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CAPILLARY SURFACES OVER OBSTACLES

GERHARD HUISKEN

We consider the usual capillarity problem with the additional re-
quirement that the capillary surface lies above some obstacle. This
involves a variational inequality instead of a boundary value problem. We
prove existence of a solution to the variational inequality and study the
boundary regularity. In particular, global C 1 1 -regularity is shown for a
wider class of variational inequalities with conormal boundary condition.

Let Ω c R", n > 2, be a bounded domain with smooth boundary 3Ω

and let

(0.1) A = -AVX/O),1 ai(p)=Pr(l+\p\2y1/2

be the minimal surface operator. Then we study the variational inequality

(0.2) (Au + H(x, w), v - u) > 0 Vί E ί ,

K:= { v e H^lv > ψ)

where

(0.3) (Au, η)= ί a^Du) - DiV dx + / βηdH^.

Here H describes a gravitational field, ψ is the obstacle and β is the cosine

of the contact angle at the boundary. We make the assumption that

(0.4) H = H(x, t) G C0Λ{Rn XR), β e C0Λ(dίl)

satisfy the conditions

(0.5) l ^

and

(0.6) \β\<l~a, a>0.

Under these assumptions Gerhardt [2] showed, that (0.2) admits a solution

u e H2'P(Ώ), if we impose on ψ the further condition

(0.7) - ai(D^)-yi >β on 3Ω

and in the following we sum over repeated indices.
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122 GERHARD HUISKEN

where γ = ( γ 1 ? . . . , γ n ) is the exterior normal to 3Ω. The main theorem

which we shall prove, is the following:

THEOREM 0.1. Let ΘΩ be of class C 2 , let ψ e H2co(Ώ) and assume that

H and β satisfy (0.4)-(0.6). Then the υariational inequality (0.2) admits a

solution

u e Hloc(Ώ) Π H22(Ώ) Π Hfc?(Ω)

w/YA continuous tangential derivatives at the boundary. In the case n = 2 we

have u e C^Ω). Furthermore, if we assume that 3Ω is of class C3>α,

β e C U (9Ω) α«J ίΛα/ ψ satisfies (0.7)

REMARKS, (i) The physically interesting problem, where ψ is the

bottom of a cylinder containing some liquid of prescribed volume, is also

included in this setting: a solution of this problem fulfills (0.2), if we

replace H by (H + λ) with some Lagrange multiplier λ. (See Gerhardt [2,

3]).

(ii) The boundary regularity results in Theorem 0.1 are valid for

solutions of a much wider class of variational inequalities with conormal

boundary condition, see §§3 and 4 below.

To prove the existence of a solution to (0.2) it is necessary to establish

a priori estimates for the gradient of solutions to the corresponding

boundary value problem:

(0.8) Au + ίϊ{x,u) = 0 inΩ

(0.9) -a^Dtή y^ β on 9Ω.

Using ideas of UraΓceva [12] and Gerhardt [2] we can find a bound

for \Du\Q which does not explicitly depend on \H{ -, u)|Ω.

At this place the author wishes to thank Claus Gerhardt for many

helpful discussions.

NOTATION. We shall denote by | | Ω the supremum norm on Ω and by

|| Ĥ  the norms of the L^-spaces. By c = c( - ) we shall denote various

constants whereas indices will be used, if a constant recurs at another

place.

1. Existence. To get a Lipschitz solution to (0.2), we consider the

following related boundary value problems:

Auε + H(x, uε) + μθε(uε - ψ) = 0 in Ω

-aι(Duε) γf. = β onθΩ
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where μ > 0 is a parameter tending to infinity and Θε is a sequence of

smooth monotone functions approximating the maximal monotone graph

Θ:

0,
(1.2) Θ(0 =

- 1 ,

We want to use the following existence result from ([2], Theorem 2.1):

THEOREM 1.1. Let 9Ω be of class C 2 ' α and suppose that H and β are

Cx'a-functions in their arguments. Then the boundary value problem (0.8),

(0.9) has a unique solution u e C2 'λ(Ω), where λ, 0 < λ < 1, is determined

by the above quantities.

