ISOMORPHISMS OF SPACES OF NORM-CONTINUOUS FUNCTIONS

Michael Cambern

Abstract

If X and Y are compact Hausdorff spaces and E a uniformly convex Banach space, then the existence of an isomorphism T of $C(X, E)$ onto $C(Y, E)$ with $\|T\|\left\|T^{-1}\right\|$ small implies that X and Y are homeomorphic.

1. Introduction. Throughout this article, the letters X, Y, Z, and W will denote compact Hausdorff spaces, and E a Banach space. $C(X, E)$ denotes the space of continuous functions on X to E provided with the supremum norm. If E is a dual space then $C\left(X, E_{\sigma^{*}}\right)$ stands for the Banach space of continuous functions F on X to E when this latter space is provided with its weak* topology, again normed by $\|F\|_{\infty}=$ $\sup _{x \in X}\|F(x)\|$. If E is the one-dimensional field of scalars then we write $C(X)$ for $C(X, E)$. The interaction between elements of a Banach space and those of its dual is denoted by $\langle\cdot, \cdot\rangle$. We write $E_{1} \cong E_{2}$ to indicate that the Banach spaces E_{1} and E_{2} are isometric.

The well known Banach-Stone theorem states that if $C(X)$ and $C(Y)$ are isometric then X and Y are homeomorphic. Various authors, beginning with M. Jerison [13], have considered the problem of determining geometric properties of E which allow generalizations of this theorem to spaces of norm-continuous vector functions $C(X, E)$. The most exhaustive compilation of results of this nature can be found in the monograph by E. Behrends [2]. Another type of generalization of the theorem was obtained independently in [1] and [3], and, while still dealing with scalar functions, replaces isometries by isomorphisms T with $\|T\|\left\|T^{-1}\right\|$ small.

The first attempt to combine these two directions of generalization is found in [4], where it is shown that if E is a finite-dimensional Hilbert space, then the existence of an isomorphism T of $C(X, E)$ onto $C(Y, E)$ with $\|T\|\left\|T^{-1}\right\|<\sqrt{2}$ implies that X and Y are homeomorphic. More recently, K. Jarosz [12] has obtained a similar generalization for Banach spaces E whose dual space satisfies a geometric condition involving both $\|T\|\left\|T^{-1}\right\|$ and the number $4 / 3$. Here we obtain such a theorem for all uniformly convex spaces E. Moreover, given such a space E, the bound on the isomorphisms for which our theorem works depends on the modulus of convexity associated with E.

Our method of proof depends on a characterization of the second dual space of $C(X, E)$, and is analogous to the method used by H. B. Cohen in the scalar case to obtain a new proof of the results of [1] and [3]. The first dual of $C(X)$ is, of course, given by the Riesz representatioin theorem which states that $C(X)^{*}$ consists of all finite, regular, scalar-valued Borel measures μ on X. The vector analogue of this result was obtained by I. Singer in [15], where it is shown that $C(X, E)^{*}$ is the Banach space of all regular Borel measures m on X to E^{*}, with finite variation $|m|$, and norm given by $\|m\|=|m|(X)$. An English version of the proof of this theorem can be found in [16, p. 192].

In [7] Cohen exploited the fact, first established by Kakutani [14], that $C(X)^{* *}$ is isometric to a space $C(Z)$ for a particular compact Hausdorff space Z dependent on X. And in [5] it is shown that if X is dispersed or if E^{*} has the Radon-Nikodym property, then $C(X, E)^{* *} \cong C\left(Z, E_{\sigma^{*}}^{* *}\right)$ where Z is that compact Hausdorff space such that $C(X)^{* *} \cong C(Z)$. The interaction between the elements of the first dual of $C(X, E)$ (that is, vector measures on X), and functions in $C\left(Z, E_{\sigma^{*}}^{* *}\right)$ is given explicitly in [6]. It is the result of [5] on which we base most of our arguments.

We shall assume henceforth, that E is a uniformly convex Banach space. Let U denote the unit ball in E and let

$$
\delta(\varepsilon)=\inf _{e_{1}, e_{2} \in U}\left\{1-\left\|\left(e_{1}+e_{2}\right) / 2\right\|:\left\|e_{1}-e_{2}\right\| \geq \varepsilon\right\}
$$

Recall that E is uniformly convex means that $\delta(\varepsilon)>0$ when $0<\varepsilon \leq 2$. We will frequently use the fact that we always have $\delta(1) \leq \frac{1}{2}$.

The uniform convexity of E enters into our proof in a number of ways. First, we rely upon a geometric property of uniformly convex spaces which we establish in Lemma 1. Also E uniformly convex implies that E is reflexive [8, p. 147], and thus E^{*} has the Radon-Nikodym property [9, p. 218] and the result of [5] applies. We wish to prove the following:

Theorem. Let X and Y be compact Hausdorff spaces and E a uniformly convex Banach space. If T is an isomorphism of $C(X, E)$ onto $C(Y, E)$ satisfying $\|T\|\left\|T^{-1}\right\|<(1-\delta(1))^{-1}$, then X and Y are homeomorphic.

The proof of the theorem will be established via a sequence of lemmas and a proposition. However we first note the following. By replacing T by the isomorphism $(1+\varepsilon)\left\|T^{-1}\right\| T$ for a sufficiently small positive number ε, we may suppose, without loss of generality, that T is strictly norm-increas-ing-i.e., $\|T F\|_{\infty} \geq(1+\varepsilon)\|F\|_{\infty}$, for $F \in C(X, E)$, and that we have $\|T\|<(1-\delta(1))^{-1}$. Fix such an ε, and then fix a positive number P with
$1<P<1+\varepsilon$. We will thus assume, throughout the remainder of this article, that we are dealing with an isomorphism T of $C(X, E)$ onto $C(Y, E)$ satisfying $\|T F\|_{\infty}>P\|F\|_{\infty}$ for $F \in C(X, E), F \neq 0$ and $\|T\|<$ $(1-\delta(1))^{-1}$.

