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ISOMORPHISMS OF SPACES OF
NORM-CONTINUOUS FUNCTIONS

MICHAEL CAMBERN

If X and Y are compact Hausdorff spaces and E a uniformly convex
Banach space, then the existence of an isomorphism T of C(X, E) onto
C(Y, E) with ||Γ|| HΓ^I small implies that X and Y are homeomorphic.

1. Introduction. Throughout this article, the letters X, Y9 Z, and W

will denote compact Hausdorff spaces, and E a Banach space. C(X, E)

denotes the space of continuous functions on I to £ provided with the

supremum norm. If E is a dual space then C(X, Eσ*) stands for the

Banach space of continuous functions F on X to E when this latter space

is provided with its weak* topology, again normed by H^IL =

s u Pxex Il-F( *)ll If E is the one-dimensional field of scalars then we write

C( X) for C(X, E). The interaction between elements of a Banach space

and those of its dual is denoted by ( , ). We write Eγ = E2 to indicate

that the Banach spaces Ex and E2 are isometric.

The well known Banach-Stone theorem states that if C(X) and C(Y)

are isometric then X and Y are homeomorphic. Various authors, begin-

ning with M. Jerison [13], have considered the problem of determining

geometric properties of E which allow generalizations of this theorem to

spaces of norm-continuous vector functions C( X, E). The most exhaus-

tive compilation of results of this nature can be found in the monograph

by E. Behrends [2]. Another type of generalization of the theorem was

obtained independently in [1] and [3], and, while still dealing with scalar

functions, replaces isometries by isomorphisms T with HTΊIHT1"1!! small.

The first attempt to combine these two directions of generalization is

found in [4], where it is shown that if E is a finite-dimensional Hubert

space, then the existence of an isomorphism T of C(X, E) onto C(Y, E)

with IITΊIHΓ"1!! < \/2 implies that X and Y are homeomorphic. More

recently, K. Jarosz [12] has obtained a similar generalization for Banach

spaces E whose dual space satisfies a geometric condition involving both

IIΓIIIIT7'1!! and the number 4/3. Here we obtain such a theorem for all

uniformly convex spaces E. Moreover, given such a space E9 the bound on

the isomorphisms for which our theorem works depends on the modulus

of convexity associated with E.
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Our method of proof depends on a characterization of the second
dual space of C(X, E), and is analogous to the method used by H. B.
Cohen in the scalar case to obtain a new proof of the results of [1] and [3].
The first dual of C(X) is, of course, given by the Riesz representatioin
theorem which states that C(X)* consists of all finite, regular, scalar-val-
ued Borel measures μ on X. The vector analogue of this result was
obtained by I. Singer in [15], where it is shown that C(X, £ ) * is the
Banach space of all regular Borel measures m on X to 2?*, with finite
variation |m|, and norm given by ||m|| = \m\(X). An English version of the
proof of this theorem can be found in [16, p. 192].

In [7] Cohen exploited the fact, first established by Kakutani [14], that
C(X)** is isometric to a space C(Z) for a particular compact Hausdorff
space Z dependent on X And in [5] it is shown that if X is dispersed or if
E* has the Radon-Nikodym property, then C(X, £ ) * * s C(Z, £***)
where Z is that compact Hausdorff space such that C(X)** = C(Z). The
interaction between the elements of the first dual of C(X, E) (that is,
vector measures on X), and functions in C(Z, £"***) is given explicitly in
[6]. It is the result of [5] on which we base most of our arguments.

We shall assume henceforth, that E is a uniformly convex Banach
space. Let U denote the unit ball in E and let

δ(ε) = inf

Recall that E is uniformly convex means that δ(ε) > 0 when 0 < ε < 2.
We will frequently use the fact that we always have δ(l) < \.

The uniform convexity of E enters into our proof in a number of
ways. First, we rely upon a geometric property of uniformly convex spaces
which we establish in Lemma 1. Also E uniformly convex implies that E is
reflexive [8, p. 147], and thus £* has the Radon-Nikodym property [9, p.
218] and the result of [5] applies. We wish to prove the following:

THEOREM. Let X and Y be compact Hausdorff spaces and E a uniformly
convex Banach space. If T is an isomorphism of C(X, E) onto C(Y, E)
satisfying \\T\\ WT^W < (1 - δ(l))~\ then Xand Yare homeomorphic.