Assuming for a moment these sharper differentiability condition on

8Ω, β and H, we get a unique regular solution uε of (1.1) for any ε,

0 < ε < 1. In §2 we shall establish a priori estimates for uε:

THEOREM 1.2. There is a large constant M, so that

(1-3) \ue\a+\Due\Ω<M

uniformly in ε and μ. Furthermore, for each ε, 0 < ε < 1, we can choose μ as

large that

(1.4) uε- ψ > - 3 ε .

Thus we conclude, that in the limit case a subsequence of the uε

converges uniformly to some function u e / ί l o o (Ω), which satisfies (0.2).

Since the estimate (1.3) is independent of the sharper differentiability

assumptions, an approximation argument shows, that the variational

problem (0.2) has a solution u e Hι °°(Ω) assuming only the weaker

conditions.

2. A priori estimates for \u\ and \Du\. To derive an upper bound for

wε, we multiply (1.1) with max( uε — k, 0) for an arbitrary k > k0 = supΩ ψ.

Observing that the critical term

(2.1) / θt(ut-φ)(ue-k)dx

vanishes because oik > sup ψ, we get an uniform upper bound in view of

the strict monotonicity of H.
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For proving the estimate (1.4), we multiply (1.1) with

(2.2) w = max(ψ — uε — δ,0)

and denote by ,4(δ) the set {x e Ώ\uε < ψ - δ}. We get

f a\Duε) -(AΨ - A Ό dx + f βwdHn__τ
JA(δ) JdΩ

(2.3) +[ H(x,uε)(ψ-ue-δ)dx
JA{8)

<Ά(δ)

On ^4(δ) we have Θε(wε — ψ) = - 1 and H(x, uε) < H(x, ψ) because of

δ > ε and in view of the monotonicity of H. To estimate the boundary

integral, we use (0.6) and the inequality

(2.4) / gdHn_λ < [ \Dg\dx + c(Ω, n) - ί \g\dx, g €= H11

•'θΩ ''Ω •'Ω

which is proven in ([4], Lemma 1). We get

(2.5) a ί \Duε\dx + μ- ί ψ-uε-δdx
JA(δ) JA(8)

<(l + 2\D4,\a)\A(δ)\ + \H( ,

+ c I ψ — uε — δ dx
JA(8)

or, better

(2.6) f \Dw\dx + μ j wdx< c(a, \Dψ\Q)\A(δ)\

Choosing now

(2.7) μ > μ i

we get by the Sobolev imbedding theorem

(2.8) \H\n/(n-i) + μι ' j wdx< c\A(δ)\ Vδ > ε.

From this we derive the inequalities

(2.9) < Λ Λ l l Λ i Λ — - " • • * '
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From a lemma due to Stampacchia ([11], Lemma 4.1) we now deduce

from the first inequality

(2.10) uε - ψ > -2e - c{a9 |Z>ψ|0)|Λ(2e)|1/n

and then from the second

(2.11) M(2ε) |<μΓ 1 ε-1 cM(ε)|.

Thus, inequality (1.4) follows by choosing μ1 large enough, where μ1

depends on ε, a, |/)ψ|0, Ω.

The gradient bound will be established by a suitable modification of a

proof in [2].

In view of the smoothness of 3Ω, we can extend β and γ into the

whole domain Ω, so that β e C0 1(Ω) still satisfies (0.6) and so that the

vectorfield γ is uniformly Lipschitz continuous in Ω and absolutely

bounded by l.We denote by S the graph of uε

(2.12) S={X=(x,x"+1)\x"+1 = uε(x)}

and by δ = ( δ l 9 . . . ,δn+1) the differential operators on S, i.e.

(2.13) 8ig = Dig - v r Σ v k ' Dkg> S

where v = (vv... ,vn+ι) is the exterior unit normal to S

(2.14) v = (l+\Duf)~1/2-(-D1ut,...,-Dnut,l).

As in [2] and [12] we want to prove that the function

(2.15) υ = ( l + \Duff/2 + β • Dkue -yk=W+β- Dkue • y k

is uniformly bounded in Ω. Notice, that

(2.16) \Duε\<(l+\Due\
2f/2=W<±-υ.

During the proof we shall write u instead of uε and we set

(2.17) H(χ, u):= H(x, u) + μ Θε(u - ψ).

We need the following lemmata:

LEMMA 2.1. For any function g e CX(Ω) we have the inequality

\(n-l)/n

\

(2.18)

<c2(n)-lf \8g\dHn + f \H\\g\dHn+f \g\- WdHn_λ
\JS JS JdΩ j
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For functions vanishing on the boundary, this inequality was first estab-

lished in [9], whereas a proof of the general case can be found in [2].