Since here we have $E^{* *}=E$, it follows that $C(X, E)^{* *}$ is of the form $C\left(Z, E_{\sigma^{*}}\right)$ for a certain compact Hausdorff space Z. Similarly, $C(Y, E)^{* *}$ $\cong C\left(W, E_{\sigma^{*}}\right)$ for that compact Hausdorff space W with $C(Y)^{* *} \cong C(W)$. We can thus regard $T^{* *}$ as a strictly norm-increasing isomorphism of $C\left(Z, E_{\sigma^{*}}\right)$ onto $C\left(W, E_{\sigma^{*}}\right)$ satisfying $\left\|T^{* *}\right\|<(1-\delta(1))^{-1}$ and $\left\|T^{* *} F\right\|_{\infty}$ $>P\|F\|_{\infty}$ for $F \in C\left(Z, E_{\sigma^{*}}\right), F \neq 0$.

Next note that if $F^{*} \in C\left(Z, E_{\sigma^{*}}\right)^{*}$, then the restriction of F^{*} to $C(Z, E)$ is a continuous linear functional of norm less than or equal to $\left\|F^{*}\right\|$. Thus, by Singer's result, this restriction is given by a regular Borel vector measure n on X to E^{*} with $\|n\| \leq\left\|F^{*}\right\|$. If z is any point of Z, n can then be uniquely decomposed as $n=\psi \cdot \mu_{z}+m$, where μ_{z} denotes the scalar unit point mass at $z, \psi \in E^{*}$, and $m \in C(Z, E)^{*}$ with $m(\{z\})=0$. (Take $\psi=n(\{z\})$ and $m=n-\psi \cdot \mu_{z}$.) We then let \bar{m} denote any normpreserving linear extension of m to an element of $C\left(Z, E_{\sigma^{*}}\right)^{*}$ and set
$=F^{*}-\psi \cdot \mu_{z}-\bar{m}$. Then Φ is a continuous linear functional on
$\left.Z, E_{\sigma^{*}}\right)$ which vanishes on $C(Z, E)$ and $F^{*}=\psi \cdot \mu_{z}+\bar{m}+\Phi$. Whenever we write an element $F^{*} \in C\left(Z, E_{\sigma^{*}}\right)^{*}$ in this manner, $F^{*}=$ $\psi \cdot \mu_{z}+\bar{m}+\Phi$, it will be implicit that $\psi \in E^{*}$, that \bar{m} is a fixed HahnBanach extension of the vector measure m determined as above, and consequently that $\Phi \in C(Z, E)^{\perp}$. A similar convention applies when we write an element $G^{*} \in C\left(W, E_{\sigma^{*}}\right)^{*}$ as $G^{*}=\psi \cdot \mu_{w}+\bar{m}+\Phi$.

Finally, we let X_{0} denote the set of isolated points of Z. It is known that each point of X_{0} is of the form $t x$ for some $x \in X$, where t is the canonical (nontopological) injection of X into Z, and every such point $t x$ is isolated [11, p. 841]. Similarly, we let Y_{0} denote the set of isolated points of W so that Y_{0} consists of the points $s y, y \in Y$, where s is the corresponding injection of Y into W.

2. Proof of the Theorem.

Lemma 1. If E is a uniformly convex normed linear space and r is a positive integer, and if we are given 2^{r} elements $e_{j} \in E$ with $\left\|e_{j}\right\| \geq \eta>0$ for $1 \leq j \leq 2^{r}$, then
(i) there exists scalars $\lambda_{j}, 1 \leq j \leq 2^{r}$, with $\left|\lambda_{j}\right| \leq 1$ for all j such that $\left\|\Sigma_{j=1}^{2^{r}} \lambda_{j} e_{j} /\right\| e_{j}\| \| \geq(1-\delta(1))^{-r}$, and consequently
(ii) there exist scalars $\alpha_{j}, 1 \leq j \leq 2^{r}$, with $\left|\alpha_{j}\right| \leq 1$ for all j such that $\left\|\Sigma_{j=1}^{2^{r}} \alpha_{j} e_{j}\right\| \geq \eta(1-\delta(1))^{-r}$.

Proof. The proof is established by induction on r. First assume that $r=1$ and that $e_{1}, e_{2} \in E$, with $\left\|e_{j}\right\| \geq \eta, j=1,2$. Then

$$
e_{1} /\left\|e_{1}\right\|=\frac{1}{2}\left(e_{1} /\left\|e_{1}\right\|+e_{2} /\left\|e_{2}\right\|\right)+\frac{1}{2}\left(e_{1} /\left\|e_{1}\right\|-e_{2} /\left\|e_{2}\right\|\right)
$$

and, since a uniformly convex space is strictly convex, we must thus have either

$$
\left\|e_{1} /\right\| e_{1}\left\|+e_{2} /\right\| e_{2}\| \|>1 \quad \text { or } \quad\left\|e_{1} /\right\| e_{1}\left\|-e_{2} /\right\| e_{2}\| \|>1
$$

and both of these norms are less than or equal to 2 . Let M be the maximum of these two norms. Then by taking $\lambda_{1}=1$ and $\lambda_{2}=1$ or -1 we can find scalars λ_{j} of modulus one such that

$$
\begin{equation*}
\left\|\lambda_{1} e_{1} /\right\| e_{1}\left\|+\lambda_{2} e_{2} /\right\| e_{2}\| \|=M>1 \tag{*}
\end{equation*}
$$

