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AN APPROXIMATION THEOREM FOR
EQUIVARIANT LOOP SPACES
IN THE COMPACT LIE CASE

J. CARUSO AND S. WANER

Let V be a real orthogonal countable-dimensional representation of
the Lie group G and denote by QVΣVX the space of maps Sv -> ΣVX =
X A Sv\ where Sv denotes the one-point compactification of V and
where X is an arbitrary G-space with stationary basepoint (if V is
infinite-dimensional, QVΣVX is taken as the natural colimit over spaces
indexed on the finite-dimensional submodules of V). Since G acts on
ΩVΣVX by conjugation, the fixed-set (ΩVΣVX)G is the subspace of
G-equivariant maps. We present here an approximation to (ΩVΣVX)G in
the stable case (V large). This approximation will take the form of a
space of "configurations" of G-orbits in V.

In the Geometry of Iterated Loop Spaces [Ml], J. P. May carries out
this program using an approximation

an: CnX^ΏnΣnX

for 1 < n. The map an is a homotopy-equivalence when X is connected,
and in general is a group-completion. This means that an is an i/-map
between an if-space and a group-like i/-space, and (αn)*: H*{CnX) ->
H*{Q,nΣnX) is a localization of the ring H*(CnX) at its multiplicative
submonoid π0Xίox field coefficients. (See [M2, Ch. 15].)

We wish to carry out such a program in the equivariant case, where all
spaces are acted upon by a group G. The right space to approximate in
place of ΩnΣnX is the space ΏVΣVX. Such an approximation exists in the
case where G is finite ([HI], [S2]). But the case where G is a compact Lie
group is much deeper, and our approximation to (ΏVΣVX)G is therefore
not the greatest generality one could hope for. Indeed, a suitable ap-
proximation to ΩVΣVX (even in the stable case) would suffice to prove an
equivariant "regcognition principle"—a simple test enabling one to de-
termine whether a given space admits deloopings of all orders. (When G is
finite, May, Hauschild and Waner have developed such a principle.) In
the last section we indicate what one could hope for in this regard, and
plan to address the actual development of a recognition principle in a
future paper.
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28 J. CARUSO AND S. WANER

1. Definitions and notations. Let G be a compact Lie group, and V
a finite-dimensional real representation of G. Throughout the text, Sfj will
stand for the symmetric group onj letters.

In this section, we will define a space CG(V, X) of "configurations"
of G-orbits in V which will be the finite-dimensional version of an
approximation to (ΏVΣVX)G.

If H is a closed subgroup of G and Y is any G-space we will denote by
YH and Y(H) the subspaces

YH = { y €= Y\Gy > H} (the subspace of Y fixed by H),

Y{

where (H) stands for the class of subgroups conjugate to H, and

is the isotropy group of y. In particular, if W is a representation, W77 is a
vector space acted on by the normalizer NH of H, W(H) is a G-manifold,
and ίΓ(7/) = W(H,} ifH ~ H'.

Let L(H) denote the tangent space of G/H at the coset H e. Note
that if H' = k~ιHk is conjugate to if, there is a G-map

(1.1a) G / # -> G/H' taking ifg -> /ffc-̂ A:

and this induces a linear isomorphism k*\ L(H) -> L(H'). Note that if
& e NH, k* is an automorphism of L(H), so that L ( # ) is a representa-
tion of NH. Let ίΓ(i/) denote £ ( # ) " .

If Y is any G-space, define the space of configurations of G-orbits

(1.2) FG(Y,j)={(y1,...,yj)<EYJ\yl.G,...,yj-G are

pairwise disjoint orbits].

This can be thought of as a generalization of a "configuration space" of
w-tuples of distinct points, which is so important in the nonequivariant
case ([Ml], [B2]).

Let X be a based G-space (with G-fixed basepoint), and then define

as the subspace of

FG{V{H),j)x^ U

consisting of points ((i^,...,^), (x1,...,xj)) such that υ, e V"' if xt
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Then let

) c G ( v , x \ H ) = U F G { v ( H ) , j ) χ j

where ~ is the equivalence relation generated by

(1.4a)

for all v, e V(H) n VH; Xj e ΣL^)HlXH; and

( 1 . 4 b ) ((υι,...,Vj),(x1,...,xJ)) ~ ( ( V 2 , . . . , V J ) , (

if x1 = *. If K < G, and £/is a sub-X-space of V, let

Finally, let

(i 5) cG(v,x) = ΠcG(v,x)(H)

where (H) ranges over the set of conjugacy classes of closed subgroups of

G, and the product is the "weak product" (the direct limit of the finite

subproducts via basepoint inclusions). Thus a point of CG(V, X) is

represented by a tuple ( v v . . . , vy, xv... 9Xj) where v( ^ V and

We denote such points with square brackets in place of parentheses:

[vl9...9υJ;x1,...9xj].