LEMMA 2.2. On the boundary 3Ω we have the estimate

(2.19) |γ' a'^DjV - Dj{βyk) • Dku)\ < c3

where c3 = c3(3Ω, \Dβ\a) andaij = d

LEMMA 2.3. For any positive function η e i/1>00(Ω) we have the estimate

(2.20) / υηdH^zί \δη\dHn+ [ (\H\ + \δy\)ηdHn.
JdΩ JS JS

For a poof of these two lemmata see ([2], Lemma 1.2 and Lemma 1.4).

Furthermore, from the proof of Lemma 1.3 in [2] we get the following

inequalities:

LEMMA

(2.21)

(2.22) a

2.4. In

Dk

the

u

whole

aiJDjL

domain

\u • ak

>k)\

Ω we have

< η a%Dku - ak%Diμ + cη (l + M J

where 0 < η < 1 is arbitrary and cη = cη(a, n, \D(βy)\).

Now we are ready to bound the function υ, or equivalently

(2.23) w = logυ.

As in [2], we start with the integral identity

(2.24) / D^Dx dx = - ί D.D^x dx + / y> Ώka
ιχ dHn_v

Choosing now χ = (ak 4- βyk)η, 0 < i ) G /f l o o(Ω) with supp η c

A}, where A is large, we obtain in view of (1.1)

(2.25) f aij[DjV - Dj(βyk) - Dku]Dfl + aijDkDjU a^D^u

DkH (ak + βyk)ηdx

= - / a'JDtDjU-D.iβy^ηdx
JQ

y' ^[DjΌ - Dj{βyk) • D
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Remark that

(2.26) Djv = (ak + βyk) DkDjU + Dj(βyk) Dku.

In the following we shall use the relations

(2.27) aijDig • Djg = W'^δgf Vge C\Q)

(2.28) \a»Dtg • DjX\ < W~x • \δg\ \Dχ\ V χ e CJ(Ω)

(2.29) a W < v < 2 • W

(2.30) a'JPlqj < f a%Pj + γε • a%qj V ε > 0.

Now observe that

(2.31) DkH = -=— + -r- Dku + juΘε' Dk(u - ψ).

Then in view of the assumptions (0.5) and (0.6) and in view of the

Lemmata 2.2 and 2.4 we can deduce from (2.25)

/ a^DjV - Dj{βyk) • D^Dtfdx + f j~\H\\dx

(2.32) Ω Ω

where c4 = c4(|δ(j8γ)|Q, |8/3x-ίΓ( , w)|Ω). Here we used that suppη c

(w > ho},ho = Λo(^? I-Dψlo) large. We choose

(2.33) i] = ϋ max(w — fc,0) = ϋ z

and set^(fc) = { I E S|W(JC) > fc}? |>4(ik)| = Hn(A(k)). Taking the rela-

tions (2.27)-(2.30) into account, we obtain in view of dHn = Wdx and in

view of Lemma 2.3

(2.34) / \8z\2dHn+( l \H\2zdHn<c \A(k)\+c f zdHn/ l \H\2

n
A(k) JA(k) n JΛ{k)

where c = c(a9 n, \Dy\Q9 \Dβ\Ω, \(d/dx)H(-, u)\Q). To proceed further, we

need the following Lemma:

LEMMA 2.5. For any ε > 0 the integral fA^ w — k dx can be estimated

by

(2.35) ε ( \δz\2 dHn + ε f \ΆfzdHn + c • e-χ\A(k)\.
JA(k) JA(k)
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Proof of Lemma 2.5. We shall use the identity

(2.36) [ a'D n dx+ [ Hηdx+ [ β-η dHn_ι = 0

with η = u - max(w — k,0) = u z. The boundary integral can be esti-
mates with the help of (2.4) and we obtain in view of (0.6)

(2.37) a J W zdx<j \H\\u\z dx + c j \u\\Dw\dx

+ c - I \u\zdx
{ w> k}

< ε f \H\2zdx + c - ε~ι - f zdx
J{w>k} J{w>k}

+ ε ί \Dw\2W~ιdx + c ε ' 1 ί Wdx
J{w>k} J{w>k}

< ε - [ W\8w\2 dx + ε ί \H\2z dx
J{w>k} J{w>k]

+ c ε~λ f Wdx.
J{w>k)

Here we used that z < W for k > k 0. The conclusion of the Lemma now
immediately follows.