Now

$$
a=(1 / M)\left(\lambda_{1} e_{1} /\left\|e_{1}\right\|+\lambda_{2} e_{2} /\left\|e_{2}\right\|\right)
$$

and

$$
b=(1 / M)\left(\lambda_{1} e_{1} /\left\|e_{1}\right\|-\lambda_{2} e_{2} /\left\|e_{2}\right\|\right)
$$

are in the closed unit ball U of E and $(1 / M)\left(\lambda_{1} e_{1} /\left\|e_{1}\right\|\right)$ is the midpoint of the segment joining them. Also, since $\|a-b\|=2 / M$ and M is less than or equal to 2 , we have

$$
1-1 / M=1-\left\|(1 / M)\left(\lambda_{1} e_{1} /\left\|e_{1}\right\|\right)\right\| \geq \delta(2 / M) \geq \delta(1)
$$

giving $M \geq(1-\delta(1))^{-1}$ and establishing (i) for $r=1$.
Next let $N=\min \left\{\left\|e_{1}\right\|,\left\|e_{2}\right\|\right\}$. Then from (*) we have

$$
\left\|\left(N \lambda_{1} /\left\|e_{1}\right\|\right) e_{1}+\left(N \lambda_{2} /\left\|e_{2}\right\|\right) e_{2}\right\|=N \cdot M \geq \eta(1-\delta(1))^{-1}
$$

Thus letting $\alpha_{J}=N \lambda_{j} /\left\|e_{j}\right\|$ for $j=1,2$ we have established (ii) for $r=1$.
Now assume the lemma is valid for all r with $1 \leq r \leq k$, and that we are given elements $e_{j} \in E, 1 \leq j \leq 2^{k+1}$, with $\left\|e_{j}\right\| \geq \eta$ for all j. By the inductive hypothesis there exist scalars $\hat{\lambda}_{j}, 1 \leq j \leq 2^{k+1}$, with $\left|\hat{\lambda}_{j}\right| \leq 1$ for all j such that

$$
\left\|\sum_{j=1}^{2^{k}} \hat{\lambda}_{j} e_{j} /\right\| e_{j}\| \|=M_{1} \geq(1-\delta(1))^{-k}
$$

and

$$
\left\|\sum_{j=2^{k}+1}^{2^{k+1}} \hat{\lambda}_{j} e_{j} /\right\| e_{j}\| \|=M_{2} \geq(1-\delta(1))^{-k}
$$

Then

$$
c=\left(\frac{1}{M_{1}}\right) \sum_{j=1}^{2^{k}} \hat{\lambda}_{j} e_{j} /\left\|e_{j}\right\| \quad \text { and } \quad d=\left(\frac{1}{M_{2}}\right) \sum_{j=2^{k}+1}^{2^{k+1}} \hat{\lambda}_{j} e_{j} /\left\|e_{j}\right\|
$$

belong to U and $c=\left(\frac{1}{2}\right)(c+d)+\left(\frac{1}{2}\right)(c-d)$. Since $\|c\|=1$, again we must have either $\|c+d\|>1$ or $\|c-d\|>1$, and both of these norms are ≤ 2.

Let M be the maximum of these two norms. Thus taking either $\tilde{\lambda}_{j}=\hat{\lambda}_{j}$ for all j with $2^{k}+1 \leq j \leq 2^{k+1}$, or $\tilde{\lambda}_{j}=-\hat{\lambda}_{j}$ for all such j, we can find $\tilde{\lambda}_{j}$ with $\left|\tilde{\lambda}_{j}\right| \leq 1$ such that

$$
\begin{equation*}
\left\|\left(\frac{1}{M_{1}}\right) \sum_{j=1}^{2^{k}} \hat{\lambda}_{j} e_{j} /\right\| e_{j}\left\|+\left(\frac{1}{M_{2}}\right) \sum_{j=2^{k}+1}^{2^{k+1}} \tilde{\lambda}_{j} e_{j} /\right\| e_{j}\| \|=M>1 \tag{**}
\end{equation*}
$$

Let $e=\left(1 / M_{2}\right) \sum_{j=2^{k+1}}^{2^{k+1}} \tilde{\lambda}_{j} e_{j} /\left\|e_{j}\right\|$. Now $a=(1 / M)(c+e)$ and $b=$ $(1 / M)(c-e)$ are in U and $(1 / M) c$ is the midpoint of the segment joining them. Also $\|a-b\|=2 / M$. Hence

$$
1-1 / M=1-\|(1 / M) c\| \geq \delta(2 / M) \geq \delta(1)
$$

giving $M \geq(1-\delta(1))^{-1}$.
Let $M_{0}=\min \left\{M_{1}, M_{2}\right\}$. Then from $\left({ }^{* *}\right)$ we have

$$
\sum_{\|=1}^{\| 2^{k}}\left(\frac{M_{0} \hat{\lambda}_{j}}{M_{1}}\right) \frac{e_{j}}{\left\|e_{j}\right\|}+\sum_{j=2^{k}+1}^{2^{k+1}}\left(\frac{M_{0} \tilde{\lambda}_{j}}{M_{2}}\right) \frac{e_{j}}{\left\|e_{j}\right\|} \|=M \cdot M_{0} \geq(1-\delta(1))^{-k-1}
$$

so that, by letting $\lambda_{j}=M_{0} \hat{\lambda}_{j} / M_{1}$ for $1 \leq j \leq 2^{k}$ and $\lambda_{j}=M_{0} \tilde{\lambda}_{j} / M_{2}$ for $2^{k}+1 \leq j \leq 2^{k+1}$, we have established (i) for $r=k+1$.

Finally let $N=\min \left\{\left\|e_{j}\right\|: j=1, \ldots, 2^{k+1}\right\}$. We then have

$$
\left\|\sum_{j=1}^{2^{k+1}}\left(\frac{N \lambda_{j}}{\left\|e_{j}\right\|}\right) e_{j}\right\| \geq N(1-\delta(1))^{-k-1} \geq \eta(1-\delta(1))^{-k-1}
$$

and thus, setting $\alpha_{j}=N \lambda_{j} /\left\|e_{j}\right\|$ for $1 \leq j \leq 2^{k+1}$, we have established (ii) for $r=k+1$. This completes the proof.

