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AN APPROXIMATION THEOREM FOR
EQUIVARIANT LOOP SPACES
IN THE COMPACT LIE CASE

J. CARUSO AND S. WANER

Let V be a real orthogonal countable-dimensional representation of
the Lie group G and denote by Q" =" X the space of maps SV — =V'X =
X A SY, where SV denotes the one-point compactification of ¥ and
where X is an arbitrary G-space with stationary basepoint (if V is
infinite-dimensional, Q" =" X is taken as the natural colimit over spaces
indexed on the finite-dimensional submodules of V). Since G acts on
QVZVX by conjugation, the fixed-set (2"=VX)C is the subspace of
G-equivariant maps. We present here an approximation to (2" ="X)¢ in
the stable case (V large). This approximation will take the form of a
space of “configurations” of G-orbits in V.

In the Geometry of Iterated Loop Spaces [M1], J. P. May carries out
this program using an approximation

a,: C,X > Q="X

for 1 < n. The map a, is a homotopy-equivalence when X is connected,
and in general is a group-completion. This means that «, is an H-map
between an H-space and a group-like H-space, and (a,)s: H4(C,X) —
H,(Q"2"X) is a localization of the ring H,(C,X) at its multiplicative
submonoid 7, X for field coefficients. (See [M2, Ch. 15].)

We wish to carry out such a program in the equivariant case, where all
spaces are acted upon by a group G. The right space to approximate in
place of Q"2"X is the space 2”2 X. Such an approximation exists in the
case where G is finite ((H1], [S2]). But the case where G is a compact Lie
group is much deeper, and our approximation to (2"="X)¢ is therefore
not the greatest generality one could hope for. Indeed, a suitable ap-
proximation to 2V="X (even in the stable case) would suffice to prove an
equivariant “regcognition principle”’—a simple test enabling one to de-
termine whether a given space admits deloopings of all orders. (When G is
finite, May, Hauschild and Waner have developed such a principle.) In
the last section we indicate what one could hope for in this regard, and
plan to address the actual development of a recognition principle in a
future paper.
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1. Definitions and notations. Let G be a compact Lie group, and V
a finite-dimensional real representation of G. Throughout the text, &, will
stand for the symmetric group on j letters.

In this section, we will define a space Cy(V, X) of “configurations”
of G-orbits in ¥V which will be the finite-dimensional version of an
approximation to (V=" X)°.

If H is a closed subgroup of G and Y is any G-space we will denote by
Y* and Y, the subspaces

Y ={ye Y|G,> H} (thesubspaceof Y fixed by H),
1.1)
Yuy={y€Y|G ~H},

where ( H) stands for the class of subgroups conjugate to H, and
G,={geGlyg=y)}

is the isotropy group of y. In particular, if W is a representation, W is a
vector space acted on by the normalizer NH of H, W, is a G-manifold,
and W, = W4 if H ~ H'.

Let L(H) denote the tangent space of G/H at the coset H - e. Note
that if H’ = k~'Hk is conjugate to H, there is a G-map
(1.1a) G/H - G/H' taking Hg — Hk gk

and this induces a linear isomorphism k,: L(H) — L(H’). Note that if
k € NH, k, is an automorphism of L(H), so that L(H) is a representa-
tion of NH. Let K(H) denote L(H)".

If Y is any G-space, define the space of configurations of G-orbits

(12) FG(Y9 J) = {(yla- .- ayj) = leyl - G,... Vi G are

pairwise disjoint orbits} .
This can be thought of as a generalization of a “configuration space” of
n-tuples of distinct points, which is so important in the nonequivariant

case ([M1], [B2)).
Let X be a based G-space (with G-fixed basepoint), and then define

FO(Viry, ) Ko (2" X))

as the subspace of
Y
Fo (Vo ) % LT 2007%7 )
H~H

consisting of points ((vy,...,0,), (X,,...,x,)) such that v, € V7' if x, €
SKHEOXH fori=1,...,j.
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Then let

(1.3) Co(V, X)imy=LUF (Vo j ')YZ(E'“”)XH)J/z
Jjz0

where = is the equivalence relation generated by
(1.4a) ((vl,...,uj),(xl,...,xj)

= ((ul “ 8, 0p,..50); (X - g, xz,...,xj)))
forallv, € ¥, NV, x, € SLH) " xH, and

(1.4pb) ((Ul,...,vj),(xl,...,xj)) = ((v35---,0;), (X5,.-.,x,))
if x;, = ». If K < G, and U is a sub-K-space of V, let