By Lemma 2.5 we deduce from (2.34) for k > k0

(2.38) / \8w\2dHn + ί \\H\2zdHn < c \A(k)\.

Furthermore, from the Sobolev imbedding, Lemma 2.1 and from Lemma
2.3 we conclude

U
\(n-l)/n

Mn/(n-l)dHn)

<c(n)-ίf \δz\dHn+ί \H\zdHn+ f W zdHn

\ JS JS JΏ

< c

+ εjj
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To estimate the first term on the righthand side we note that in view of

(2.38) we have

(2.40) ^j\8z\2 dHn^
2 < c\A{k)\l/\

Hence, we deduce from (2.38) and (2.39)

(2.41)

\\H\\dHn

< c \ A ( k ) \ + e - f \H\\dHn + ct f zdHn.
JA(k) JA(k)

Applying again Lemma 2.5 we conclude finally

U
\(n-l)/n

\z\n/(n~l) dHH] <c-\A(k)\ Vk>k0.

The Holder inequality yields

(2.43) ί zdHn< c\A(k)\l + l/n Vk>k0
Js
Js

and we are now in the same situation as in (2.8). It follows that

(2.44) w = \ogv<k0 + c

where ko = ko(a, |Dψ|Q, n) and c = c(\(d/dx)H( , w)|Ω, a, n9 |δγ|Ω,

To complete the proof of the gradient bound, we have to establish an

estimate for \S\ = jΩWdx independent of μ and ε. To accomplish this, we

use (2.36) with η = u — ψ. We obtain

(2.45) f a\Du) D^u - ψ) dx + [ H(x, u)(u - ψ) dx

+ μ - ί Θε(u - ψ)( M - ψ) dx + / β (u- ψ) dHn_λ = 0.

The critical term

(2.46) μ- f Θε(u - ψ)(« - ψ) dx
JΩ

is positive in view of the monotonicity of Θc. Using again (0.5), (0.6) and

(2.4) we conclude

(2.47) a- f Wdx< c ( |Ω | , | M | 0 , |ψ | Ω , \H( , ψ ) | 0 , | D ψ | Ω , a, n).

This completes the proof of Theorem 1.2.
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REMARK, (i) As a consequence of (2.44) and (2.47) there is a gradient
bound for solutions u of (0.8), (0.9), which does not depend on \H(-9 u)\Q9

butonlyon |#( ,0)|Ω.
(ii) After having finished the present article the author became

acquainted with a paper of Lieberman [8] who obtained a gradient bound
for solutions to conormal derivative problems.

3. C1-Regularity. It is well known, that a solution of u of (0.2)
satisfies

(3.1) Au e L°°(Ω)

and therefore is in H£g(ii) for any finite p.
To prove regularity results up to the boundary, we transform a

neighbourhood Ωδ = Ω Π Bδ(xQ) of a point JCOG 3Ω with a C2-diffeo-
morphism y into

(3.2) J8 + = { x G Rπ| |x| < 1, xn > 0}

such that

(3.3) Γ =y(dti ΠBδ(x0)) = { J C E R " | |JC| < 1,JCΛ = 0 } .

The transformed u satisfies in Bf a local variational inequality of the
same type as (0.2), where the transformed a1 depend now on x too.
Furthermore, the relations

/ , 4 , a"(p,p") = a»(p,-p"), 1 < p < n - 1,
1 ; a"(p,p")=-a"(p,-p")

are not lost by the transformation.
In order to prove the continuity of the tangential derivatives of w, we

shall use an approach due to Frehse [1], We introduce the notations

(3.5) [ίFHίΓ' i.
and

(3.6) A±Λg(*)= ±h-1 {g(x±he,)-g(x)}

where et denotes the /th unit vector.
By the same arguments as in ([1], Lemma 2.1) we have

LEMMA 3.1. Let u be a solution to (0.2) and to0<Φe
suppΦ c Bv Then for each Ae]θ, dist(supp Φ, dBλ)[ and each p > 1,
c e R ί/zere is an ε > 0 swcΛ /Aα/ the functions

(3.7) wε := u + ε Drh(φ D/(M - ψ)), j = 1,... ,Λ - 1,
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and