Lemma 2. If $w \in W$ and $t x \in X_{0}$ then there exists an element ϕ of E^{*} with $\|\phi\|=1$ such that $T^{* * *} \phi \cdot \mu_{w}$ is of the form $\psi \cdot \mu_{t x}+\bar{m}+\Phi$ with $\|\psi\|>P$ if, and only if, for some $e \in E$ with $\|e\|=1$ we have $\left\|T^{* *}\left(\chi_{\{t x\}} \cdot e\right)(w)\right\|>P$.

Proof. Suppose that for some $e \in E$ with $\|e\|=1$ we have $\left\|T^{* *}\left(\chi_{\{t x\}} \cdot e\right)(w)\right\|>P$. Choose $\phi \in E^{*}$ with $\|\phi\|=1$ such that

$$
\left\langle T^{* *}\left(\chi_{\{t x\}} \cdot e\right)(w), \phi\right\rangle=\left\|T^{* *}\left(\chi_{\{t x\}} \cdot e\right)(w)\right\| .
$$

Then writing $T^{* * *} \phi \cdot \mu_{w}$ as $\psi \cdot \mu_{t x}+\bar{m}+\Phi$ we would have

$$
\begin{aligned}
P & <\left\|T^{* *}\left(\chi_{\{t x\}} \cdot e\right)(w)\right\|=\left\langle T^{* *}\left(\chi_{\{t x\}} \cdot e\right)(w), \phi\right\rangle \\
& =\int T^{* *}\left(\chi_{\{t x\}} \cdot e\right) d\left(\phi \cdot \mu_{w}\right)=\left\langle\chi_{\{t x\}} \cdot e, T^{* * *} \phi \cdot \mu_{w}\right\rangle \\
& =\int\left(\chi_{\{t x\}} \cdot e\right) d\left(\psi \cdot \mu_{t x}+m\right)+\left\langle\chi_{\{t x\}} \cdot e, \Phi\right\rangle=\langle e, \psi\rangle
\end{aligned}
$$

and hence $\|\psi\|>P$.
Conversely, suppose there exists a $\phi \in E^{*}$ with $\|\phi\|=1$ such that $T^{* * *} \phi \cdot \mu_{w}$ has the specified form. Take $e \in E$ with $\|e\|=1$ such that $\langle e, \psi\rangle>P$. A computation exactly like that above then gives

$$
\left\langle T^{* *}\left(\chi_{\{t x\}} \cdot e\right)(w), \phi\right\rangle=\langle e, \psi\rangle>P
$$

and, consequently, $\left\|T^{* *}\left(\chi_{\{t x\}} \cdot e\right)(w)\right\|>P$.
We now let W_{1} denote the set of all $w \in W$ such that for some $\phi \in E^{*}$ with $\|\phi\|=1$ there exists a $t x \in X_{0}$ with $T^{* * *} \phi \cdot \mu_{w}=\psi \cdot \mu_{t x}+$ $\bar{m}+\Phi$, where $\|\psi\|>P$. Then define $\rho: W_{1} \rightarrow X_{0}$ by $\rho(w)=t x$ if w and $t x$ are related as in the previous sentence.

We first note that ρ is a well defined map from W_{1} to X_{0}. For by Lemma 2 we have $w \in W_{1}$ and $\rho(w)=t x$ if, and only if, for some $e \in E$ with $\|e\|=1$ we have $\left\|T^{* *}\left(\chi_{\{t x\}} \cdot e\right)(w)\right\|>P$. Thus if we assume that there exist $\phi_{1}, \phi_{2} \in E^{*}$ with $\left\|\phi_{1}\right\|=\left\|\phi_{2}\right\|=1$ and

$$
T^{* * *} \phi_{i} \cdot \mu_{w}=\psi_{i} \cdot \mu_{t x_{i}}+\bar{m}_{i}+\Phi_{i}
$$

for $i=1,2$, with $\left\|\psi_{i}\right\|>P$ and $t x_{1} \neq t x_{2}$, then for all choices of scalars α_{i} with $\left|\alpha_{i}\right| \leq 1$ and all $e_{i} \in E$ with $\left\|e_{i}\right\|=1, i=1,2$, we would have $\left\|\alpha_{1} \chi_{\left\{t x_{1}\right\}} \cdot e_{1}+\alpha_{2} \chi_{\left\{t x_{2}\right\}} \cdot e_{2}\right\|_{\infty} \leq 1$. However, it follows from Lemmas 1 and 2 that for appropriate choices of such α_{i} and e_{i} we would have

$$
\begin{aligned}
& \left\|T^{* *}\left(\alpha_{1} \chi_{\left\{t x_{1}\right\}} \cdot e_{1}+\alpha_{2} \chi_{\left\{t x_{2}\right\}} \cdot e_{2}\right)\right\|_{\infty} \\
& \quad \geq\left\|\alpha_{1} T^{* *}\left(\chi_{\left\{t x_{1}\right\}} \cdot e_{1}\right)(w)+\alpha_{2} T^{* *}\left(\chi_{\left\{t x_{2}\right\}} \cdot e_{2}\right)(w)\right\| \\
& \geq P(1-\delta(1))^{-1}>(1-\delta(1))^{-1}
\end{aligned}
$$

contradicting the fact that $\left\|T^{* *}\right\|<(1-\delta(1))^{-1}$. Consequently ρ is well defined as claimed.

Moreover, ρ maps W_{1} onto X_{0}. For given $t x \in X_{0}$ then for any $e \in E$ with $\|e\|=1$ there exists some $w \in W$ such that $\left\|T^{* *}\left(\chi_{\{t x\}} \cdot e\right)(w)\right\|>P$. Thus, as noted in the second sentence of the previous paragraph, we have $w \in W_{1}$ and $\rho(w)=t x$.