Cx (U, X)im = LIF¥(U 0 Vi), ) X5 (ZHOXH) /=
j=0

Finally, let

(1.5) Co(V, X) = (I;[)CG(V, X))

where ( H) ranges over the set of conjugacy classes of closed subgroups of
G, and the product is the “weak product” (the direct limit of the finite
subproducts via basepoint inclusions). Thus a point of Cg(V, X) is
represented by a tuple (v,,...,0; x;,...,x;) wherev; € V and

x, € (SHGIX)%

We denote such points with square brackets in place of parentheses:
[vg,--- \Uj Xq, - <X

Now that we have defined the approximating space, we need an
approximating map. Ideally this would be a map a: Ci(V, X) —
(2YZVX)¢, which would then be shown to be a group-completion under
certain hypotheses. However, the orbits in Cg(V, X) are not “thick
enough” to make it convenient to define such a map directly, and
(analogously to [C3], [M2]) we will turn to an intermediate space C,(V, X)
which will map to both C,(V, X) and (22" X)°.

First we will define a space of “thick orbits” in V. Let FU(V') denote
the spaces of discs D in V such that

(1) D is a normal slice at its center v to the orbit v - Gin V, and

(i1) the map D X ;G — V taking (d, g) to dg is an embedding, where

H = G,.

There is an injection «: F°(V) = ¥ X R given by sending D to (v, radius
D), and we topologize FY(V) as a subspace of ¥ X R via t.
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Let FO(V') y, denote the subspace of F(¥') of discs whose centers
liein V.
Finally, define
(16) FO(V, j)anm={(Dy,....D)) € (FO(V)m)’|D,G,...,D,G are
pairwise disjoint sets} .
Now, in parallel with the previous definition, let
CV, X)m = LLFO(V, j)m X5, [EX¥OX"] /=, and

7=0

(1.7) Go(V, X) = {(Dl,...,Dj; [t [, 1)) € TTE(7. X)on|

D\G,...,DG are disjoint}.

Note that C.(V, X) and C,(V, X) depend only on G, V and the G-homo-
topy type of X.

Now we are ready to define our approximating maps.

(1.8) LEMMA. Let vy FO(V) gy = V gy take a disc D to its center-
point. This induces a G \ 2 -equivariant homotopy equivalence

Y(my: FG(Va Fan = FG(VEH), J)
and so a homotopy equivalence
y: C,(V, X) > C.(V, X).

(See [C5] Lemma 2.9.)

The other half of the approximation is a map
a,: C(V, X) » (2"2"x)°
which we define as follows. 3
Suppose D is a disc in FE(V) «my With center v € V¥ and [x,t] €
(S x)H D spans the normal space N to v - G at v, and there is a
homeomorphism

Y=v¥p:D>N
given by

(1.9) Yp(v +0v) =

’

v
3 diam(D) — [|v/]|

The inclusion G/H — V taking Hg to v - g induces an identification ¢ of
L( H) with the tangent space T tov - G at v.
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Define a map
a[D,x,t]:S" > XAS"=XASTASY
by letting
(1.10) «a[D, x, t](u)
L ifu=worucsV-(D-G),
[xg, o(t)g, ¢¥(n)g] ifu=n-gwithne D, ge .
This is a G-map, since
a[D, x, t](n - g8) = [xgg, ¢(2) g8, ¥(n)g&] = [xg, ¢(¢)g. ¥(n)g] - &.
Since D X,;G —» D -G is a homeomorphism, «[D, x, t] =
a[Dg, xg, tg]. In fact,if n € D,
(1.11) «[Dg, xg,1g](ng- &) = [xg - &, ¢(18)&, ¥(ng) 8]
=[x - g8, ¢(1) g8, ¥(n)g&] = a[ D, x, t](n - g8).
Now we can define a = «a,.

Letz = [Dy,...,D;; [x), },...,[x;, ;] € Co(V, X). Then we define

J

y 2

S XASY

by
x ifa[D,, x;,t,](u) = * for all i,

u, ifa[D,, x,,t;](u) = u; # * for some i.

1

(1.12)  a(z)(u) =

This is well-defined since the sets D, - G are pairwise disjoint, and (1.11)
holds. There is a general lemma which guarantees its continuity:

(1.13) LEMMA. Let X be a filtered space, n;: F;X — (F,X)’, and let M
be a partial monoid with jth multiplication p.;: M; > M. Let a: X - M be a
function and @ a function (F; X )Y > M ; such that for all j > 1,

alFM
F}X - M

7, T u
(FRX) - M,

J
(dRX)Y N 2
Mj

commutes. Then a is continuous if a|F, X is.
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Proof. a is continuous if a| F, X is continuous for all ;. a

In the present case, (2"="X)€ is a partial monoid with (2"Z"X)¢ as
the set of j-tuples ( fi,. .., fj> of maps from S to "X such that no two of
J1(v)s. ... f,(v) are different from = for any v € S Y, and composition is
done by combining f,,...,f; as in (1.12).