Now that we have defined the approximating space, we need an

approximating map. Ideally this would be a map a: CG(V, X) -»

(ΏVΣVX)G, which would then be shown to be a group-completion under

certain hypotheses. However, the orbits in CG(V, X) are not "thick

enough" to make it convenient to define such a map directly, and

(analogously to [C3], [M2]) we will turn to an intermediate space CG(V, X)

which will map to both CG(V, X) and (ΏVΣVX)G.

First we will define a space of "thick orbits" in V. Let FG(V) denote

the spaces of discs D in V such that

(i) D is a normal slice at its center υ to the orbit v G in F, and

(ii) the map D XHG -> V taking (d, g) to dg is an embedding, where

H=GV.
There is an injection i: FG(V) —> V X R given by sending D to (v, radius

Z>), and we topologize FG(V) as a subspace of V X R via i.
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Let FG{V)(H) denote the subspace of FG(V) of discs whose centers

lie in V{Hy

Finally, define

(1.6) FG(V,j\H)=[(D1,...,DJ)^{FG(V)(H)Y\DιG^.^DJG^

pairwise disjoint sets}.

Now, in parallel with the previous definition, let

CG{V, X\H) = UFG{V, j){H)xx [Σ^X"]'/* , and

,X) = [(Dι,...,DJ;[x1,tι],...,\xJ,tj\)& Y\CG{V,X\
\ (H)(H) H)

DλG,... ,DjG are disjoint\.

Note that CG(V9 X) and CG(V, X) depend only on G, Kand the G-homo-

topy type of X.

Now we are ready to define our approximating maps.

(1.8) LEMMA. Let γ ( / / ) : FG(V){H) -> V(H) take a disc D to its center-

point. This induces a G X Σj-equiυariant homotopy equivalence

and so a homotopy equivalence

τ.cG{v,x)-+cG{v9x).
(See [C5] Lemma 2.9.)

The other half of the approximation is a map

ay: CG(V, X) ^ (ΩvΣyX)G

which we define as follows.

Suppose D is a disc in FG(V)(H) with center v e VH and [x71] e

(ΣL{H)X)H. D spans the normal space N to v G at v, and there is a

homeomorphism

ψ = ψD:D^N
given by

(1-9) ΨD(V + U')= . V .
|d iam(D) - | |ϋ'| |

The inclusion G/H -> V taking Hg to v g induces an identification φ of

L(H) with the tangent space T to v • G at v.
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Define a map

a[D, xy t]: Sv -* X A Sv » X A Sτ A SN

by letting

(1.10) a[D9x,t](u)

if u = oo or u e F-(Z> G),

if M = w gwithn e J ) , g 6 G .

This is a G-map, since

α[D, x9 t](n - gg) = [xgg, φ ( ί ) g ^ Ψ(«)g |] = [^g, Φ(t)g, Ψ(Λ)g] g.

Since D XHG -+ D G is a homeomorphism, α[Z>? JC, /] =

α[Z>g, xg, tg]. In fact, if /t ε D,

(1.11) α[Dg, xg, ίg](πg - g) = [xg g, φ(rg)g, ψ(/ig)^]

= [x ĝ » Φ(Ogg, Ψ(Λ)g§] = «[D 5 x, /](Λ gg).

Now we can define a = α^.

Let z = [Dl9... ,/)y; [JC1? tx]9.. .,[xJ9 tj]] e CG(K, X). Then we define

by

( 1 1 2 ) α (
u, if «[!),., J C ^ Z / K M ) = utΦ * for some/.

This is well-defined since the sets Dt - G are pairwise disjoint, and (1-11)

holds. There is a general lemma which guarantees its continuity:

(1.13) LEMMA. Let X be a filtered space, η/. FjX -* {FλX)j, and let M

be a partial monoid withjth multiplication μy Mj -> M. Let a: X -> M be a

function and otj a function (F1X)J -> Mj such that for allj > 1,

M

(F^y 4

(«\FXX)J \ 2

commutes. Then a is continuous if a\FλXis.
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Proof, a is continuous if a\FjXis continuous for ally. D

In the present case, (ΩVΣVX)G is a partial monoid with (ίlvΣvX)J as

the set of j - tuples (fl9... ,fj) of maps from Sv to ΣVX such that no two of

f1(v),...,fJ(v) are different from * for any D E S K , and composition is

done by combining/^ ...,/)• as in (1.12).

