ that can be extended to multipliers over G/T are necessarily trivial on
K. Using physics terminology this result shows that singularities do
appear in the case of massless particles with non zero helicity (see [4] for
development).
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(4.8) Let us return to the construction of (non linear) scalar multi-

pliers.

Given a linear scalar multiplier m over G X ϊ , we define a linear

representation Vn on C°°(36) by

PROPOSITION. Given £ G Z\G, Vn, C°°(96)), n > 2, the formal develop-

ment of

g G G,X G 96, Z G C,

defines a scalar multiplier on G X 96. A is linearizable if and only if £ is a

coboundary.

Proof. The first assertion is a simple calculation. Assume next that

The formal development of

[l-ZW^ii/i-i)'

defines an element Γof C°°(96, D(C)), and it is easily seen that

mg(x)oT(g-1x)=T(x)oA(g,x), V g G 6 , x G l D

5. Linearization results.

5.1. PROPOSITION. Given a multiplier A over G X 96, for any compact

subgroup K of G there exists an equivalent multiplier Ar such that Ar is linear

onK.

Proof. Define

B(x)= j Aι{k,x)oA{k~\k'ιx)dk, Vx G 96.

Since B\x) = I d £ , we get that B(x) G D{E), VX G 96. Moreover, using

the invariance of dk, one obtains
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It results from this last equality that the equivalent multiplier

Λ\g9 x) = B(x)oA(g, x)oB{g-1x)~\ g G C x e ϊ ,

is linear on K. D

5.2. COROLLARY. Assume G is compact; then any multiplier A over

G X % is linearizable.

5.3. PROPOSITION. Let M be a manifold on which G acts as a Lie

transformation group. Suppose 9£ = G/T X M, where Γ is a compact sub-

group of G and the action of G in X is given by g (A, m) = (g A, g, m),

g , A G G , m G M . Then any multiplier over G X H is linearizable.

Proof. Using (5.1) we can suppose that A\τ = A1^. We introduce

b(g, m) = [4_!(i, g-ιm)\ ~l o A^l g-ιm), g^G, m^M.

Using the multiplier's relation, we see that

Ag(g', m) = (b(g', m))-1 o A\(g', m)° b{g-χ -(g\ m)),

Vg, g' e G, m&M.

Moreover, for any g e G , f c £ Γ , « e I , one has

b(gk, m) =

= b(g, m) since^4|Γ = ^ I p .

Introducing B e C°°(3E, C(E)) such that ^ ( g ? m) = Z?(g, m), we obtain

Ag(g', m) = [5(g'? m)] - 1 o A\{g\ m) o B(g~ι(g\ m))9

i.e. A is linearizable. D

5.4. COROLLARY. Assume £ = G/Yx X X G/Γ^. // one of the

subgroups Γ is compact", ίΛ «̂ α«y multiplier over G X X is linearizable.

5.5. PROPOSITION. Wfaλ ίΛ^ notation of (5.3), suppose X = G X M.

Then any multiplier over G X H is trivial.

Proof. Introduce Z>(g, m) = ̂ 4g-i(l, g " 1 ^ ) , g ^ G, m ̂  M, and use
the beginning of the proof of (5.3). D
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5.6. COROLLARY. Any multiplier over G X Gn is trivial

5.7. EXAMPLE. Set G = R, acting on 3£ = R" by t (xv...9xn) =

(JCX + ί,... ,* π + ί), ', *, G R Given i 7 e C°°(R", QC^)), consider the

equation

with initial condition Vo = IdCoo(R« CP) and unknown function V

R",^))) . Using (1.3) and (0.6), we obtain that (1) has a
unique solution, given by Vt = F^4, where yί is a multiplier over R X R".
By (5.6), A is trivial, and therefore (1) is equivalent (in the sense of (0.7))
to

dV n a
(2) -^ = " Σ 9 ^ °Vn Vo = Idc ^ ^ .

(5.8) We next give a linearization result for scalar multipliers. We
recall the notation of (4.7): given a linear scalar multiplier m over G X 36,
we define a linear representation Vn of G on C°°(36) by

F;(/)(x) = K M Γ " " " / ^ 1 * ) , x e 3E, g e G, / e C»(3E).

Identifying C°°(aE) and C°°(£, L(® C,C)), one obtains V"(f) =
It S o
It ,S

mg o Ug(f) o m"1, where t/is the regular representation of G in C°°(36).