By arguments exactly analogous to those given above, one obtains the companion result:

Lemma 2'. If $z \in Z$ and sy $\in Y_{0}$ then there exists an element ϕ of E^{*} with $\|\phi\|=1$ such that $T^{* * *-1} \phi \cdot \mu_{z}$ is of the form $\psi \cdot \mu_{s y}+\bar{m}+\Phi$ with $\|\psi\|>1-\delta(1)$ if, and only if, for some $e \in E$ with $\|e\|=1$ we have $\left\|T^{* *-1}\left(\chi_{\{s y\}} \cdot e\right)(z)\right\|>1-\delta(1)$.

We then let Z_{1} denote the set of all $z \in Z$ such that for some $\phi \in E^{*}$ with $\|\phi\|=1$ there exists an $s y \in Y_{0}$ with $T^{* * *-1} \phi \cdot \mu_{z}=\psi \cdot \mu_{s y}+\bar{m}+\Phi$, where $\|\psi\|>1-\delta(1)$. And we define $\tau: Z_{1} \rightarrow Y_{0}$ by $\tau(z)=s y$ if z and $s y$ are related as in the previous sentence. Just as before one establishes that τ is a well defined map carrying Z_{1} onto Y_{0}. Moreover, by Lemma 2', we have $z \in Z_{1}$ and $\tau(z)=s y$ if and only if for some $e \in E$ with $\|e\|=1$ we have $\left\|T^{* *-1}\left(\chi_{\{s y\}} \cdot e\right)(z)\right\|>1-\delta(1)$.

Lemma 3. (i) For each $t x \in X_{0}, \rho^{-1}(\{t x\})$ is a finite open set of points, and consequently $W_{1} \subset Y_{0}$.
(ii) For each sy $\in Y_{0}, \tau^{-1}(\{s y\})$ is a finite open set of points, and consequently $Z_{1} \subseteq X_{0}$.

Proof. Suppose $t x \in X_{0}$ and $w \in \rho^{-1}(\{t x\})$. Then there exists an $e_{w} \in E$ with $\left\|e_{w}\right\|=1$ such that $\left\|T^{* *}\left(\chi_{\{t x\}} \cdot e_{w}\right)(w)\right\|>P$. Let

$$
\hat{e}_{w}=T^{* *}\left(\chi_{\{t x\}} \cdot e_{w}\right)(w) /\left\|T^{* *}\left(\chi_{\{t x\}} \cdot e_{w}\right)(w)\right\|
$$

and take any continuous $g: W \rightarrow[0,1]$ such that $g(w)=1$. Then define $G \in C(W, E) \subseteq C\left(W, E_{\sigma^{*}}\right)$ by $G\left(w^{\prime}\right)=g\left(w^{\prime}\right) \cdot \hat{e}_{w}, w^{\prime} \in W$. Now

$$
\left\|G+T^{* *}\left(\chi_{\{t x\}} \cdot e_{w}\right)\right\|_{\infty} \geq\left\|G(w)+T^{* *}\left(\chi_{\{t x\}} \cdot e_{w}\right)(w)\right\|>1+P
$$

so that

$$
\left\|T^{* *-1}(G)+\chi_{\{t x\}} \cdot e_{w}\right\|_{\infty}>(1+P)(1-\delta(1)) \geq(1+P) / 2
$$

Thus as $\left\|T^{* *-1}(G)\right\|_{\infty}<1$ we must have $\left\|T^{* *-1}(G)(t x)\right\|>(P-1) / 2$.
Now pick any element $\phi_{w} \in E^{*}$ with $\left\|\phi_{w}\right\|=1$ such that $\left\langle\hat{e}_{w}, \phi_{w}\right\rangle=1$. Then $w \in\left\{w^{\prime} \in W:\left|\left\langle T^{* *}\left(\chi_{\{t x\}} \cdot e_{w}\right)\left(w^{\prime}\right), \phi_{w}\right\rangle\right|>P\right\}$, and this set is open. Moreover, for any w^{\prime} in this set, we have $\left\|T^{* *}\left(\chi_{\{t x\}} \cdot e_{w}\right)\left(w^{\prime}\right)\right\|>P$ and thus w^{\prime} must belong to $\rho^{-1}(\{t x\})$. Hence fixing such elements e_{w} and ϕ_{w} for each $w \in \rho^{-1}(\{t x\})$ we have

$$
\rho^{-1}(\{t x\})=\bigcup_{w \in \rho^{-1}(\{t x\})}\left\{w^{\prime} \in W:\left|\left\langle T^{* *}\left(\chi_{\{t x\}} \cdot e_{w}\right)\left(w^{\prime}\right), \phi_{w}\right\rangle\right|>P\right\}
$$

an open set.

We now show that $\rho^{-1}(\{t x\})$ is a finite set. Suppose that $w_{k}, 1 \leq k \leq$ 2^{r}, are elements of $\rho^{-1}(\{t x\})$. We have seen that for each k we can find $G_{k} \in C\left(W, E_{\sigma^{*}}\right)$ with $\left\|G_{k}\right\|_{\infty}=1$ and $\left\|T^{* *-1}\left(G_{k}\right)(t x)\right\|>(P-1) / 2$. If we choose the G_{k} to have pairwise disjoint supports, then for all scalars $\alpha_{k}, 1 \leq k \leq 2^{r}$, with $\left|\alpha_{k}\right| \leq 1$, we have $\left\|\Sigma_{k=1}^{2^{r}} \alpha_{k} G_{k}\right\|_{\infty} \leq 1$. But by Lemma 1(ii), we can choose the α_{k} such that

$$
\left\|\sum_{k=1}^{2^{r}} \alpha_{k} T^{* *-1}\left(G_{k}\right)(t x)\right\| \geq \frac{(P-1)(1-\delta(1))^{-r}}{2}
$$

Hence $\rho^{-1}(\{t x\})$ must be finite as claimed.
Thus for each $t x \in X_{0}, \rho^{-1}(\{t x\})$ is a finite open set of points, and thus consists entirely of isolated points. Hence $W_{1}=\bigcup_{t x \in X_{0}} \rho^{-1}(\{t x\})$ consists of isolated points and so $W_{1} \subseteq Y_{0}$, proving (i). The proof of (ii) is analogous.