The space

is filtered by

(1.14) FjZ = {z\z(H) Φ * for only finitely many

and/ x + ••• + lk

The space Z projects onto CG(V, X) via a quotient map p, and the

composite ap satisfies the hypotheses of the lemma and hence is continu-

ous; thus a is continuous.

We can now state the main theorems.

(1.15) THEOREM. Let W be a G-vector space containing an infinite-di-

mensional trivial representation R00, such that W is the direct limit of its

finite-dimensional subspaces. Define

and

where V ranges over finite-dimensional G-subspaces of W, and let aw

= limoίy. Then ifXis a countable G-CW complex,

aw\ CG(W, X) -> (ΏWΣWX)G is a group-completion.

Let A(G) denote the Burnside ring of G. In the finite case, this is the

universal enveloping ring for the semi-ring of isomorphism types of finite

G-sets, under the operations of disjoint union and Cartesian product. Tom

Dieck defines it analogously for Lie groups. (See D2.) We will compute
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the structure of πo(CG(W9 X)), and (1.8) and (1.15) will allow us to
deduce the additive part of torn Dieck's result in [Dl]:

(1.16) COROLLARY. Define W= GR°° to be the direct sum Θ.V™,
where Vv F 2 , . . . are the irreducible real representations of G, and V™
denotes the direct sum of infinitely many copies of Vt. Then

A(G)= lim [SV,SV]

v<w

where V runs over all finite-dimensional G-subspaces of W and the direct
limit is taken over suspension homomorphisms.

We also have a splitting theorem:

(1.17) COROLLARY. (Ω,WΣWX) is equivalent to a product

Π lim MΆVo(v»/(v»- V{H)), Σ^X")™.
v<w

Finally it is worth noting how nicely this result restrict to the finite
case:

(1.18) THEOREM. Let

be the usual configuration space. If W > R00, and X is a countable G-CW
complex, then C(W, X) is a based G-space, and there is a map

a: C(W,X) -

such that aH: C(W, X)H-> (ΏWΣWX)H is a group-completion for all H < G.

Proof. Since G is finite, L(H) = 0 for all H, and G/H is a finite set.
Define a homeomorphism

h: CG(W, X) ^ C(W, X)G

by

h[(vι,...,vJ);xι,...,xJ\ = [(vr g\i = l , . . . j , g ε G),(xrg)].

The approximation

CG(W9 X) £ K(W, X) A Ώ^ΣWX
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using little convex bodies K restricts to

aG: C{W, X)Gl CG(W, X) 2- CG(W9 X) % (ΏWΣWX)G;

restricting to a subgroup H lets us conclude that aH is a group-completion
for all H < G. D

The nice point here is that we needn't approximate the various
fixed-point sets of ΏWΣWX separately when G is finite.

2. Fiberings of equivariant function spaces. Let V be a real repre-
sentation of G.

Here we will produce fiberings involving various subspaces of
(ΏyΣvX)G, and we will use these later to reduce the proof of the main
theorem to consideration of spaces of functions which are nontrivial only
on maximal orbits.

(2.1) an orbit-type family IF for G is a collection of closed subgroups
such that if H e Ĵ * and K is subconjugate to H, then K e &m

An orbit of class &'is any G-orbit isomorphic to G/H for some
H e <F. If 1 denotes the trivial subgroup, the maximal orbits are those of
class {1}.

We will examine subspaces of (ΩVΣVX)G. Let K be a subgroup of G,
let U be a sub-j£-space of F, and let Y be any based AΓ-space. Then define

(2.2) {Q,UY)%= {fζΞ{ΩυY)κ\f(Un VH) = *forall#£J

That is, (ΩυY)§rconsists of £-maps/ which are non-trivial only on orbits
which are of class JΠn V.

We will construct fibrations in the situation where J ^ and J^2

 a r e

successive orbit families, that is, ̂  c J£"2 and J^2 — !Fλ consists of just one
conjugacy class (H), so that ^ contains all proper subgroups of H. In
this case we may form the following sequence

(2.3) (0"r)£ Λ (Q"y)£ Λ ( o ^ y ^ y

where i is inclusion of subspaces and p is obtained by restricting each
element of its domain to SγH.

(2.4) THEOREM. The sequence (2.3) is a fiber sequence onto the image of
/?, which is a union of components of(Ωv YH)^rH.
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Proof. Suppose we have an NH-msφ

h:Z Λl+ΛSyH -> YH

such that h(Z A I+Λ SyK) = * for all K < H such that K^^2 that is,

for all K such that H < K < NH. Suppose also that we have a G-map

H0:Z Λ{O} + Λ S V ^ Y

such thaipH0 = h0.