The proof of the theorem will be established via a sequence of lemmas
and a proposition. However we first note the following. By replacing T by
the isomorphism (1 + εJHΓ^HΓ for a sufficiently small positive number ε,
we may suppose, without loss of generality, that T is strictly norm-increas-
ing—i.e., \\TF\\n > (1 + εJIIFII^, for F E C(X, E), and that we have
| |Γ| | < (1 - δ(l))"1. Fix such an ε, and then fix a positive number P with
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1 < P < 1 + ε. We will thus assume, throughout the remainder of this

article, that we are dealing with an isomorphism T of C(X, E) onto

C(7, E) satisfying \\TF\\,, > PWF^ for F e C(X, E), F Φ 0 and | |Γ | | <

(1 - δ(l))- 1 .

Since here we have E** = E, it follows that C( X, £ ) * * is of the form

C{Z, Eσ*) for a certain compact Hausdorff space Z. Similarly, C(7, £ ) * *

= C(W, Eσ*) for that compact Hausdorff space JFwith C ( 7 ) * * = C(W).

We can thus regard P * as a strictly norm-increasing isomorphism of

C(Z, Eσ.) onto C(W9 Eσ*) satisfying | |Γ**|| < (1 - δ(l))" 1 and WT^F]^

>P\\F\\ao for FeC(Z,Ea.),FΦ0.

Next note that if F* G C(Z, £ σ *)*, then the restriction of F* to

C(Z, £ ) is a continuous linear functional of norm less than or equal to

I\F*\\. Thus, by Singer's result, this restriction is given by a regular Borel

vector measure « o n l t o £ * with ||«|| < \\F*\\. If z is any point of Z, n can

then be uniquely decomposed a s « = ψ μz + m, where μz denotes the

scalar unit point mass at z, ψ G /?*, and m ^ C(Z, £ ) * with m({ z}) = 0.

(Take ψ = w({ z}) and m = n — ψ - μz.) We then let m denote any norm-

preserving linear extension of m to an element of C(Z, Eσ*)* and set

= F* — ψ μz — in. Then Φ is a continuous linear functional on

v Z , Eσ*) which vanishes on C(Z, E) and F* = ψ JUZ + m -h Φ.

Whenever we write an element F* e C(Z, F,,*)* in this manner, i7* =

ψ μ z + m + Φ, it will be implicit that ψ e F , that m is a fixed Hahn-

Banach extension of the vector measure m determined as above, and

consequently that Φ & C(Z, E)± . A similar convention applies when we

write an element G* G C(W, £ σ *)* as G* = ψ μw + m 4- Φ.

Finally, we let Xo denote the set of isolated points of Z. It is known

that each point of Xo is of the form tx for some x G X, where t is the

canonical (nontopological) injection of X into Z, and every such point tx

is isolated [11, p. 841]. Similarly, we let Yo denote the set of isolated points

of W so that Yo consists of the points sy, y e Y, where s is the correspond-

ing injection of Y into W.

2. Proof of the Theorem.

LEMMA 1. If E is a uniformly convex normed linear space and r is a

positive integer, and if we are given 2r elements e G E with \\ej\\ > η > 0

for 1 < j < 2\ then

(i) there exists scalars λ y , 1 <y* < 2 r, w/YA |λ y | < 1 /or α//y .ywcΛ /Λ r̂

l l Σ j l i λ ^ / H ^ H II > (1 - δ(l)yr, and consequently

(ii) there exist scalars αy, 1 <j < 2\ with \a-\ < 1 for all j such that
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Proof. The proof is established by induction on r. First assume that
r = 1 and that el9 e2 e E, with ||e || > η,j = 1,2. Then

^i/lkill = i(*i/INI + e2/\\e2\\) + H M k i l l - *2/lk2ll),

and, since a uniformly convex space is strictly convex, we must thus have
either

ki/lkill + e2/\\e2 or

and both of these norms are less than or equal to 2. Let M be the
maximum of these two norms. Then by taking \λ = 1 and λ2 = 1 or -1
we can find scalars λ, of modulus one such that

Now

and
a =

b =

+ λ2e2/\\e2\

are in the closed unit ball Uof E and (l/M)(λ1β1/||e1 | |) is the midpoint of
the segment joining them. Also, since \\a — b\\ = 2/M and M is less than
or equal to 2, we have

1 - 1/M = 1 - | |(l/M)(λ1e1/| |e1 | |) | | > δ(2/M) > δ(l),

giving M > (1 — δ(l))' 1 and establishing (i) for r = 1.
Next let N = min{ Ĥ H, ||e2||}. Then from (*) we have

\\(Nλι/\\eι\\)eι +(Nλ7/\\e2\\)e2\\ = N M > η(l - δ(l))"1.