( 3 . 8 ) < : = « + e . / ) r A [ φ / ) / ( « - ψ ) - c ] ' , j = 1 , . . .9n - 1,

Now we can show the following Lemma

LEMMA 3.2. The solution u of the local υariational inequality obtained

from (0.2) lies in H2a(Bf/2) and satisfies

(3.9) ί \D2u\2 \x\2~" dx < oo.
°\/7

Proof of Lemma 3.2. (i) We insert the function uε of Lemma 3.1 into

the variational inequality and obtain

(3.10) - j D*(a\x, Du))D^Df{u - ψ)) dx

- ί Dfβ ΦDHu-ψ) dx

+ f H(x9u)'Drh(ΦD*(u-φj)dx > 0

in view of 1 <j < n — 1 and since Φ = τ 2 is a cut-off function in

C™{Bλ). The boundary integral can be estimated by

(3.11)

Since w e i/ l o o(Ω), the α/y(x, DW(JC)) are uniformly elliptic and we obtain

by standard arguments that D^Du is uniformly bounded in L2{B^/2) as

h -> 0 and thus DjDu e L2(B^/2). Now we deduce from this and from

(3.1), that DnDu ^ L\Bt/2\
(ii) Let n > 3. By Lemma 3.1 and by (i) we have the inequality

(3.12)

In order to find a suitable test function Φ, we define in 2^(0)

, X " < 0 ,
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where

(3.14)
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ϊl(x, Xn) =
'u(x), x" > 0,

u(x, -xn), xn < 0.

The function ψ is defined similarly.

Now let δh 6Ξ L°°( ^(O)) satisfy 8h > 0, supp 8h c ))and

(3.15) / δhdx = l, δh(x,x") = δh(x,-x").

Since the biJ are elliptic in Bv there is a function Gh e Hl'2(Bλ) so that

(3.16) ( bίkDkv D,Ghdx= ( δhυ dx V o e f f ^ ) .

It is known (see [1, 6]), that Gh is uniformly bounded in Hl'q(Bλ),

q < n/(n - 1) and that Gh > 0. Furthermore, Gh -» G in /ί 1 ̂ , where G

has the property

(3.17) m\x\2~n < G(x) < m " 1 ^ ! 2 " "

with some constant m > 0. The functions GΛ satisfy

(3.18) Gh(x,x") = Gh(x,-x").

To see this, we observe that Gh(x, xn) = Gh(x, — xn) is also a solution of

(3.16) in view of the symmetry properties of δh and bij. Then, (3.18)

follows from the uniqueness of Gh.

Now we can use (3.12) with Φ = τ2Gh, where r e CffiBJ satisfies

T > 0, T Ξ= 1 in 5 1 / 2 and τ(jc, JCΛ) = τ(x, -xn). We get

(3.19) aikDkDfu Z) D
2Gh dx

+ [ a'kDkDjU Dj(t - u) D&r2 dx
JB+ J J

+ f aikDkDu - D D ψ τ2Gh dx
hi

- ί a^D^MDίu - ψ)Ghτ - IDjdx
Jτt+ J J

L \H\
da'

D(Ghτ
2 • D iu -
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The critical term

/ a^D.DjU-Dj^-^-Dfi^dx

(3.20) Bΐ

where B stands for lower order terms, can be rewritten as

(3.21) \ • f bikDk[τ2{Dj{~u - ψ))2) D,Gh dx + B.
H JBλ

 x '

This follows from the symmetry properties of ύ, ψ, T, Gh and blJ. But

(3.21) equals

(3.22) \ / 88h

since τ 2 (2>y(δ - ψ))2 lies in H^BJJ = 1,... ,n - 1. Thus we obtain

from (3.19)—using ellipticity—that

(3.23) J \DkDjU\Ghτ
2 dx < const.

for A -> 0?y = 1,.. .,n — 1; /: = 1,...,«.

For 7 = 1,...,/? — 1 the conclusion of the lemma now follows by a

lower semicontinuity argument and by (3.17). For j = n the conclusion

follows from (3.1) and from the boundedness of

(3.24) f \DkDju\2Gdx, k = l , . . . , / ι ;y = l , . . . , π - 1.
^1/2

Now we are ready to establish the main inequality, from which we can

start an iteration process. Therefore we insert the function uξ (see Lemma

3.1) into the variational inequality, where Φ = τ 2 is a cut-off function.