The space

2= T LLF* (. )5((z20)")'|

is filtered by
(1.14) F,Z = {z|zy, # * for only finitely many (H)’s,

ol : H\ L
(Hy)seo s (HY), 20y € FO(Viyo 1) X((2H00x) ™)
and/, + --- +lk5j},

The space Z projects onto C,;(V, X) via a quotient map p, and the
composite ap satisfies the hypotheses of the lemma and hence is continu-
ous; thus « is continuous.

We can now state the main theorems.

(1.15) THEOREM. Let W be a G-vector space containing an infinite-di-
mensional trivial representation R, such that W is the direct limit of its
finite-dimensional subspaces. Define

Co(W, X) = li_r)nEG(V, X),
and
Q¥YIVX = im Q'Y X,
__)

where V ranges over finite-dimensional G-subspaces of W, and let a,,
= li_n)l ay. Then if X is a countable G-CW complex,

a,: C.(W, X) = (9¥="X) is a group-completion.

Let A(G) denote the Burnside ring of G. In the finite case, this is the
universal enveloping ring for the semi-ring of isomorphism types of finite
G-sets, under the operations of disjoint union and Cartesian product. Tom
Dieck defines it analogously for Lie groups. (See D2.) We will compute
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the structure of 7,(Cy(W, X)), and (1.8) and (1.15) will allow us to
deduce the additive part of tom Dieck’s result in [D1]:

(1.16) COROLLARY. Define W = GR* to be the direct sum & V°,
where V|, V,,... are the irreducible real representations of G, and V°
denotes the direct sum of infinitely many copies of V.. Then

A(G) = lim [s”, s"]
V<w

where V runs over all finite-dimensional G-subspaces of W and the direct
limit is taken over suspension homomorphisms.

We also have a splitting theorem:

(1.17) CorOLLARY. (2¥ =¥ X) is equivalent to a product
. NH
[1 lim Map,(V"/(V¥ = Vi), ZV°X7) 7

(H)
v<w

Finally it is worth noting how nicely this result restrict to the finite
case:

(1.18) THEOREM. Let

(v, X) = (LLF(, ) x5, X'/~
Jj<0 ’
be the usual configuration space. If W > R®, and X is a countable G-CW
complex, then C(W, X) is a based G-space, and there is a map

a: C(W, X) - Q"IWx

such that o™: C(W, X)) - (QWEWX)His a group-completion forall H < G.

Proof. Since G is finite, L(H) = 0 for all H, and G/H is a finite set.
Define a homeomorphism

h: Co(W, X) > C(W, X)°

by

h[(vl,...,vj>;x1,..., ] =Koi-gli=1,....7, g€ G), (x,- 8)].
The approximation

Co(W, X) L K(W, X) S QWswx
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using little convex bodies K restricts to
h —
«%: C(W, X)° & c,(w, X) & C,(w, x) 3 (975¥x)Y;

restricting to a subgroup H lets us conclude that a is a group-completion
for all H < G. a

The nice point here is that we needn’t approximate the various
fixed-point sets of Q=" X separately when G is finite.

2. Fiberings of equivariant function spaces. Let V" be a real repre-
sentation of G.

Here we will produce fiberings involving various subspaces of
(RV2¥X)€, and we will use these later to reduce the proof of the main
theorem to consideration of spaces of functions which are nontrivial only
on maximal orbits.

(2.1) an orbit-type family # for G is a collection of closed subgroups
such that if H € & and K is subconjugate to H, then K € #.

An orbit of class & is any G-orbit isomorphic to G/H for some
H € # . 1f 1 denotes the trivial subgroup, the maximal orbits are those of
class {1}.

We will examine subspaces of (2"2VX)C. Let K be a subgroup of G,
let U be a sub-K-space of V, and let Y be any based K-space. Then define

(22) (QY)s={fe@V) |f(UnV")=xforallHe F}.

That is, (2VY)X consists of K-maps f which are non-trivial only on orbits
which are of class #in V.

We will construct fibrations in the situation where %, and %, are
successive orbit families, that is, #; C %, and #, — &, consists of just one
conjugacy class (H), so that %, contains all proper subgroups of H. In
this case we may form the following sequence
(23) (@)% > (@155 (@7 y™)3
where i is inclusion of subspaces and p is obtained by restricting each
element of its domain to $*”.

(2.4) THEOREM. The sequence (2.3) is a fiber sequence onto the image of
p, which is a union of components of (2""Y¥) Pl
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Proof. Suppose we have an NH-map
h:ZANI*A S - YH

such that H(Z A I*A SV") = * for all K < H such that K & %, that is,
for all K such that H 5 K < NH. Suppose also that we have a G-map

Hy:ZA{0})"AS > Y

such that pH,, = h,,.
Since & is NH-equivariant and nontrivial onlyon (Z A I7A(S V") ()>
it extends uniquely to a G-map

hZAT'A(SY-G)->Y? - G- Y

where $¥" - G ¢ §¥. In fact, this inclusion is a cofibration, and hence the
homotopy extension property for (S, SV - G) implies that H,, extends to
alift H of h. Also it is clear that p~'(x) = (2"Y)§..