Thus letting αy = iVλ ./||^,|| fory = 1,2 we have established (ii) for r = 1.
Now assume the lemma is valid for all r with \ < r <k9 and that we

are given elements βj e E9 1 <j < 2k+1, with ||ey | | > η for ally. By the
inductive hypothesis there exist scalars λy, 1 <y < 2k+1, with |λy | < 1 for
ally such that

= Mγ > (1 -

and

Then

C =

= M2 > (1 -

a n d ί / = =

-A:
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belong to U and c = (\)(c + d) + (\){c - d). Since ||c|| = 1, again we
must have either ||c -f d\\ > 1 or \\c — d\\ > 1, and both of these norms
are < 2.

Let M be the maximum of these two norms. Thus taking either
λj = λj for ally with 2k + 1 < j < 2k+ι, or λy = -λy for all suchy, we can
find λy with |λy | < 1 such that

(**) = M > 1.

Let e = (l/Λf2)Σf=

+2*+1λye/||ey||. Now a = (1/Λf)(c + e) and b =
(1/M)(c — e) are in U and (1/M)c is the midpoint of the segment
joining them. Also \\a — b\\ — 2/M. Hence

1 - \/M = 1 - ||(l/Af)c|| > δ(2/M) > δ(l),

giving M> (1 - δ(l))"1.
Let Mo = min{ Mv M2}. Then from (**) we have

= M • Mo > (1 - δ(l)Γ

so that, by letting λy = M0\j/Mλ for 1 < y < 2k and λy = Moλj/M2 for
2* + 1 < 7 < 2^+1, we have established (i) for r = fc + 1.

Finally let N = min{ \\ej\\:j = 1,... ,2 / c + 1). We then have

2 * + i

Σl -k-\

and thus, setting αy = N\j/\\ej\\ for 1 < j < 2k+ι, we have established (ii)
for r = k + 1. This completes the proof.

LEMMA 2. // w G (f α«J ίjc e A^ /Λeπ /Λere exwi5 an element φ of
E* with llψll = 1 .ywcA that T***φ μw ώ 0/ /Ae /<9rm ψ μtx + m + Φ
vwYA Hψll > P //, and only if, for some e Ξ E with \\e\\ = 1 we have
\\T**(χ{ix} eXw)\\>P.

Proof. Suppose that for some e ^ E with | | e | | = 1 we have
} e)(w)\\ > p Choose φ G P with | |ψ| | = 1 such that

**( X { / J C ) e)(w), φ) = \\T**(X{tx} e)(w)l
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Then writing Γ***φ μw as ψ μtx + m + Φ we would have

P < \\T**(x{tx} ' e)(w)\\ = (Γ**(χ ( , x } e)(w), φ)

m) + (X{^} * *> φ > = (*>

and hence | |ψ| | > P.

Conversely, suppose there exists a φ ^ E* with ||ψ|| = 1 such that

T***φ μw has the specified form. Take e ^ E with | |e| | = 1 such that

(e,ψ) > P. A computation exactly like that above then gives

(T**(χ{tx] e){w),φ) = (e,ψ)>P

and, consequently, | |Γ**(χ { ί J c } e)(w)\\ > P.

We now let Wx denote the set of all w e W such that for some

φ G E* with llψll = 1 there exists a ftt e Xo with Γ***φ μw = ψ JU/JC +

m + Φ, where | |ψ|| > P. Then define p: W^ -^ Z o by ρ(w) = tx if w and

Dc are related as in the previous sentence.