Lemma 4. Given an element of $C\left(Z, E_{\sigma^{*}}\right)^{*}$ of the form $\psi \cdot \mu_{t x}+\bar{m}+\Phi$, where $t x \in X_{0}$ is an isolated point of Z, then

$$
\left\|\psi \cdot \mu_{t x}+\bar{m}+\Phi\right\|=\|\psi\|+\|\bar{m}+\Phi\|
$$

Proof. Suppose $\varepsilon>0$ is given. Choose $F \in C\left(Z, E_{\sigma^{*}}\right)$ with $\|F\|_{\infty} \leq 1$ such that $\langle F, \bar{m}+\Phi\rangle$ is real and greater than $\|\bar{m}+\Phi\|-\varepsilon$. Let $e_{1}=F(t x)$. Then both \bar{m} and Φ annihilate $e_{1} \cdot \chi_{\{t x\}}$ so that $\left\langle F-e_{1} \chi_{\{t x\}}, \bar{m}+\Phi\right\rangle>\|\bar{m}+\Phi\|-\varepsilon$. Choose an element $e_{2} \in E$ with $\left\|e_{2}\right\|=1$ and $\left\langle e_{2}, \psi\right\rangle=\|\psi\|$. Then $\left\|F+\left(e_{2}-e_{1}\right) \cdot \chi_{\{t x\}}\right\|_{\infty} \leq 1$ and thus

$$
\left\|\psi \cdot \mu_{t x}+\bar{m}+\Phi\right\|
$$

$$
\begin{aligned}
& \geq\left|\left\langle F+\left(e_{2}-e_{1}\right) \cdot \chi_{\{t x\}}, \psi \cdot \mu_{t x}+\bar{m}+\Phi\right\rangle\right| \\
& =\int e_{2} \cdot \chi_{\{t x\}} d\left(\psi \cdot \mu_{t x}\right)+\left\langle F-e_{1} \cdot \chi_{\{t x\}}, \bar{m}+\Phi\right\rangle \\
& >\|\psi\|+\|\bar{m}+\Phi\|-\varepsilon .
\end{aligned}
$$

Lemma 5. If sy $\in W_{1} \subseteq Y_{0}$ and $\rho(s y)=t x$, then $t x \in Z_{1}$ and $\tau(t x)=$ $s y$.

Proof. Let $s y$ belong to W_{1} and let $\rho(s y)=t x$. Suppose that either $t x$ is not an element of Z_{1}, or that $t x \in Z_{1}$, but $\tau(t x) \neq s y$. Either supposition leads to the conclusion that for all $e \in E$ with $\|e\|=1$ we have $\left\|T^{* *-1}\left(\chi_{\{s y\}} \cdot e\right)(t x)\right\| \leq 1-\delta(1)$.

Fix an $e \in E$ with $\|e\|=1$ and let $Q=\sup _{z \in Z}\left\|T^{* *-1}\left(\chi_{\{s y\}} \cdot e\right)(z)\right\|$. Then by Lemma 3(ii), and the paragraph preceding the statement of

Lemma 3, we have

$$
\begin{aligned}
\{z \in & \left.=\left\|T^{* *-1}\left(\chi_{\{s y\}} \cdot e\right)(z)\right\|>1-\delta(1)\right\} \\
& =\left\{t x^{\prime} \in X_{0}:\left\|T^{* *-1}\left(\chi_{\{s y\}} \cdot e\right)\left(t x^{\prime}\right)\right\|>1-\delta(1)\right\} \subseteq \tau^{-1}(\{s y\})
\end{aligned}
$$

a finite set, and thus we can find a $t x^{\prime} \in X_{0}$ such that

$$
\left\|T^{* *-1}\left(\chi_{\{s y\}} \cdot e\right)\left(t x^{\prime}\right)\right\|=Q
$$

Now $t x^{\prime} \neq t x$ since $\tau(t x) \neq s y$.
Let $\hat{e}=T^{* *-1}\left(\chi_{\{s y\}} \cdot e\right)\left(t x^{\prime}\right)$ and $\tilde{e}=\hat{e} /\|\hat{e}\|$. Then consider the element $\chi_{\left\{t x^{\prime}\right\}} \cdot \tilde{e}$ of $C(Z, E) \subseteq C\left(Z, E_{\sigma^{*}}\right)$. There exists a $w \in W$ such that $\left\|T^{* *}\left(\chi_{\left\{t x^{\prime}\right\}} \cdot \tilde{e}\right)(w)\right\|>P$. Hence this w belongs to $W_{1} \subseteq Y_{0}$ so $w=s y^{\prime}$ for some $s y^{\prime} \in Y_{0}$. Moreover $s y^{\prime} \neq s y$ since $\rho\left(s y^{\prime}\right)=t x^{\prime} \neq t x=\rho(s y)$.

From the proof of Lemma 2, we know that if $\phi \in E^{*}$ with $\|\phi\|=1$ is such that

$$
\left\langle T^{* *}\left(\chi_{\left\{t x^{\prime}\right\}} \cdot \tilde{e}\right)\left(s y^{\prime}\right), \phi\right\rangle=\left\|T^{* *}\left(\chi_{\left\{t x^{\prime}\right\}} \cdot \tilde{e}\right)\left(s y^{\prime}\right)\right\|
$$

then

$$
T^{* * *} \phi \cdot \mu_{s y^{\prime}}=\psi \cdot \mu_{t x^{\prime}}+\bar{m}+\Phi \quad \text { where }\langle\tilde{e}, \psi\rangle>P
$$