5.8. PROPOSITION. Assume that H\G, Vn, C°°(£)) = {0}, V« =

2, 3, Then any scalar multiplier A over G X 3E, Λ WCΛ ίΛα/ yί1 = m, w

Proo/. Set 5 g (x) = ^g(jc)o(^l1

g(jc))-1

? g G G , : c E l From the for-

mula

gg

we deduce

Bgg,(x)

Therefore, there exists/2 such that

Bl{x) = mg{x)op{

Therefore, we have
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at orders 1 and 2 and

(l + f2(x))°Ag(x) = mg(x)°(l + fi(g-iχ))

at orders 1 and 2. Introducing the multiplier

(2) -

we have
(2) (2)

AUx) = mJx)9 and A2(χ) = 0.

(Ό
Repeating the same argument, we can construct step by step a series A

of multipliers such that

(n) (#i) (Λ)

^ (4 ^ ()

The sequence (/ + fn(x))° ••• °(/ + / 2 (x)) converges in the natural
topology of formal series (see [6]) to an element/of C°°(£, D(C)), and
one has

5.9. EXAMPLE. Whenever 9£ = G/T it can be seen that (5.8) is nothing
but linearization condition (0.9) for the associated formal representation /
of Γ (see (2.1) and (2.2)). Therefore, we get nothing new. The interesting
case is the case when £ is very far from being of type G/T. Let us develop
an example:

Set G = Rp, acting on R" by the trivial action. Using (4.2) any scalar
linear multiplier m over G x R " can be written mg(x) = exp ξg(x), g e G,
x e Rw, where ^ is a fixed element of Z\G, IdCoo(RM)). Actually,
Z\GMc^{^)) = L(9> C°°(R")). Introducing a basis Xi of g, and setting
dt = dx, d e L(β, C°°(RW)), we can identify L(β, C°°(Rn)) and
C°°(Rn,C^). Coming back to the multiplier m, and setting d = dξ, we
obtain

p

ig(x) = Σ StdAx) = (g\d(x)), g = (ft) e G, x e R",
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and therefore

mg(x) = &φ(g\d(x))9 g e G, x e R".

In the following, we fix a nonzero element d of COO(RW, Cp). Setting
dx= (X\d)9 I 6 g , w e introduce $ = {x e R Π | ^ ( J C ) = 0, VZ e g},
and 36 will be the complement of 3 i n RΛ. By definition 96 is a non void
open subset of R".

(5.9) PROPOSITION. Let A be a scalar multiplier over G X 96 swc/z ί/ztf/
yί1 = m\ then A is linearizable.

Proof. Introduce

Vg

n+1(f)(x) = (expn(g\d(x)))(f(x)), / e CM(X), g e G, x e 36,

and let us show that ff^G, F" + 1) = {0}, V/i > 1. This will be achieved if
we prove that//H9, dVn+ι) = {0}, V« > 1. Soletξ e Z\Q, dVn+1); the
cocycle relation gives

(i) ξιXtY](x) = 0 = n(^(x)ί y(x) - dr(x)ξx(x)),

<B Q, x e 3£.

We define a function / on 3£ in the following way: given x e X, we can
find I e g such that ^ ( x ) # 0; set

Using (i) we see that the definition is independent of X. Since dx remains
non zero in a neighbourhood of JC, the function

i My)
y n dx(y)

is C00 in this neighbourhood, and therefore/ e C^idί).
By definition we have ξx(x) = ndx(x)f(x) whenever dx(x) Φ 0.

When dx(x) = 0, since the linear form Y ~* dγ(x) is nonzero, we can
find Y G g such that dγ(x) Φ 0, and using (i) we see that ξx(x) = 0, and
therefore ζx(x) = ndx(x)f(x) also in this case. This proves that £ is the
coboundary of/. Now applying (5.8) we obtain the desired result. D

For instance, let us now take G = R4, 96 the forward vertexless light
cone, and the following linear multiplier m over G X dί:

g e - G , x = (xι)(ΞR\ xl- xl- x\- xj = Q, x0 > 0,

mix) = exp(g|J>
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where

dj(x) = ixJ9 y = 1,2,3, do(x) = i{xl + x\ + x\ψ2.

(One can recognize the multiplier corresponding to the translation part of

a massless representation of the Poincare group.) Actually the preceding

proposition applies, and therefore any scalar multiplier A over G X 3E,

such that A1 = m, is linearizable.