We first note that p is a well defined map from Wλ to Xo. For by

Lemma 2 we have w e Ŵ  and p(w) = /x if, and only if, for some e ^ E

with | |e | | = 1 we have \\T**(χ^tx^ e)(iv)|| > P. Thus if we assume that

there exist φl9 φ2 G £ * with | |φ x | | = | |φ 2 | | = 1 and

Γ***Φ, μw = ψ, μ/JC| + mf + Φ,

for i = 1,2, with ||ψ.|| > P and txλ Φ tx29 then for all choices of scalars ai

with lα l̂ < 1 and all et G £ with ||e;|| = 1, i = 1,2, we would have

ll^Xί/jCi) ' eι + α2X{/x2} * e2\\oo — l However, it follows from Lemmas 1

and 2 that for appropriate choices of such a( and et we would have

a2χ{tXiy e2)

} * ̂ i)(w) + a2T**{χ{tXi]

contradicting the fact that | |Γ**|| < (1 - δ(l))" 1 . Consequently p is well

defined as claimed.

Moreover, p maps Wx onto Xo. For given tx G Z O then for any e G JE1

with ll̂ ll = 1 there exists some w G IF such that | |Γ**(χ { / x } e)(w)\\ > P.

Thus, as noted in the second sentence of the previous paragraph, we have

w e Wx and p(w) = tx.
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By arguments exactly analogous to those given above, one obtains the
companion result:

LEMMA 2'. If z e Z and sy e Yo then there exists an element φ of E*
with HΦII = 1 such that T***~ιφ μz is of the form ψ μsy + m + Φ with
IIΨH > 1 — δ(l) //, and only if, for some e e E with \\e\\ = 1 we have
\\T**-\χ{sy)-e)(z)\\> 1-8(1).

We then let Zx denote the set of all z e Z such that for some φ G £ *
with HΦII = 1 there exists an sy e yowith T***'ιφ μz = ψ μsy + m + Φ,
where ||ψ|| > 1 — δ(l). And we define T: Z X -> 1Q by τ(z) = 57 if z and 57
are related as in the previous sentence. Just as before one establishes that T
is a well defined map carrying Zλ onto Yo. Moreover, by Lemma 2', we
have z e Zx and τ(z) = »yy if and only if for some e ^ E with ||e|| = 1 we

LEMMA 3. (i) For each tx e XQ9 p^^tx}) is a finite open set of points,
and consequently Wx a Yo.

(ii) For each sy e Yθ9 τ~ι({sy}) is a finite open set of points, and
consequently Zx c XQm

Proof. Suppose tx e Xo and w e p~ι({tx}). Then there exists an
ew e E with | |eJ | = 1 such that ||Γ**(χ{/Jc} ew)(w)|| > P. Let

έ . = T**(X{tx} - eJ(w)/ | |Γ**(χ { / J c } e j ( w ) |

and take any continuous g: W -> [0,1] such that g(w) = 1. Then define
G G C ( ^ £ ) C C(JF, £σ.) by G(w') = g(w') gw, w' e Ĥ . Now

||G + Γ**(X{,X} e J L > \\G(w) + Γ**(χ{/;c} e J ( w ) | | > 1 + P,

so that

\\T**-l(G) + χ{/ ;c} eJL > (1 + P)(l - δ(l)) > (1 + P)/2.

< 1 we must have | |Γ**- 1(G)(^)| | > (P - l)/2.
Now pick any element φw G is* with | |φw | | = 1 such that (έ w , φw) = 1.

Then w^{wf^W: | ( r**(χ { ί J c } ej(w'), φw)\ > P), and this set is
open. Moreover, for any wf in this set, we have ||77**(χ{r jc| ^vv)(w/)|| > P
and thus wf must belong to p-1({ tx\). Hence fixing such elements ew and
φw for each w e p" 1 ^ rx}) we have

p-\{tx}) = U {W e W: \(τ**(χ{tx} • ew)(w'), φw)\ >
w<=p-ι({tx})

an open set.