Hence $\langle\hat{e}, \psi\rangle=\|\hat{e}\|\langle\tilde{e}, \psi\rangle>Q P>Q$. We have

$$
\begin{aligned}
0 & =\int \chi_{\{s y\}} \cdot e d\left(\phi \cdot \mu_{s y^{\prime}}\right)=\left\langle\chi_{\{s y\}} \cdot e, \phi \cdot \mu_{s y^{\prime}}\right\rangle \\
& =\left\langle T^{* *-1}\left(\chi_{\{s y\}} \cdot e\right), T^{* * *} \phi \cdot \mu_{s y^{\prime}}\right\rangle \\
& =\int T^{* *-1}\left(\chi_{\{s y\}} \cdot e\right) d\left(\psi \cdot \mu_{t x^{\prime}}\right)+\left\langle T^{* *-1}\left(\chi_{\{s y\}} \cdot e\right), \bar{m}+\Phi\right\rangle \\
& =\langle\hat{e}, \psi\rangle+\left\langle T^{* *-1}\left(\chi_{\{s y\}} \cdot e\right), \bar{m}+\Phi\right\rangle
\end{aligned}
$$

But the modulus of the first term on the right is greater than Q while, by Lemma 4, the modulus of the second term on the right is less than or equal to $(\|T\|-\|\psi\|) Q<Q$. This contradiction completes the proof of the lemma.

Note that Lemma 5 implies that $X_{0}=\rho\left(W_{1}\right) \subseteq Z_{1}$, so that $X_{0}=Z_{1}$. It also shows that $Y_{0}=\tau\left(Z_{1}\right) \subseteq W_{1}$. For ρ maps W_{1} onto X_{0}; hence, given $t x \in Z_{1}=X_{0}$ there exists an $s y \in W_{1}$ with $\rho(s y)=t x$. And by Lemma 5 $\tau(t x)=s y \in W_{1}$. Thus ρ maps Y_{0} onto X_{0}, ρ is injective since τ is a function and $\tau=\rho^{-1}$. It follows that $\hat{\rho}=t^{-1} \circ \rho \circ s$ is a one-one map of Y onto X. We would like to show that $\hat{\rho}$ is a homeomorphism.

To this end again recall that we have $s y \in W_{1}=Y_{0}$ and $\rho(s y)=t x$ if, and only if, for some $e \in E$ with $\|e\|=1$ we have $\left\|T^{* *}\left(\chi_{\{t x\}} \cdot e\right)(s y)\right\|>P$. Since for any $e \in E$ with $\|e\|=1$ we must have $\left\|T^{* *}\left(\chi_{\{t x\}} \cdot e\right)(w)\right\|>P$
for some $w \in W$, it now follows that for all $e \in E$ with $\|e\|=1$ the only candidate for this w is $s y$. That is, given $t x \in X_{0}$ let $s y=\tau(t x)$. Then for each $e \in E$ with $\|e\|=1$ we must have $\left\|T^{* *}\left(\chi_{\{t x\}} \cdot e\right)(s y)\right\|>P$ and $s y$ is the only point of W for which such an inequality holds.

Next note that for $e \in E, \phi \in E^{*}, t x \in X_{0}$ and $s y \in Y_{0}$ we have

$$
\left\langle T^{* *}\left(\chi_{\{t x\}} \cdot e\right), \phi \cdot \mu_{s y}\right)=\left\langle\phi \cdot \mu_{y}, T^{* *}\left(\chi_{\{t x\}} \cdot e\right)\right\rangle
$$

the equality holding by the proof of Theorem 2 in [6]. We next have

$$
\left\langle\phi \cdot \mu_{y}, T^{* *}\left(\chi_{\{t x\}} \cdot e\right)\right\rangle=\left\langle T^{*}\left(\phi \cdot \mu_{y}\right), \chi_{\{t x\}} \cdot e\right\rangle
$$

by definition of the adjoint map, and then

$$
\left\langle T^{*}\left(\phi \cdot \mu_{y}\right), \chi_{\{t x\}} \cdot e\right\rangle=\left\langle e,\left(T^{*} \phi \cdot \mu_{y}\right)(\{x\})\right\rangle
$$

again by the proof of Theorem 2 in [6]. Thus

$$
\left\langle T^{* *}\left(\chi_{\{t x\}} \cdot e\right), \phi \cdot \mu_{s y}\right\rangle=\left\langle e,\left(T^{*} \phi \cdot \mu_{y}\right)(\{x\})\right\rangle
$$

Proposition. $\hat{\rho}$ is a homeomorphism of Y onto X.
Proof. As noted above we have $\hat{\rho}(y)=x$ if, and only if, for all $e \in E$ with $\|e\|=1$ we have $\left\|T^{* *}\left(\chi_{\{t x\}}\right)(s y)\right\|>P$, which will be true if, and only if, for every e there exists a $\phi \in E^{*}$ (depending on e and y) with $\|\phi\|=1$ such that $\left\langle T^{* *}\left(\chi_{\{t x\}} \cdot e\right), \phi \cdot \mu_{s y}\right\rangle=\left\langle e,\left(T^{*} \phi \cdot \mu_{y}\right)(\{x\})\right\rangle$ is real and greater than P.

Now suppose that $\left\{y_{\beta}: \beta \in B\right\}$ is a net in $Y, y_{\beta} \rightarrow y_{0}$ but $x_{\beta}=\hat{\rho}\left(y_{\beta}\right)$ $\leftrightarrow \hat{\rho}\left(y_{0}\right)=x_{0}$. Then there exists a compact neighborhood V of x_{0} such that for all $\beta_{0} \in B$ there is a $\beta \geq \beta_{0}$ with x_{β} outside V.