6. Inducing non linear representations. In this section Γ is a closed

subgroup of G, £ = G/Γ, L is a linear representation of Γ in a (finite-di-

mensional) space E, We denote by HL the space {/e C°°(G, £) | / (gγ)

= Ly_J{g), V γ E Γ , g e G } and by £/L the restriction of the left regular

representation of G to HL: UL is called the representation of G induced

(in C°° sense) by the representation L of Γ (see e.g. [9]).

6.1. DEFINITION. Given a multiplier A over G X G, ^ is called an

L-multiplier if

Mg'Xy) = Ly-ι°A(g,x)oLy, V g , i E 6 , γ G Γ,

Aι(g, x) = IdE, Vg,χ(ΞG.

From the first condition, one easily shows that VA (see (1.1)) can be

"restricted" to HL\ we denote by WA the formal representation of G in

HL obtained by this "restriction". By the second condition, one sees that

the linear part of WΛ is UL.

6.2. P R O P O S I T I O N . Given an L-multiplier A, set Iy = A(y, 1) ° L γ , γ e Γ;

then I is a formal representation ofT in E and Iι\τ = L.

Proof. Trivial calculation.

6.3. DEFINITION. Given a second linear representation L' of Γ in E, a

L-multiplier A and a L'-multiplier A', we say that A and A' are s-equiva-

lent if there exists F e C°°(G, C(E)) such that

F ( g ) ε l ) ( £ ) , V g e G , F(jcγ) = L'γ-i ° F(*)o L γ, Vx e G, γ e Γ,

6.4. PROPOSITION. Assume that A andAr are s-equivalent; then WA and

WA' are equivalent formal representations of G.



388 GEORGES PINCZON

Proof. Using (6.3) one sees that F e C(HL, HL) and intertwines A
and A'. Π

6.5. PROPOSITION. A and A' are s-equiυalent if and only if the corre-
sponding I and Γ (see (6.2)) are equivalent.

Proof. Assume that A and A' are s-equivalent. Using the notation of
(6.3) and (6.1), we see that F\x)<> F\g~ιx) = lάE, Vg,χE G. Using
(6.3) once more, we obtain Lγ = ̂ ( l ) 0 Ly<> F\l)~\ and then Γγ =
F(l)oIγoF(l)-\

Now assume there exists U ̂  D(E) such that I'=U~ι°I°U.
We introduce b(g) = A(g~\l), b\g) = A\g~\\\ and /(g) =
b(g)-ι°U°b'(g\ g^G. Since fc(gγ) = 7γ-i °b(g)oLγ and 6'(

£γ-i> VgGGjeΓ, we have

Moreover / x(g) = I/1, and therefore /(g) e !>(£), Vg e G. Since

1χ), Vg,χGG. D

(6.6) Let us denote by %lL the set of equivalence classes of formal
representations of Γ in E having L as linear part, and by WlL the set of
^-equivalence classes of L-multipliers.

PROPOSITION. The correspondence A ~* I of (6.2) induces a one-to-one
mapping from WlL onto 9ϊL.

Proof. Using (6.5) we see that this correspondence induces a one-to-one
mapping from WlL into 9ΪL. It remains to show that this mapping is onto.
Let us assume given a formal representation / of Γ in E such that 71 = L.
We choose/e C^iG) such that γ ~>/(gγ) is compactly supported in Γ
and /Γ/(gγ) Jγ = l ,VgGG [21], and we set

Using the invariance of dy and the linearity of L, we obtain

Moreover, cι

g = Id£, Vg G G. Let us introduce b(g) = [c(g)]"1 and
^(g> •*) = 6(x)~1°6(g~1x). From the properties of c, it is easily seen
that A is a L-multiplier. Since fe(gγ) = Iy_1 ° b(g)° Lγ, Vg G G, γ G Γ,
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we have

1 o Jy J>(l),

from which we deduce that A( ,l)°L is equivalent to /. The proof is
complete since^(γ, l ) ° I γ = Lγ. D

(6.7) Now we can define non linear inducing. Given an inducing class
in SSlL of formal representations of Γ, we use (6.6) and pick any multiplier
A in the corresponding class of L-multipliers in ffllL; then we define the
induced class of formal representations of G to be the class of the formal
representation WA (see (6.1)). From (6.4) our definition is coherent, since
it is independent of the choice of A. By definition the linear part of WA is
exactly UL, i.e. the linear part of any representation in the induced class is
equivalent to the linear representation C-infinitely induced by the linear
part of any representation in the inducing class. Finally, let us note that if
L belongs to the inducing class, then UL belongs to the induced class, i.e.
if the inducing is linearizable, so is the induced.