Since h is JV#-equivariant and nontrivial only on (Z Λ / + Λ(S κ ") ( / / ) ) ,

it extends uniquely to a G-map

h : Z Λ l + Λ ( S y H G ) - > YH G ^ Y

where SyH G c Sv. In fact, this inclusion is a cofibration, and hence the

homotopy extension property for (Sv, Sv" - G) implies that Ho extends to

a lift H of h. Also it is clear that/r^*) = (Ω K Γ)^.

This establishes the result, including the fact that the image of p is a

union of components. D

3. Decomposition of configuration spaces. It is convenient to de-

velop a decomposition-theory for the spaces CG(V, X) parallel to that

developed in §2 for mapping spaces. It turns out that the theory and the

arguments are quite a bit simpler.

Recall the notations of the previous section. Define

to be subspace of CK(U,Y) consisting of configurations [Dv...yDβ

[xv r j , . . . ,[xj, tj]]9 where for each i the center point vi of Dt gives rise to

an orbit υi G in Fof type J^; that is, υt e V(H) for some H e J^. Then

(3.1) CK(U,Y)= Π CK{U,Y\H).

If AT is a subgroup of G, maximal in J^? we can define a homeomor-

phism

(3.2) k: CG(V9 X\H) -» CNH{VH, XH\H) = CNH{VH, XH)^

as follows. Let

k\Dl9...,Dj\[x1,t1]9...\xj9tJ\\ = \D[,...^

where Dj is related to Dt as follows: if vi e VgHg~\ let υ\ = vtg, and let Ό[

be the disc normal to the orbit υ\ NH at υ\ in F7 7, with the same radius
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as Dr Let t\ = g *(*,), where

T ί TT — 1 \ 8 8 T ί TT\ ** i / ΆT TT /Tτ\ \ **

g*: L(gHg L) -* L{H) = (τ(NH/H)eH)
is the map in (1.12), and let JC = xt g.

The equivalence relation » in (1.4) and (1.6) shows that k is well-de-
fined, and a well-defined inverse can be given by sending [D'i9[x'i9 /,']] to
[/)/', [x7

r, /,']], where D" is the disc with the same diameter as D/, normal in
V\oυ'r G.

Thus we may define a product bundle

ί*\ Ί\ f~* (ΊZ Y\ __*. tΓ* (if V\ _1 7^ (l/H vH\

where / is inclusion and/? is the projection

T~T c (v x} —> c (v x)

composed with k.

4. Duality in equivariant function spaces. The previous two sections
reduce the main work of proving (1.15) to showing that a restricts to an
equivalence of CNH(WH, XH)^md (QwHΣw"xH)£H when H is maximal
in J*\ This "maximal orbit type" case can be attacked by something
similar to methods used by Becker and Schultz in [Bl].

In this section, we will obtain an equivalence

(4.1) ε: {ttwHΣwHXH)™ -> Ω00Σ00(£I/+Λ 7 ΣLXH)

where R00 < W, H is maximal in &9 J = NH/H and L = L(J/l) is the
Lie algebra of /. The space CNH(WH

y XH)^is analyzed in the following
section.

Recall the following definitions and notation from [Bl]. A sectioned
bundle is a bundle ξ: E -* B equipped with a section Δ :̂ B -> E (so that
£o Δ^ = id). If B is fixed, sectioned bundles over B form a topological
category, and if ξ9 η are sectioned bundles over B, define

Bundo(£,τj)

to be the space of morphisms from £ to η. These are bundle maps /over B
such that/ ° Δ^ = Δ .

The fiber ^(b) of ξ over b may be thought of as a based space with
basepoint Δ^(6), and we may construct several functors on the category of
sectioned bundles over B from standard functors on the category of based
spaces. For example, if | and η are sectioned bundles over B, let £ Λ η
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denote the "fiberwise smash product" of ξ and η; the fiber of ξ A η over b
is

({ Λ η)-\b) = ξ-'ib) Λ η~\b),

with basepoint Δ̂ (Z>) Λ Δη(b).
If A cz B, ξ\A is defined to be the bundle ξ~\A) -> ̂ 4 whose projec-

tion and section are the restrictions of ξ and Δ .̂
If Xis a based space, let Xdenote the product bundle/?: X X B -> B

with/?(.*, ό) = b and Δ(ft) = (*, b).
If α: £ -> B is a vector bundle, let α denote the based sphere bundle

obtained by taking the fiberwise one-point compactification of E and
letting Δ be the cross-section at infinity. Note that a θ β is canonically
isomorphic toaAβ.