Fix an $e \in E$ with $\|e\|=1$. By the paragraph before last there is a $\phi_{0} \in E^{*}$ with $\left\|\phi_{0}\right\|=1$ and $\left\langle e,\left(T^{*} \phi_{0} \cdot \mu_{y_{0}}\right)(\{x\})\right\rangle>P$. Write $T^{*} \phi_{0} \cdot \mu_{y_{0}}$ as $\psi_{0} \cdot \mu_{x_{0}}+m$, where $\psi_{0} \in E^{*}$ and m is a regular Borel vector measure on X to E^{*} with $m\left(\left\{x_{0}\right\}\right)=0$. Then $\left\langle e, \psi_{0}\right\rangle>P$. Choose a neighborhood V_{1} of $x_{0}, V_{1} \subseteq V$, such that $|m|\left(V_{1}\right)<P-1$. Next choose a continuous function $f_{1}: X \rightarrow[0,1]$ such that the support of f_{1} is contained in V_{1} and $f_{1}\left(x_{0}\right)=1$. Then define $F_{1} \in C(X, E)$ by $F_{1}(x)=f_{1}(x) \cdot e, x \in X$. We have

$$
\begin{aligned}
\left|\left\langle\left(T F_{1}\right)\left(y_{0}\right), \phi_{0}\right\rangle\right| & =\left|\left\langle\left(T F_{1}\right), \phi_{0} \cdot \mu_{y_{0}}\right\rangle\right|=\left|\left\langle F_{1}, T^{*}\left(\phi_{0} \cdot \mu_{y_{0}}\right)\right\rangle\right| \\
& =\left|\left\langle F_{1}, \psi_{0} \cdot \mu_{x_{0}}+m\right\rangle\right|=\left|\left\langle F_{1}\left(x_{0}\right), \psi_{0}\right\rangle+\int F_{1} d m\right| \\
& \geq\left\langle e, \psi_{0}\right\rangle-\int\left\|F_{1}\right\| d|m|>1
\end{aligned}
$$

Thus $\left\|\left(T F_{1}\right)\left(y_{0}\right)\right\|>1$.

Since $y_{\beta} \rightarrow y_{0}$ and $T F_{1}$ is continuous in the norm topology, there is a $\beta_{0} \in B$ such that $\beta \geq \beta_{0}$ implies $\left\|\left(T F_{1}\right)\left(y_{\beta}\right)\right\|>1$. Thus fix a β such that $\left\|\left(T F_{1}\right)\left(y_{\beta}\right)\right\|>1$ and $x_{\beta}=\hat{\rho}\left(y_{\beta}\right)$ lies outside V. Then for some $\phi_{\beta} \in E^{*}$ with $\left\|\phi_{\beta}\right\|=1$ we have $\left\langle e,\left(T^{*} \phi_{\beta} \cdot \mu_{y_{\beta}}\right)\left(\left\{x_{\beta}\right\}\right)\right\rangle>P$. Write $T^{*} \phi_{\beta} \cdot \mu_{y_{\beta}}$ as $\psi_{\beta} \cdot \mu_{x_{\beta}}+n$ where $\psi_{\beta} \in E^{*}$ and $n\left(\left\{x_{\beta}\right\}\right)=0$. Then $\left\langle e, \psi_{\beta}\right\rangle>P$. Take a neighborhood V_{2} of x_{β} disjoint from V with $|n|\left(V_{2}\right)<P-1$ and choose continuous $f_{2}: X \rightarrow[0,1]$ such that the support of f_{2} is contained in V_{2} and $f_{2}\left(x_{\beta}\right)=1$. If we then define $F_{2} \in C(X, E)$ by $F_{2}(x)=f_{2}(x) \cdot e, x \in X$, it follows as above that $\left\|\left(T F_{2}\right)\left(y_{\beta}\right)\right\|>1$.

Now since F_{1} and F_{2} have disjoint supports, for every choice of scalars α_{i} with $\left|\alpha_{i}\right| \leq 1, i=1,2$, we have $\left\|\alpha_{1} F_{1}+\alpha_{2} F_{2}\right\|_{\infty} \leq 1$. However, by Lemma 1, there exist such scalars α_{i} with

$$
\left\|T\left(\alpha_{1} F_{1}+\alpha_{2} F_{2}\right)\right\|_{\infty} \geq\left\|\alpha_{1}\left(T F_{1}\right)\left(y_{\beta}\right)+\alpha_{2}\left(T F_{2}\right)\left(y_{\beta}\right)\right\|>(1-\delta(1))^{-1}
$$

which contradicts our assumptions about the norm of T. Thus $\hat{\rho}$ is a continuous, one-one map of Y onto X, and is hence a homeomorphism.

References

[1] D. Amir, On isomorphisms of continuous function spaces, Israel J. Math., 3 (1965), 205-210.
[2] E. Behrends, M-structure and the Banach-Stone Theorem, Lecture Notes in Mathematics 736, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
[3] M. Cambern, On isomorphisms with small bound, Proc. Amer. Math. Soc., 18 (1967), 1062-1066.
[4] , Isomorphisms of spaces of continuous vector-valued functions, Illinois J. Math., 20 (1976), 1-11.
[5] M. Cambern and P. Greim, The bidual of $C(X, E)$, Proc. Amer. Math. Soc., 85 (1982), 53-58.
[6] _ The dual of a space of vector measures, Math. Z., 180 (1982), 373-378.
[7] H. B. Cohen, A second-dual method for $C(X)$ isomorphisms, J. Funct. Anal., 23 (1976), 107-118.
[8] M. M. Day, Normed Linear Spaces, 3rd. ed., Springer, Berlin-Heidelberg-New York, 1973.
[9] J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys 15, Amer. Math. Soc., Providence, R. I., 1977.
[10] N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.
[11] H. Gordon, The maximal ideal space of a ring of measurable functions, Amer. J. Math., 88 (1966), 827-843.
[12] K. Jarosz, A generalization of the Banach-Stone theorem, Studia Math., 73 (1982), 33-39.
[13] M. Jerison, The space of bounded maps into a Banach space, Ann. of Math., (2) 52 (1950), 309-327.
[14] S. Kakutani, Concrete representation of abstract (M)-spaces, Ann. of Math., (2) 42 (1941), 994-1024.
[15] I. Singer, Linear functionals on the space of continuous mappings of a compact space into a Banach space (Russian), Rev. Roumaine Math. Pures Appl., 2 (1957), 301-315.
[16] ___ Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, Berlin and New York, 1970.

Received September 9, 1983

University of California
Santa Barbara, CA 93106