6.8. PROPOSITION. Assume there exists a linear multiplier M on G X 3£
extending L (see (2.3)). Given a formal representation I of Γ in E, with
linear part L and a multiplier A corresponding to I from (6.6), then there
exists a multiplier B on G X 96 extending /, and the formal representations
VB and WA of G are equivalent.

Proof. The first assertion is proved by (2.4). By (6.6) there exists
£/e D(E) such that Λ(γ,l)<>Lγ= l7oj γ ofΓ\Vγ e Γ. Denote by / the
representation U° I°U~ι of Γ, and set b(g) = A(g,l), c(g) = £(g,l),
g e G. One gets

6(gγ) = /γ_1ofe(g)oLγ, c(gγ) = / γ _ 1 oc(g), Vg e G, γ e Γ.

Therefore, F(g) = b(gyι ° t/° c(g) satisfies F(gy) = L r l ° F(g), Vg
r

G, γ e Γ. Moreover, since ^4(g, x) = b(x)~λ ° b(g~ιx) and jB(g, x) =
c(x)" 1 ° cίg"1.*), Vg, x e G, we obtain

From the relation F(xy) = Ly_λ ° F(x), V J C G G J ^ Γ , one sees that

F e C(/ί I d^, //L) = C(C°°(di, E), HL),

and the relation #(g, jc) = F(x)~ι o ̂ (g, JC) o ̂ (g" 1^) shows that

vg

B = p-^w^op, Vg£:G. α
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(6.9) Obviously, if the subgroup Γ is compact, any inducing represen-

tation is linearizable, and therefore any induced representation is lineariz-

able. Let us now develop an example of linearization in the non compact

case. We assume that N is a closed connected normal nilpotent subgroup

of Γ assumed connected. Let n be the Lie algebra of N9 set m = dL\n, and

let λ 1 ? . . . , λ p e n* be the weights of TΓ (see (0.10)). GivenN = (nv...,np)

e N*, we set \N\ = Σf=1nt and (N9 λ> = Σf^n^.

6.9.1. PROPOSITION. Assume that (N, λ ) Φ λy, V; = 1,...,/?, VNsuch

that \N\ > 2. Then any formal representation of G induced from a formal

representation ofT with linear part L is linearizable.

Proof. From (0.9) it is sufficient to prove that H\y, L(<&nE,E)) =

{0}, \/n > 2. We use the Hochschild-Serre sequence [4]

0 -> j y ^ γ / n , L( <g> E,

From the condition (N9 λ> # λy, we deduce that ^ ( ® n E, E)n = {0}.

Therefore,

But since L( (g) E, E)n = {0}, and since n is a nilpotent Lie algebra, one

has H\n9L(h E,E))={0} and, therefore H\n, L(® E, Eψ =
{0}. " n π

6.9.2. Assume that G is the Euclidean group G = SO(«) Rn. Unitary

irreducible faithful linear representations of G are obtained when inducing

linear representations of Γ = SO(« - 1) R" of the form

L{θ, r) = σ(0) θ(r), θ e SO(n - l ) , r G Rw,

where σ is a unitary irreducible representation of SO(n — 1), and θ a

unitary non trivial character of R". Applying 6.9.1 with N = Rw, we obtain

that any formal induced representation of G with a unitary irreducible

faithful linear part is linearizable.

6.9.3. Assume that G is the Poincare group SO0(3,1) R4 and U is a

linear representation of G C00-induced by one of the representations of

the (corresponding) little group Γ which are used to obtain the usual

unitary m2 > 0 representations. Since the restriction to R4 of the linear
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representations of Γ inducing U is a non trivial character, (6.9.1) applies.
Therefore, any induced representation of G with linear part U is lineariz-
able.

7. Some examples in the abelian case. In this section we assume
G = Rw, Γ = Zn and £ = G/Γ. As before, E is a finite-dimensional
complex space. Given a Frechet space i% we identify C°°(dί, F) with the
space of Γ-periodic F-valued functions over G. Our first proposition
shows that induced representations from Γ to G can always be realized as
multiplier representations on 36.