Passing to the limit h -> 0 we obtain

- ί Dia
ι{x,

JBf

(3.25) ~ / Djβ - τ2[z - c\p dx + j H(x, u^D^lz - c]p)) dx
Γ Bf

- f D,a'(x, Du) • D , τ 2 τ [ z - c]p dx > 0

where we set z =
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Due to (2.4) we can estimate the boundary integral by

(3.26) \Dβ\ {f+ \Dτ\ 2τ[z-c]p\dx

+ ί τ2-p\z- cf~l\Dz\dx + c ί τ2\z - c\P dx.
JBi JB+

Using ellipticity and Holder's inequality we deduce from (3.25) after some
calculation the main inequality

(3.27) f D(τ[z - cγp+1)/2)\2dx

where χ τ is the characteristic function of supp T and c = c{|z|Ω, \H{ , u) |Ω,
|aαy9xΛ |, |Z>β|, \Dy\). Here, we used that (3.27) will be only applied with

From inequality (3.27) we can start an iteration as in ([1], Lemma 1.3

and 1.4). We obtain for R < \

I r 2 \1/n

(3.28) o s c { z ( x ) \ x €Ξ B+(0)} < c \ R 2 n I \Dz\ dx) + c R a

for n > 3 and a = 2 (n - 2) n2,

and for n = 2
/ . 2 \l/2-2/(/ + 4)

(3.29) osc{ Z(JC)|JC e 5^(0)} < c / \Dz\ dx

Z)Z|2JJC

We used the notation (**) = B^R — BR and (*) = B^R.
Since R2~n < c - \x\2~n on (**), we obtain by Lemma 3.2 that

(3.30) R2-n [ \Dz\2 dx<c [ \Dz\2\x\2~n dx

is small if R is small. Together with (3.28) and (3.29) this means the
continuity of z = Dju - Djψ.

Again following Frehse's proof in ([1], Chap. 3) we conclude that in
the case n = 2 Dn(u — ψ) too is uniformly continuous.

REMARK. Obviously this regularity result applies to any elliptic opera-
tor

A= -DXa^XtDu))
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if the aι's satisfy the symmetry condition (3.4). It is not clear, whether

Lemma 3.2 can be established without this assumption.

4. Estimates in i/2 o o(Ω). In the following we shall consider a

slightly more general problem than considered in the introduction. Let u0

be a solution of the variational inequality

(4.1) (Au0 + Hu0, v - u0) > 0 Vv €Ξ K,

K:=

where A is an elliptic operator and

(Au9η) = ί a'DiVdx + ί βηdHn_l9

(4.2) 'Ω JdQ

Au = -D^a^x, u, Du))9 Hu = H(x, u, Du).

It is well known, that u0 satisfies

(4.3) Au0 e 1/»(Ω)

and therefore is of class H^(Ώ) for any finite p, if the coefficients are

smooth enough. Furthermore, if we assume that

(4.4) - aι(x,χP,Dχp)'yi> β o n 3Ω

holds we have (see [2]) u0 e H2tP(Q) and u0 satisfies

(4.5) -ai(x9uθ9Duo)'Ύi = β on 90.

Recently, Gerhardt [5] showed that a solution of the corresponding

Dirichlet problem lies in i/2 o o(Ω), if the boundary data are of class C3.

We shall prove the following

THEOREM 4.1. Let 9Ω be of class C3Λ β e CU(3Ω) and assume that

ψ e i/2'°°(Ω) satisfies (4.4). Let the a^s be of class C2 in x and u and of

class C 3 in the p-variable. Moreover, assume that H is of class C0 '1 in all its

arguments. Then any solution of the υariational inequality (4.1) is in /f 2'°°(Ω).

As in [5], we want to show uniform a priori estimates for the solutions

of approximating problems. Since a solution u0 of (4.1) is of class H2p in

view of (4.4), there is a constant M with

(4.6) l+\uQ\Q+\Du0\a<M.

Thus, we can replace A and H by operators A and H so that

(4.7) Au0 + Hu0 = Au0 + Hu0
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and so that the corresponding boundary value problems are always

solvable (see [5] for details).

Furthermore, we can choose a constant γ so large that the operator

(4.8) Au + Hu + yu

is uniformly monotone, i.e.