250 MICHAEL CAMBERN

We now show that p"1({ tx}) is a finite set. Suppose that wk9 1 < k <
2\ are elements of p~\{tx}). We have seen that for each k we can find
Gk e C(W, Eσ*) with HGJ^ = 1 and \\T**-\Gk)(tx)\\ > (P - l)/2. If
we choose the Gk to have pairwise disjoint supports, then for all scalars
ak9 1 < k < 2\ with | α j < 1, we have HΣf^α^Gy^ < 1. But by Lemma
l(ii), we can choose the ak such that

(P - 1)(1 - 8{\))'r

Hence ρ~\{ tx}) must be finite as claimed.
Thus for each tx e XQ, p~\{tx}) is a finite open set of points, and

thus consists entirely of isolated points. Hence Wλ = UίxGXop~1({tx})
consists of isolated points and so Wλ c Γo? proving (i). The proof of (ii) is
analogous.

LEMMA 4. Given an element ofC(Z, Eσ*)* of the form ψ μtx + rh + Φ,

JΓ0 is an isolated point ofZ, then

||ψ μtx + m + Φ|| =||ψ|| +||m + Φ||.

. Suppose ε > 0 is given. Choose i 7 e C(Z, JEσ ) with H^H^ < 1
such that (JP, rh + Φ) is real and greater than ||m + Φ|| - ε. Let
^x = F{tx). Then both m and Φ annihilate ex χ^tx^ so that
( F — eιX{ίX}> m + Φ) > ||m 4- Φ|| — ε. Choose an element e2 G E with
| |e 2 | | = 1 and (e2, ψ) = ||ψ||. Then | |F + (β2 - ex) χ ^ ^ l L < 1 and thus

rh + Φ||

+ ( ) ψ μ t t + m\{F + (e2 - ^ ) X { / J C }, ψ μ t t +

2mX{tx}d{ψ μ t x ) + (F- e1 χ { t x ) 9 m + Φ >

+ p 4- Φ|| - ε.

LEMMA 5. If sy G W1Q Yo and ρ(sy) = tx, then tx e Zx

= f

sy.

Proof. Let sy belong to Wx and let p(sy) = /x. Suppose that either /JC
is not an element of Zv or that tx e Zx, but τ(tx) Φ sy. Either supposi-
tion leads to the conclusion that for all e ^ E with ||e|| = 1 we have

Fix an ee E with \\e\\ = 1 and let Q = sup z e Z | |Γ**- 1 ( X { ^ ) - e)(z)\\.
Then by Lemma 3(ii), and the paragraph preceding the statement of
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Lemma 3, we have

{z<=Z:\\τ**^(X{sy)-e)(z)\\>l-δ(l)}

= {tx' e Xo: JΓ^-Hx^} e)(tx')\\ > 1 - δ(l)} c τ'ι({sy}),

a finite set, and thus we can find atx'^X0 such that

N o w tx' Φ tx since τ(tx) Φ sy.

Let e = T**-\χ{sy} e)(tx') and g = e/\\e\\. Then consider the ele-
ment χ{txΊ e of C(Z, £) c C(Z, £σ*). There exists a w G f f such that
\\T**(χ[tχf) £)(w)|| > P. Hence this w belongs to W1QY0sow = sy' for
some sy' e yo. Moreover^' =£ 57 since ρ(sy') = £x' Φ tx = p(sy).

From the proof of Lemma 2, we know that if φ e E* with ||ψ|| = 1 is
such that

{T**(X{tx,} • e)(sy'), φ> = \\T**(χ{tx,} • e)(sy')\\

then

Γ***φ μί>;, = ψ μtx, + m + Φ where (g, ψ) > P.

Hence (έ, ψ> = \\e\\(e, ψ> > βP > β. We have

0 = / X{sy} ed(φ- μsy,) = (χ{sy} e,φ- μsy)

= j T**-ι(χ{sy} - e) J(ψ μtx) + (T -HX^} β), m + Φ

But the modulus of the first term on the right is greater than Q while, by
Lemma 4, the modulus of the second term on the right is less than or
equal to (||Γ|| - ||ψ||)β < Q- This contradiction completes the proof of
the lemma.

Note that Lemma 5 implies that Xo = p{Wλ) c Z l 9 so that Xo = Zv

It also shows that Yo = τ(Zx) c W .̂ For p maps Ŵ  onto Xo; hence, given
tx G Zx = Jί0 there exists an sy e H^ with ρ(sy) = tx. And by Lemma 5
τ(tx) = sy ^ Wv Thus p maps ϊ^ onto Xo, p is injective since r is a
function and T = p"1. It follows that p = /~1°p°.srisa one-one map of Y
onto X. We would like to show that p is a homeomorphism.