7.1. PROPOSITION. Given a formal representation I of T in E, there
exists a multiplier A over G X £ which extends I. The formal representation
VA of G belongs to the class induced by I.

Proof. By (2.4) we have only to prove (7.1) when / is a linear
representation of Γ. Let ev...9en be the canonical basis of Rw, and set
Ijr = Ie, j = 1,... ,n. We can find KJ9 j = 1,... ,w, in L(E) such that
[Kl9 Km] = 0, V/, m, and /,. = exp Kp V/. Setting

She1+.. +tnen = expίM^ + - - + tnKn), tt e R,

we get a linear representation 5 of Rn extending /. Since S is a multiplier
over G X 3£, we obtain the first part of (7.1). For the second part, we
apply (6.9). D

We now give a description of multipliers over G X Ϊ , and its interpre-
tation in terms of systems of non autonomous differential equations of §3.
Precisely, we shall consider systems of type

(i) | £ = iΓ(,)o/(ί), / = 1 , . . . , H , / E G ,

where F is a given element of L(g, C°°(£, C{E))\ Ft = F_ a / 3 / / , where
ί = ( ί p . . . , tn) is the variable in R", the unknown/is in C°°(Rn, C(E)) and
must satisfy an initial condition/(0) = Γ, Γ e C(£). From the results of
§3, (i) is integrable if and only if F satisfies the Frobenius compatibility
condition

We assume in the following that this condition is satisfied. Our goal in
this section is to see whether such systems can be reduced to autonomous



392 GEORGES PINCZON

systems (i.e. F e L(g,C(/?))) by an equivalence of type (3.6) (i.e. an

equivalence involving a Γ-periodic function). We begin by the reduction

of linear systems.

7.2. PROPOSITION. Any linear integrable systems of type (i) is linearly

equivalent to a linear autonomous systems

Proof. From (3.3) there exists a linear multiplier A over (?X3E such

that F = dA. Set /^ = A(k, 0), K Γ , and introduce the linear representa-

tion S of Γ constructed from / during the proof of (7.1). Since the linear

multipliers A and S over G X 36 both extend /, they are linearly equivalent

(2.2). Therefore, the given system is equivalent to the system associated

with the multiplier S (3.6). Since this last system has constant coefficients,

(7.2) follows.

REMARK. For n = 1, (7.2) is known as Floquet's theorem [1].

We now carry general systems into "normal form". First, we need

some notation: given a linear representation I1 of Γ, we denote by s (resp.

u) the semi-simple part (resp. the unipotent part) of J 1 .

7.3. LEMMA. Given a formal representation I of Γ, let s be the semi-sim-

ple part of I1, then, up to equivalence, one has sk° Iι = It° sk, V/:, / G Γ .

Proof. We denote by Ad"/1 the linear representation of Γ on Cn(E)

= L( <g>w s E, E) defined by> w s

Obviously Ad ns (resp. Adnw) is the semisimple part (resp. the unipotent

part) of Ad"/1. We decompose Cn(E) = C ^ θ Co", where Cn

+ is the sum of

the eigenspaces of Aάns corresponding to non trivial eigenfunctions, and

CQ is the eigenspace of the trivial eigenfunction. C" and C0

Λ are stable

under Ad"/1.

Let us set in

k = /£ <> /i_ l 9 fc e Γ. Writing Ik+k> = Ik° Ik>, at order 2,

we get

Therefore ι2 e Z ^ A d 2 / 1 ) . We decompose /2 = / 2 + / 2 , where / 2 e

Z\T, A d 2 / 1 ! ^ ) and /2 e Z ^ ^ A d 2 / 1 ! ^ ) . Since Ad2/ x |C2 does not con-

tain the trivial representation, i 2 is a coboundary. Therefore, by a stan-

dard argument using an equivalence of type (/ + A2), A2 e C2(E), we
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can assume i\= 0, i.e. Ik e C0

2, Vfc e Γ. Writing now Ik+k» = Ik° Ik> at

order 3, we get

Obviously, d\ e Co

3, VA: e Γ. Writing ι3 = i\ + i3., we therefore conclude

that

l + k + k' Λ U 1 k \ l + kf) ^ l + k> V / C > AC t z l .