(Auλ + Huλ + yuλ — Au2 — Hu2 — yw 2, uΎ — u2)

(4.9) 2

> c -Hwj - w 2 | | u, c> 0.

We shall write A and H instead of A and H in the following. Let us

assume for the moment, that the ai9s and H are of class C 4 in their

arguments. Then we consider the boundary value problems

Au + Hu + yu + μΘ(w - ψ) = yu0 in Ω,
(4.10)

- α ' ( x , u,Du) γ, = β- 8 = & on 3Ω

where δ > 0 is small and where now

Again ju is a parameter tending to infinity. In view of our assumptions

on A and H, the boundary value problem (4.10) has always a solution

u e C 3 Λ ( Ω ) . We want to show, that the second derivatives of u are

bounded independent of μ and δ. In the limit case μ -> oo, u tends to a

solution ύ0 of (4.1), where /? is replaced by βv On 3Ω, ύ0 satisfies

(4.12) -ai(x9uθ9Duo)-yi = β1.

Removing then the shaφer differentiability assumptions and letting δ

tend to zero we shall conclude, that ύ0 tends to u0 which therefore lies in

As a first step we need the following Lemma.

LEMMA 4.1. Let ube a solution o/(4.10). Then u - ψ > - c μ~1/2 and

(4.13)

where

(4.14) c2 = sup |Λψ + #ψ | , c > 0 .

Proof of Lemma 4.1. We multiply the inequality

(4.15) Au-Aψ + Hu-Hψ + γ(u - ψ) + μΘ(« - ψ) + c 2
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by v = min(w — ψ + c μ~1 / 2,0) and obtain

(4.16) f (aι(x, u9 Du) - a'(jc, ψ, Dψ)) D ^ <&

+ μ[ (θ( i ι - ψ) + c 2 μ " 1 ) ϋ έ &

y(u -

The conclusion now essentially follows from the boundary condition

on ψ (4.4).

We deduce from this Lemma that

(4.17) Au e L°°(Ω)

with an uniform bound and

(4.18) ||w||2,^<c, VI <p< 00,

where the constant depends on/?, | |ψ| |2 ? 0 0, 3Ω and other known quantities.

We shall denote by/ 7 any vectorfield such that

(4-19) \\f%<c(l+\\uhP)
m

for any 1 < p < oo, where c and m are arbitrary constants depending on

p. Furthermore, / denotes any function which can be estimated as in

(4.19).

As in §3 we assume the equation (4.10) to hold in Bf = {x G

5 1(0) |xΛ > 0}. Then the boundary condition takes the form

(4.20) - an = β2(x) on Γ = { x e Bλ\xn = 0}

where β2 is related to βλ by some positive factor depending on the

transformation.

LEMMA 4.2. The solution ύ0 of

(4.21) (Aύ0 + fra 0 + y(ύ0 - uo)9 v-ύo)>0, Vv^K,

where

(4.22) (Aΰ0, η) = / α'I>;η dx + [ βλη dΉn_x
J JΩ

satisfies the strict inequality

(4.23) δ 0 > ψ on 3Ω.
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Proof of Lemma 4.2. In view of (4.12) and (4.4) we have

(4.24) - a\x, ύ09 Dύ0) γ, < -a'(x9 ψ, Dφ) γ, on 3Ω

or equivalently

(4.25) - a"(x, ύ09 Dύ0) < -a»(x, ψ, Dψ) on Γ.

Now assume that there is x0 e 3Ω such that

(4.26) fio(*o) = Ψ(*o).

It follows that Dj(u0 - ψ)(x0)
 = °> VI <y < Λ - 1. Thus, we obtain

from (4.25)

(4.27) 0 < [l a"J(x0, iuo+(l - ί)Ψ, d»o +(1 "

W t * / i /"I u\ I

-r—V ^O' *WO "^ V-*- ~~ O r

x((δ 0 -ψ)(x o ) )ώ

= /VΛ( -O A,(So-Ψ)(*o)*-
•'o

But in view of ύ0 > ψ we have

(4.28) Aι(δo - Ψ) ^ 0 at JC0.

Thus, the contradiction is a consequence of ellipticity.

Since we already know that in the case μ -> oo the solutions u of the

approximating problems (4.10) tend to ύ0 uniformly, we can assume in the

following that μ is so large that

(4.29) w > ψ onθΩ.