There is a functor T from sectioned bundles to based spaces defined
by

If a is a vector bundle, T(a) is just the usual Thorn space of α, also
denoted Ta oτBa.UA c J5, define

We may also define a category of pairs (£, £') where £ is a sectioned
bundle of £ and £' is a subbundle of ξ\A; if (η, η') is another such pair let
the morphism space

be the subspace of Bundo(£, η) of maps sending ξ' into η'.

(4.2) LEMMA, (i) There is a natural isomorphism T{ X A £) « X A T(ξ).
(ii) T is a continuous functor, and induces a homeomorphisms

Bundo(£, ξ\A; X, *) ̂  Mapo((5, ^ ) € ,

i5 a simple check.

If H is maximal in Ĵ ", Y is an NH/H-sp&ce, and F is a sub-iVi/-space
of MK77, then (ΩvΣvY)%rH is homeomoφhic to the mapping space

Map(sv,Sy-{Vn W(H));ΣVY,*)J

where / = NH/H. We will thus need to make some remarks about
mapping spaces of G-manifolds.

(4.3) REMARKS. Let (Aί, 3M) be a compact smooth manifold with
boundary, on which NH acts such that M = M{Hy Then / is a finite
group acting on M, so M/J is a manifold, and

μ:M -* M/J
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is a principal G-bundle. Suppose that M is contained in a /-vector space V

such that dim M = dim V. Then the natural projection
MXjV^ M/J

is equivalent to the Whitney sum of the tangent bundle T of M/J and the

bundle
π:MXjL -> M/J

where L is the Lie algebra of /.

Consider the mapping space Map7(M, 3M; ΣVY, *) of /-maps from

M to ΣVX taking ΘM to *, where Y is a based /-space. This can be

identified with the space of sections of the bundle

η:MXjΣvY^ M/J

taking the value * on dM/J. This is the space of bundle maps

Bundo(S°,S°\(dM/J);η,*).

From the note on M Xj F, we see that η may be decomposed as

(4.4) η = τ Λ ? 7 Λ ξ

where ξ: M XjY —> M/J is the natural projection with section Δ[m] =

[m,*].

Choose some embedding /: M/J -> Rs and let v be its normal bundle.

Then we have a Pontryagin-Thom map

C:SS -> (M/J,dM/J)\

and a natural isomorphism of u θ τ to the trivial vector bundle with fiber

Rs. Define a map ε(M) as the composite

Bundo(5°, S°\(dM/J); τ A if Λ£, *)

Bundo(ϋ, ϋ

(4.5) Bundo(ϋ, ϋpM/J); Ss A ΪΓ Λξ,*)

IT

lc*

QsΣs(M+AjΣLY)9

where σ is suspension by ϋ.
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The manifold we wish to study is a manifold M = M(V) constructed

by letting δ > 0 be small enough that

M=[V-Bδ{V- VΠ W{H))\ ΠBι/δ(0)

is a deformation retract of V Π W(H), where

Bδ(A) = the δ-neighborhood of A.

Then

(QVΣVY)™ « Mapo(M/aM, ΣVY)\

because M/dMis homeomoφhic to SV/(SV — V Π W{H)).

We cannot prove that e(M(V)) is an equivalence if Fis finite-dimen-

sional. However, let W be a representation of G containing an orbit

isomorphic to G/H and a copy of R00. Then there is a sequence of

finite-dimensional sub-JV7/-spaces

(4.6) Vλ< V2< •" <WH

such that WH = ΌnVn. Define Mn = M( Vn) for n = 1,2,3,..., and choose

δ s so that

\^Mλ) c (M2,3M2) c . . . .

The union Un Mn is a free /-space which can be shown to be contractible
and hence may be thought of as the total space EJ of the universal bundle
of/.

We may also choose the embeddings in: Mn/J -> R^ so that sn < sn+v

and so that

Mn/J -^ Rs"

(4.7) I i v

commutes, where /'(/) = (ί,0) is the standard inclusion. It follows that

Map(Mn, dMn; Ί.v-Y,*)J ^ ΩS"ΣS"(M;Λ JΣLY)

(4.8) ji Aσ
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commutes, where σ is suspension composed with the inclusion induced
from Mn *-> Mn+1, and j is defined as making the following diagram
commute:

j i

Map( Afn+1, dMn
+1;

(4.10) PROPOSITION. Lei t/ = WH and Y = Λ^. Γαλ mg ίλe ώ'recί Λ'ra/7

over the sequence (4.6) t>/α diagram (4.8), Je/ίwe ε to be the composite

Y)™

lim ε(Mn)
s»Σs»(M+ΛjΣLY) = a^°°(EJ+A jΣLY).

Then ε is an equivalence of H-spaces.