Therefore i + e Z 1(Γ, Ad 3 / 1 !^), and since this representation does not

contain the trivial representation, / ̂  is a coboundary. Using an equiva-

lence of type (/ 4- A3), A3 e C3{E), we can assume /+= 0, i.e. I\ e Co

3,

Vfce Γ.

It is now clear that repeating the preceding arguments, we shall

construct an equivalent formal representation satisfying the desired rela-

tion. D

REMARK. Note that (7.3) is true for any abelian group Γ with exactly

the same proof.

7.4. PROPOSITION. (1) Given a multiplier A over G X £, let I be the

associated formal representation o/Γ, and let s be the semi-simple part of I1.

Up to equivalence, one has sk <> A(t, x) = A(t, x) ° sk9 Vfc G Γ, /, x E G.

(2) Given an integrable system of type (i), let A be the associated

multiplier (3.3) and let us keep the notation of (1). Up to equivalence (i)

reduces to a system which contains only "resoning terms", i.e.

Proof. (1) From Lemma 7.3, up to equivalence, we can assume that

sk° Iι = 77 ° sk, VA:, / G Γ .

Let S1 be a linear representation of R" extending 7 1 (see (7.1)). We

now are going to refine the proof of (2.5) in order to get our result: with

the notation of (2.5) we introduce

= ί
•T•T

Since s is linear and commutes with / and 71, we get that s commutes
with F. Moreover, F(t + k) = I\k o F(t)°Ik, V / E 6 , i t G Γ , and F\t)
= Id £ , Vt e G. Following (2.5), we introduce b(t) = F(t)~ι ° Slt °
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which also commutes with s9 and satisfies b(t + k) = Ik

x ° b(t), V/ e G,

H G Γ , b(t) e / ) (£) , V/ e G, and 6(0) = Id^. The multiplier Λ' over

G X £ defined by ^4'(ί, x) = o ( x ) " 1 ° b(x - t), t, x e G, commutes with

5, and since it extends /, it is equivalent to A (2.2).

(2) We set F = dA and use (1). D

REMARK. (7.4) is proved for n = 1 in [1].

Given a = (al9...9am) e C°°(G,CW) and/? = (pv...,pm) e N w , we

set α^ = αfi •••«£• and 1 ^ 1 = ^ + + p
m.

7.5. PROPOSITION. Given an integrable system of type (i), assume there

are no resonance relations, i.e. the eigenfunctions ax am of the semi-sim-

ple part s of the corresponding formal representation IofT satisfy ap Φ a ,

Vy = 1,... ,m, V/7 G N m such that \p\ > 2; then (i) is equivalent to a linear

autonomous system

Proof. With the assumption of (7.5), only linear elements of C(E) can

commute with s. Therefore, using (7.4), we reduce (i) to a linear system.

We then apply (7.2). D

We are now going to make (7.4) precise by reducing systems of type

(i) to a canonical form. First, we need a lemma, which concerns extensions

of representations of Γ to representations of G.

7.6. LEMMA. Given a formal representation of Γ with unipotent linear

part, there exists a unique formal representation S ofG, with unipotent linear

part, such that S\τ = /. Assuming that Γ E C(E) and satisfies T° Ik =

Ik o T, VA: e Γ, then ToSt = St<>T,\/t e G.

Proof. We begin with the case Γ = Z, G = R. Given an element X of

C(E), let us recall how the flow S of X can be constructed (see [5] or [11]

for details): S is the solution of dSJdt = 1 ° Sn So = I d £ . Setting S,1 =

exp £Y\ e E R 5 w e introduce st = Sι_t° St9 which is the solution of

Obviously, sj = IdE, V/ e R, and

< = Σ ('{s^oXΌSl Σ s% * • ® s'u * σn) du.
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Now, setting / = Il9 we solve the equation Sx = /, where the unknown is
the vector field X. Since we are looking for a unipotent Sι

9 X will be a
vector field with nilpotent linear part. We first get Jι = exp X1, which is
known to have a unique nilpotent solution X1. We recall that X1 com-
mutes with any Γ G L{E) commuting with /. Assuming we have found
X1,. ,.9X

n~~1

9 we now compute Xn. Let us define a linear representation
KάnS

ι oί G on Cn{E) by

From the beginning of the proof, we see that

{Jψ'oj"- "t j l du[\άpSl(X") Σ 4 ® •• ®
p-2J0 \ ί,+ . . . + i , - »

= f1 AdX(X*) du.
J 0

Therefore, Xn can be computed if the linear mapping /Q1 AdnS\du
is invertible in L(Cn{E)). But since Sι is unipotent, Ad^S1 is also
unipotent, and therefore ft AdnSl du is invertible. This shows the ex-
istence and unicity of S when Γ = Z and G = R.