In particular we have

(4.30) θ ( κ - ψ ) = Θ' (w-ψ) = 0 onθΩ.

Now we are ready to estimate the second tangential derivatives of u.

LEMMA 4.3. The second tangential derivatives of u can be estimated by

(4.31) sup \DpDσu\ < c ( l + | |w| | 2 > 0 0) ε

for any ε, 0 < ε < 1, where c depends on ε ; \\u\\2p and known quantities.

Proof of Lemma 4.3. Following ideas in [5] and [7] we shall estimate

the quantity

(4.32) λ aklDkDιU ± DσDu, 1 < p, σ < « - 1,
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from below. As in [5] we derive the differential inequality

(4.33) - D^Djw) +γw + μθ'(w - w) > f + DJ1

where

w = λ aklDkD,u + DrDsu9

(4.34) „ 1 <r,s<n,
w = λ aklDkD^ ± DrDsψ,

and λ is large.

We set r = p, s = σ and multiply (4.33) with

(4.35) wk - η2 = min(w η 2 4- fc,θ) η 2

where η = 1 in 5 1 / 2 and supp η c ^ and

(4.36) k> ko = sup |w|.

Using ellipticity and (4.19) we obtain

(4.37) [ \Dw\\4 dx + γ ί w2 rfjc

I/" wMx /

where^4(A:) is the set {x e J5X

+|W η2 < —k). The first boundary integral

can be estimated by

(4.38) H / I U ί / \Dwk\dx + c - f wkdx)

<e[ \Dw\\Ux + c -(1 +\\u\\2,x)
m\A{k)\.

To estimate the second boundary integral, we conclude from the

equation in view of (4.30) that

(4.39) Djw = DjF + DjDpDou

where DjF = f. In order to estimate the critical term

(4.40) anJDkDpDσu

we differentiate the boundary condition (4.20) and obtain

(4.41) - a"DjDeu = Dσβ2 + ^ Dau + | ^
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and

(4.42) - a*JDjDσDμu = DσDpβ2 + Dp[*£ . Dσu

+ Dβ(a"J) DjDσu.

But this equals/and so we have

(4.43) ί anjDw - η2 - wk\dx < ί |/ wΛ|<ft

which can be estimated as in (4.38). Finally, we conclude

(4.44) ί \Dwk\
2dx + y [ w2

kdx < c - ( l + \ \ u \ \ 2 ^ ) m \A(k)\

for any k > k0. Now the conclusion of the Lemma follows from the same

arguments as in ([5], Theorem 2.2).

To get a similar bound for the mixed derivatives DnDσu, we remark

that due to (4.41)

(4.45) - annDnDσu = g + anpDpDσu on Γ

with some bounded function g and so—again using ann > 0—we deduce

that

(4.46) \DnDσu\<c(l +|AAWI) ^ V ( l +NkooΓ

holds on Γ. Repeating now the proof of Lemma 4.3 with w == λ

aklDkDtu ± DnDau and k > k0 = k0 + cε(l + ||w||2,oo)ε> we conclude that

(4.46) holds in B^/2 since no boundary integrals occur.

Finally, using the equation we can estimate DnDnu in terms of DσDpu

and DnDσu. Thus, we obtain

(4.47) IMI^oo,^ ^ c β - ( l + | H | 2 f o o ) β

for any ε, 0 < ε < 1.

As 3 Ω is compact, this estimate holds in a boundary neighbourhood.

In the interior of Ω the estimate can be derived by a version of the proof

of Lemma 4.3. Thus, we have an a priori estimate for ||M||2,OO,Ω depending

only on known quantities, but not on μ and δ.

Letting now μ tend to infinity, u tends to the (unique) solution ύ0 of

(4.21). Then, letting 8 tend to zero, we arrive at a function u e i/2 o o(Ω)

solving the variational inequality

(Aύ + Hϊi + γ(w - uo),υ - u) > 0,

(4.48)
,η)= a'DiVdx+ βη dHn_λ
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where A and H satisfy the sharper differentiability assumptions. By an
approximation argument we conclude, that (4.48) admits a solution u e
H2oo(Ω) assuming only the weaker conditions, since the estimates are
independent of the sharper assumptions. The conclusion

(4.49) u = u0

now follows from the uniqueness of a solution of (4.48).
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