Proof. The i/-structure on (Ω,uΣυY)™ comes from the loop multipli-
cation, since R00 < WH, and this is carried over to the mapping spaces
since if Vn θ R c Vn+V then M w X R c Mn+1. The map ε is an H-meφ
since we may choose the Vn's to have the form V'n θ R, where U = (Un V£)
θ R, and we can choose in: Mn/J -> Wn to have the form

(4.11) Mn/J « M ( ^ ) / ^ X / ^ R 5 - " 1 X / -> R'w

where / = [0,1] c R.

The proof that ε is an equivalence occupies the remainder of this
section.

Some of the maps we will use are duality maps from a fiberwise
duality involving m A ξ. We recall some facts of equivariant topology.

(4.12) LEMMA. Let (X, A) be a pair of finite G-CW complexes. Then X

embeds in the unit ball of a representation V such that

(i) X is a GΈuclidean neighborhood retract (G-ENR) of some in-

variant neighborhood U9

(ii) there is a G-deformation U — X —> 3ί/, and

(iii) A embeds in a hemisphere E+ of the unit sphere with (i) and (ii)

restricting appropriately.

In this case, an argument similar to that of Atiyah in [Al] shows that U/dU

is S'dual to X/A, and U/(dU U V Π E+) is S-dual to X.
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A fiberwise duality is a map γ Λ γ -> St of bundles which restricts to

a duality on fibers. The above lemma proves the existence of a fiberwise

dual for a bundle γ whose fibers are finite G-CW complexes. Hence

assume from now on that Y is finite, and let γ be the dual to the bundle

γ = 7Γ Λ£, and /': M XjΣLY -* M/J X R' the inclusion as a fiberwise

ENR.

In this case, we may define an embedding

(4.13) j:MXjΣLY-^M/J X R'^R* X R' = Rs+ΐ.

Then we can prove

(4.14) PROPOSITION. The Thorn space (M/J, dM/jyAϋ is S-dual to

M+ A SΣ
LY, where v is normal bundle of i.

Proof. Let B = M/J9 E = M XjΣLY; thus dB = (dλf)/G. Let γ:

E -> B be the bundle, i: B -» Rs, and V: E -» B X R'. Finally let γ r:

ί/ —> B be the projection to B of the neighborhood [/ of im(z') in B X R',

and define γ: U/dU -> ΰ to be the fiberwise collapse of 3£Λ Now

BΎ = E/Δγ(B). Define / and V so that the embedding (/ X 1) o /' sends E

into Is+t c Rs + t with Δ(5) embedded in Γ X 0. By Atiyah's argument,

E/Δ(B) is dual to Γ+t - J5, which is equivalent to Γ+t/Γ+t - U'9 U

being a regular neighborhood of E in Γ+t. This is the same as collapsing

out y'ι(dB), and collapsing the boundary of (γ /)"1(^) x υ~1(b) to a point

for all 6 G 5 .

But this is just the Thorn space of (YV^YO Λ ( υ/9 u) = y A ϋ over
( 5 , Θ5). Hence

5 γ i s5-dual to(5,35)^ Λ D . D

In the above proposition, the duality map

(M+Λ 7 2 L 7 ) Λ (M/J, dM/J)ϋA^ -> 5 5 + /

comes from the embedding j in (4.13). This and the fiberwise duality

γ Λ γ -> St induce maps

(4.15) Bundo(μ, μf A γ) -+ Bundo(μ Λ γ, μ' A S')

and

Mapo(y, M+A jΣLY) -> Mapo(7 Λ (M/J, dM/J)ϋA\ Ss+ΐ)

which will be generically denoted by D. We now use these maps to

complete the proof that ε is an equivalence.
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By construction ε = limC* ° Tn ° σ(ϋw). The connectivity of the fiber

of ϋn tends to infinity with n, and a suspension theorem [Jl] applies to

prove that limσ(ϋw) is an equivalence

To show that lim C* ° Tn is a equivalence, we note that the following

diagram commutes for M = Mn:

(4.16)

Bundo(ϋ,ϋ|(aM//);τθυΛγ,*)P -> Bund()(ΰ Λγ, v Λγ|(3A//J); S'v + ', *)

Π IT

Mapo((Λ//7,3Λ//7)",ΣΛ(Λ/+ΛyΣ
/T)) Mapo((Λ//J, 8Λ///)DΛ\ ΣΛ + '(Λ//7+)

v(M+Λ yΣ
/T)) Mapo((Λ//J, ΘΛ///)DΛ\ Ss+t)

σ | Af+ΛyΣ'Ύ iσ

D Λ \ S

s+t+N)

where the σ's are suspensions, Â  is any number > s, and p: Σs+t(M/J+)

-> Ss+t collapses M/J to a point. By (4.2) (ii), the composite pT is a

homeomorphism since r θ υ = Ss+t is trivial.