Assume now that T <Ξ D(E) satisfies JΌ Ik = 4 o r, Ϋ έ e Γ = Z.
Then setting ^ = T° St°T~ι

9 we obtain a formal representation of R
satisfying V1 = S1 and V\τ = /. By unicity we conclude that V = S9 and
therefore Γ <> $ = $ o r, Vί e R.

Now, assume Γ = Zn and G = Rw. Let β^. . . ,^ be the canonical
basis of G and define /,-(&) = /Λ β, A: e Z. From the preceding results,
there exists a unique formal representation Sέ of R such that S^z = /,..
Since Ii and /y. commute, so do S, and 5,, therefore we define a formal
representation 5 of G by

Obviously, S|Γ = /. D

7 . 7 . P R O P O S I T I O N . ( 1 ) L e / A b e a m u l t i p l i e r o v e r G X $ swcΛ rΛ^/ t h e

associated formal representation IofT has unipotent linear part. Then there
exists a formal representation S of G such that the multipliers A and S are
equivalent.

(2) Given an integrable system of type (i), let A be the associated
multiplier (3.3) and assume that A satisfies the hypothesis of(ΐ); then there
exist Gv... ,Gnin C(E) with nilpotent linear part such that (i) is equivalent
to the autonomous system
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Proof. (1) From (7.6) there exists a formal representation S of G such
that S | Γ = /. Since S and A are multipliers over G X X which both extend
/, they are equivalent (2.2).

(2) Apply (3.3) and (1). D

7.8. PROPOSITION. (1) Let A be a multiplier over G X £, / the associ-

ated formal representation o/Γ, s the semi-simple part of I1. We continue to

denote by I1 (resp. s) any extension of I1 to G (resp. its semi-simple part).

There exists a formal representation S of G such that:

sk°St = St° sk, V / e G , i k € Γ ;
A is equivalent to the multiplier A'(t, x) = sx ° St ° s(t_x), Vί, x e G.

(2) Given an integrable system of type (i), let A be the associated

multiplier (3.3), and keep the notation of (1). There exists Gl9...9Gn in

C(E) with nilpotent linear part such that:

sk o G, = Gs osk, V ί ε Γ , / = l , . . . 9 n; [Gi9 Gj\ = 0, V ij;

(i) is equivalent to the system

where ds is the differential of the linear representation s.

Before proving (7.8), let us make a few remarks: first, if there are no
resonance relations for the eigenfunctions of s (see (7.5) for the definition),
(7.8) is nothing but a very complicated way of proving (7.5)! On the other
hand, when there exist resonance relations, (7.8) gives some minimal
canonical reduction of systems of type (i) much more precise than (7.4).

Proof. (1) Up to equivalence ((7.3)), we can assume that sk ° Iι = // ° sk9

Vfc, / ε Γ . Therefore, setting Jk = Ik°s_k, i e Γ , we obtain a formal
representation of Γ with unipotent linear part. Applying (7.6), there exists
a formal representation S of G such that S|Γ = /. Moreover, sk° St =
St°sk, \fk E Γ , t G G. Let us now define b'(t) = S_t°s_t\ we have
b\t + k) = I_k°b'(t\ V J t e Γ , / e G. Consequently, Λ\t9 x) =
b'(x)~ι o b\x - t)9 t9 x G G, defines a multiplier over G x $ , and it is
obvious that A' extends /. Therefore A and A' are equivalent (2.2).

Computing yί', one obtains A\t, x) = sx° St° s(,_Λ;), W, x e G.
(2) Computing ίi4', one obtains (2). D

8. Examples of non linear induced representations of G = SU(1,1).
In this section G = SU(1,1), Ϊ = { J C G C | |JC| = 1}. Following [20] we
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introduce an action of G on £ by

ax- β (a β\ 2 . .2 Λ

S X = ^ 1 & > S = [ β δ ) W -1^1 = 1

We introduce the linear scalar multiplier m(g, x) = a+βx and define the
continuous series of (linear) representations of G on C°°(3E) by

Tl(f)(x)=\m(g,x)\2'f(g-1x),

g(=G,fe C

We define π: G -> £ by π{g) = g 1. Using TΓ we can identify $ and G/T,
where Γ is the following closed subgroup of G:

Γ - g - U - e < ? | α - j 8 e R .