To this end again recall that we have sy ̂  Wγ = YQ and p(sy) = tx if,
and only if, for some e e Ewith||e|| = 1 wehave||Γ**(χ{/JC| e)(ίy)|| > P.
Since for any e e E with ||e|| = 1 we must have \\T**(χ{txy ^)(w)|| > P
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for some w e W, it now follows that for all e e E with ||e|| = 1 the only
candidate for this w is sy. That is, given tx G XO let sy = τ(tx). Then for
each e & E with ||e|| = 1 we must have \\T**(χ{ίx} e)( 9θ| | > P a n d .sy is
the only point of W for which such an inequality holds.

Next note that for e G E, φ G £**, / c G Xo and sy G 7O we have

{T**(χ{lx} • e), φ • μsy) = (φ μy, T**(x{tx} e)),

the equality holding by the proof of Theorem 2 in [6]. We next have

( φ μ y 9 T**(X{tx} e))=( T*{φ μ , ) , X { r j t } e>

by definition of the adjoint map, and then

(T*{φ μy)>X{tx) e) ={e,(T*φ μy)({x})),

again by the proof of Theorem 2 in [6]. Thus
m(χltx} e ) , φ - μ s y ) = {e, {T*φ • μy)({

PROPOSITION, p is a homeomorphism of Y onto X.

Proof. As noted above we have ρ(y) = x if, and only if, for all e G E
with | |e | | = 1 we have | |T τ **(χ { ί J c } ) (^) | | > P, which will be true if, and
only if, for every e there exists a φ e P (depending on e and y) with
HΦll-1 such that (T**(χ{tx] e),φ μsy) = {e,(T*φ μy)({x})) is
real and greater than P.

Now suppose that {yβ: β G 5} is a net in 7, j ^ -> j 0 but xβ = p(>jg)
"^ Pί^o) = ^o Then there exists a compact neighborhood V of x0 such
that for all β0 G 5 there is SL β > β0 with x^ outside F.

Fix a n e e £ with ||e|| = 1. By the paragraph before last there is a
φ0 <= £ * with HΦoll = 1 and (e, (Γ*φ0 μ^o)({x})) > P. Write Γ*φ0 μyo

as ψ0 μx + m, where ψ0 G E* and m is a regular Borel vector measure
on X to E* with m({jc0}) = 0. Then (e, ψo> > P. Choose a neighbor-
hood Fx of x0, Fx c F, such that | m | ( F 1 ) < P - l . Next choose a continu-
ous function/!: X -» [0,1] such that the support of fγ is contained in Vγ

and Λ(Λ:0) = 1. Then define Fx G C(X, £ ) by Jf̂ (jc) = fλ{x) - e9 x G X
We have

FΊW.Ψo) + J

- f\\Fι\\d\m\>l.
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Since yβ -»y0 and TFX is continuous in the norm topology, there is a
] 8 0 e 5 such that β > β0 implies 11(77̂ X )̂11 > 1. Thus fix a β such that
11(77^X )̂11 > 1 and xβ = p(yβ) lies outside V. Then for some φβ ^ E*
with \\φβ\\ = 1 we have (e,(τ*φβ - μyβ){{xβ})) > P. Write T*φβ μyβ as

Ψ/* μXβ + Λ w h e r e Ψ/* e ^ * a n d *({*/*}) = 0. Then (e, \pβ) > P. Take a
neighborhood F2 of Λ^ disjoint from V with |«|(F2) < P — 1 and choose
continuous/2: X -» [0,1] such that the support of/2 is contained in V2 and
f2(xβ) = 1. If we then define F2 e C(X, E) by F2(JC) = f2(x) e, x e X,
it follows as above that \\(TF2)(yβ)\\ > 1.

Now since Fλ and 7^ have disjoint supports, for every choice of scalars
α with \aέ\ < 1, i = 1,2, we have Ha!/7! + «2i

7

2||00 < 1. However, by
Lemma 1, there exist such scalars ai with

Kfi + α2F2)L ^hίTϊiK^) + «2(ΓF2)(^)|| > (1 -

which contradicts our assumptions about the norm of T. Thus p is a
continuous, one-one map of Y onto X, and is hence a homeomorphism.
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