Passing to the limit over Mn, the suspensions and duality maps

become equivalences, and hence so does limQTw.

This was all done assuming X finite, but now a simple colimit

argument allows us to deduce the same result when X is a countable

G-CW complex as in the hypotheses to (1.15). D

5. Duality and configuration spaces. This is parallel to §4; we will

exhibit homotopy-equivalences

(5.1) μ: CNH(U9 Y)*-> C(R°°, EJ+Λ y Δ L y)

where U9 Y, and L are as in (4.10).

Let Vλ < V2 < < U be as in (4.6), and Mn = M(Vn) for n =

1,2, Now define CNH(M\dM, Y) as the space of configurations in

CNH(V,Y)jzr whose F-coordinates all lie in M — dM. This suggestive

notation is to indicate that they may be thought of as approximations to

MapNH(M/dM, ΣVY), though this will not be developed here. Note that

the natural homeomorphism M — dM « V Π W(H) induces a homeomor-

phism

(5.2) CNH(V, Y)r~ CNH(M\dM, Y).



APPROXIMATION THEOREM FOR EQUIVARIANT LOOP SPACES 43

Recall the embedding i: M/G -» R5 and define

(5.3) φ: CNH(M\dM, Y) -» C{W, M+A jΣLY)

by sending

{mι,...,mk; [xt, / J , . . .,[xk, l k ] ) t o

{ i [ m 1 ] , . . . , i [ m k ] ; [ m l t xlt / J , . . . , [ m k , xk, l k \ )

and

ψ :

by

- 3M), 7 ) ^

5 X V)\dM{W X F),

(p, [m, x, I]) -» (jp, y(/n); [JC, /])

where/: M -> Mis a self-embedding with j(M) c M — ΘM.

We may choose VX,V2,... so that

and so that

(Mn X R^

(5.4)

/• x i

Rs« X W* <->

commutes.

Then the following diagram commutes:

(5.5)

CNH(Mn\dMn,Y)

CNH(MαXK \dMnxK ,Y)
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We pass to limits and obtain the composite

(5.6)

II*

]imφn

C(K°,EJ+ΛjΣLY)

which is an equivalence of i/-spaces.
A similar theorem is provable for CNH(U, Y); in fact there is an

equivalence μ such that

CNH(U,Y) I CNH{U,Y)

μi iμ

C(R°°, EJ+Λ JΣLY) t CO0{EJ+A JΣLY)

commutes, where γ' is the map replacing each little cube with its center-
point.

6. Proof of the main theorem. This section contains the proof of
(1.15); in fact, we will prove the following general statement:

(6.1) If R00 < W, then the restriction of α,

is a group completion for any orbit-type family J^of closed subgroups of
G.

The proof of (6.1) consists of a series of lemmas.
(6.2) LEMMA. If H is maximal in 3F, then the induced map

"NH

is a group-completion.

Proof. Assembling the results of §§4-5, we see that there is a diagram
of iϊ-spaces and i/-maps:

μiίμ

C(K*,EJ+ΛjΣLXH) QOOΣOO(EJ+AJΣ
LXH)



APPROXIMATION THEOREM FOR EQUIVARIANT LOOP SPACES 45

which commutes up to homotopy, where α' is the nonequivariant ap-
proximation, and γ, γ', μ, μ, and ε are equivalences. Thus (6.2) follows
from the fact that α' is a group-completion ([Cl], [C4], [SI]). •

(6.3) LEMMA. Let A, C be H-spaces. Let F, E, B be grouplike H-spaces

{i.e., application of the functor ττo(-) yields a group), and F Λ E -^ B a

fiber sequence such that the following diagram is homotopy-commutative:

Then if

pi

B ~*

A

>1 i

AXC

pr2 i

c

i"o(p)x(p\Eo)

(τro£) X Bo

-^ F

iι

-^ E

I p

-^ B

is a commutative diagram of H-spaces and H-maps, and α, β are group-com-
pletions, then γ is a group-completion and E ~ F X B.

Proof. Clearly it suffices to show this for the case where B is
connected (B = Bo) or discrete {B = τro5). The discrete case is easy
algebra, and we consider only the connected case.

The product of group-completions is a group-completion [C2], [M4],
so that there is an //-map γ: F X B -> E such that

A

B

homotopy-commutes. Hence γ is an equivalence, and γ is a group-comple-
tion. Q
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Now partially order the conjugacy classes of subgroups of G by
defining

if H is subconjugate to K. Then an orbit-type family is precisely the union
of the classes in an initial segment of this partial order.