We denote by Γo the connected component of 1 (1 = [J> f]) in Γ, i.e.

o - U - K L eσ|β-jβeR+ .

Γ/Γo can be identified with the subgroup {1, — 1} of Γ.
It is easily seen that the multiplier defining Tι (resp. Uι) extends the

linear character /7(γ) = \ά +β\2ί (resp. /7(γ) = \a +β\2l~ι{cί +β)) of Γ.
Therefore, both Tι and Uι are Hnear C00-induced representations of G
((4.7)). We are now going to solve the following problem: find and classify
all non linear induced representations of G having Tι or ί/7, / Φ 0, as
linear part. This problem will be solved in two steps: first, we find and
classify all the formal representations of Γ in C having lι or Jt as linear
part, then we construct the corresponding multipliers over G x ϊ . Given
such a multiplier A, the corresponding representation VA is induced
((6.8)), and we finally obtain all the formal representations of G induced
by formal representations of Γ in C with non trivial linear part.

8.1. PROPOSITION. Assume I Φ 0. There exists a formal representation I
of Γ with linear part lι {resp. /,) if and only if I = 1, \, \,... {resp. I = \9

\,...). Up to equivalence this representation is unique and given by the
{formal development of) formula:

n^N W > 9 / - - J L _ Z = C T(A- \«+β\2!*
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{resp.

i I

n - 1 e 2N*, / =

Proof. Let γ be the Lie algebra of Γ. We introduce the generators

Λ - \ \ I], N-\ * >]
LI OJ L-ί -ι\

of γ, with commutation rule [A, N] = —2N. Let us denote by π the
representation <Uι (or dJt) of γ. One has πA(z) = 2/z, πN(z) = 0, Vz e C.
Assume next that there exists a formal representation S of γ with linear
part π. Then, up to equivalence, we can suppose that SA = πA. Now the
problem of finding such an S is equivalent to the following problem:
given the vector field A = — 2lz(d/dz), it is possible to find a vector field
N with vanishing linear part such that [A, N] = —2N. Since
[A, zn(d/dz)]= -2l(n - \)zn{d/dz\ we find that, necessarily, / =
l/(n — 1), n = 2,3,... For such values of /, N = λzn(d/dz) satisfies our
condition. Up to equivalence we can assume that N = zn(d/dz). Now
defining SA(z) = 2z/(n - l\ SN(z) = -z", z e C, we get S. Using the
Iwasawa decomposition and some computation, we get S = dl, where / is
the formal representation of Γo defined by the (formal development of)
formula

We can extend / to Γ by

and obviously the linear part of / is / 1 / ( n _ 1 } . It remains now to extend / to
Γ in such a way that its linear part is Jι/{n-i) if possible. Noticing that
/ ( - I ) must commute with the flow of πA = dIA, we obtain / ( - I ) =
Λ/(«-i)(~~l) = " " I ( i c . But since / ( - I ) must commute with Jγ, Vγ e Γ,
we obtain that n — 1 must be even. Assuming that it is, we define

_ j α ± ^ j (<*+/?); γ e Γ , z e c .

The linear part of / is Jλ/ ( n _ 1}.
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8.2. COROLLARY. Non linear scalar multipliers over G x ϊ with non

trivial linear part are given, up to equivalence, by the {formal) development

of the formulae:

l 2 /

\ Z

B,(g,x)(z) =

[l + ΓιIm(aβx)z1/ι]1

, Z G C ,

|ά +βx\2l~ι(a+βx)z

ΓιIm(aβx) z1/ι]
i'

The formal representations VA' and VBι {see (1.1)) describe all formal

representations of G induced {in the sense of 6) by formal representations of

Γ in C with non trivial linear part. The linear part of VAι is Th and the linear

part of VBl is Ut.

Proof. We have to extend the formal representations of Γ given by

(8.1) to multipliers on G X 36. Since the proof is rather combinatorial, we

omit details: the formulae of (8.2) can be obtained using the formula given

in the proof of (2.4), with an adapted section s of the projection 77 and use

of the Iwasawa decomposition. D

8.3. REMARK. It can be seen that formulae (8.2) are particular cases of

formula (4.8).
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