By letting J^run through some cofinal sequence of initial segments,
one obtains the following by induction (see, for example, McClure [M5]):

(6.4) LEMMA. The statement (6.1) is true for all &'if
(i) (6.1) is true for 3?= {1}.

(ii) whenever ̂ γ and^2 = J ^ U (H) are a successive pair of families,
and (6.1) is true for &x, then it is true for J^2, and

(iii) whenever ίFλ c !F2 c c i ζ c ••• is a chain of families and
&= Urt J^ , then if (6.1) is true for all the^n, it is true for&.

We use this last lemma to prove (6.1). Hypothesis (i) is just the special
case J^= {1}, H = 1, NH = G of Lemma (6.2). Hypothesis (iii) is easily

verified by looking at the homology of

CG(W, X)^= ]imCG(W, X)^n and (ΏWΣWX)%= lim(ΏwΣwX)$r.

Finally, to verify hypothesis (ii), we take together the results of §§2-3 and
note that the following diagram commutes:

i i i V

pi i p'

C (WH YH\ °5 (QlVHylVHyH\NH

By hypothesis a% is a group-completion, and by (6.2), aψ* is a group-
completion. Hence by (6.3), a% is a group completion. D

Hence (6.1) is true for all J^and (1.15) follows.

7. Other results. We offer a proof of Corollary (1.16). Recall that
A(G) is additively the free abelian group generated by elements [G/H] for
which \NH:H\ < oo. If A+(G) is the submonoid of elements with non-
negative coefficients [Dl], then A(G) is the universal enveloping group of
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A consequence of (1.15) is that

^ ( α γ - 1 ) : ^{CG{W, 5°)) - , 7 O ( ( Ω ^ ) C ) = [Sw, Sw]G

is the inclusion of πo(CG(W, S0)) into its universal enveloping group.

Hence (1.16) can be shown by constructing an isomorphism

Φ:A + (G)->π0{CG(W,S0))

of monoids.

To keep our notation clear, let S° = {*, a}. Then any point in

CG( W, S°) may be written in the form

z = [ υ l 9 . . . 9 υ / 9 a,a,...,a\ tl9...,tn]

where vi ^ W and tt e L(Gv)
Gv>. If some vt has isotropy group Gv with

\NGυ: Gv\ = oo, then L(Gv)
Gvi Φ 0, and so there is a path from z to the

point

z f = [ υ l 9 . . . 9 υ / 9 a,...,a; tl9...9t'i = o o , . . . , / y ]

= [ ^ , . . . , 0 , . , . . . , ^ . ; a,...,a; tl9...9ti9...9tj].

It follows that any element of πo(CG(W, S0)) may be represented by a

point of the form

[ υ l 9 . . . 9 ϋ j 9 a 9 . . . 9 a \ O , . . . ,

where Gυ has finite index in its normalizes

Now let ( i^i), . . . ,(Hn),... be the conjugacy classes of subgroups of

, and choose wl9...9wn9... such that

Then define Φ as above by letting

and extending to A +(G) by additivity.

An inverse Ψ: πo(CG(W, S0))-* A+(G) to Φ may be defined by

letting

J

ψ{[ϋ1,...,ϋJ;a9...,a;0,...96\} = Σ [G/GΌ\9
n = l

where GΌi9...9GΌ are of finite index in their normalizers. Then it is easily

verified that ψΦ = id and that

where zf is in the same path-component as z.
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8. Other questions. The ambition highlighted in the introduction,
of finding a model for ΏVΣVX which would serve as a basis for a
recognition principle, is still unsatisfied. Three basic and natural questions
spring up and need to be answered:

(i) To what do the natural inclusion maps

(ίlwΣwX)G -> (ΏWΣWX)H

correspond on the configuration-space level, foτH< GΊ
(ii) Can we construct a manageable global model C( W, X) so that

(C(W, X))H = CH(W, X) for all # £ G

(as for the case where G is finite)?
(iii) What can be said for the "unstable" case where R" < W but

R00 < WΊ
Related to these questions is that of the multiplicative structure in the

Burnside ring:
(iv) Is there a natural ring space structure CG(W> X) X CG(W, X) -»

CG(W, X) corresponding to multiplication in A(G) via (1.16)?
Finally, we are examining the following question along with (i)-(iv),

which are all work in progress.
(v) Recall the homotopical model CnX for ΏnΣnX [C3]. Is there a

similar model for (QWΣWX)G, and how does it relate to CG{W, X)Ί
This last question may need to be answered before we can approach

any of the others.
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