This establishes the result, including the fact that the image of p is a
union of components. O

3. Decomposition of configuration spaces. It is convenient to de-
velop a decomposition-theory for the spaces C,(V, X) parallel to that
developed in §2 for mapping spaces. It turns out that the theory and the
arguments are quite a bit simpler.

Recall the notations of the previous section. Define

6I((Ua Y)ﬁ
to be subspace of Cy(U,Y) consisting of configurations [D,,... ,D;;
[x1, 11),- . -, [x, ¢;]], where for each i the center point v; of D; gives rise to
an orbit v, - Gin V of type F; that is, v, € V|, for some H € #. Then
(3.1) Cx(U,Y) = T1 C(U,Y)w).
(H)ycF

If H is a subgroup of G, maximal in &, we can define a homeomor-
phism

(32) ki Co(Vy X)im = Co(V, XT) iy = Ty (V7 X7) 5
as follows. Let

k[ DDy [xy ) [ 3 )] = [P0 Dgs [ 1 X0 1]

where D] is related to D, as follows: if v, € V#7¢" let v} = v,g, and let D,
be the disc normal to the orbit v, - NH at v/ in V¥, with the same radius
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as D,. Let t] = g,(¢;), where

ge: L(gHg™)*™ - L(H)" = (+(NH/H) ;)"

is the map in (1.12), and let x| = x; - g.

The equivalence relation = in (1.4) and (1.6) shows that k is well-de-
fined, and a well-defined inverse can be given by sending [D/,[x/, t/]] to
[D/,[x], t{]], where D/’ is the disc with the same diameter as D/, normal in
Vtov!-G.

Thus we may define a product bundle

(3.3) Co(V, X) 5 = Co(V, X) 5, > Coy (V7 X¥) 5,

where i is inclusion and p is the projection

(Kl)_clgz Co(V, X)xy = Co(V, X)ay
2

composed with k.

4. Duality in equivariant function spaces. The previous two sections
reduce the main work of proving (1.15) to showing that a restricts to an
equivalence of Cyy(W¥, X7) and (Q¥"S¥"X¥)¥¥ when H is maximal
in % . This “maximal orbit type” case can be attacked by something
similar to methods used by Becker and Schultz in [B1].

In this section, we will obtain an equivalence

(4.1) e (QV2Y XM I - Qo3 (EJ* A, ZEXH)

where R*® < W, H is maximal in #,J = NH/H and L = L(J/1) is the
Lie algebra of J. The space Cy, (W, X¥)is analyzed in the following
section.

Recall the following definitions and notation from [B1]. A sectioned
bundle is a bundle §: E — B equipped with a section A;: B — E (so that
§oA,=1id). If B is fixed, sectioned bundles over B form a topological
category, and if £,  are sectioned bundles over B, define

Bund0($9 ﬂ)

to be the space of morphisms from £ to 7. These are bundle maps f over B
such thatfeA, = A .

The fiber £7'(b) of £ over b may be thought of as a based space with
basepoint A,(b), and we may construct several functors on the category of
sectioned bundles over B from standard functors on the category of based
spaces. For example, if £ and 7 are sectioned bundles over B, let £ A 7



APPROXIMATION THEOREM FOR EQUIVARIANT LOOP SPACES 37

denote the “fiberwise smash product” of £ and 7; the fiber of £ A 1 over b
is

(& Am)7'(b) = £7(B) A7 (b),
with basepoint A.(b) A A, (b).

If A C B, £|A is defined to be the bundle £7}(4) » 4 whose projec-
tion and section are the restrictions of £ and A,.

If X is a based space, let X denote the product bundle p: X X B — B
with p(x, b) = b and A(b) = (*, b).

If a: E — B is a vector bundle, let a denote the based sphere bundle
obtained by taking the fiberwise one-point compactification of E and
letting A be the cross-section at infinity. Note that a @ B is canonically
isomorphic to @ A B.

There is a functor T from sectioned bundles to based spaces defined
by

T(§) = E/A(B).
If a is a vector bundle, 7(«) is just the usual Thom space of a, also
denoted 7T« or B If A C B, define

(B, 4)° = E/(A(B) U £7(4)).
We may also define a category of pairs (&, §) where ¢ is a sectioned
bundle of B and ¢’ is a subbundle of £|4; if (7, n") is another such pair let
the morphism space
Bund (£, &5 m, )
be the subspace of Bund (£, n) of maps sending £’ into 7.

(4.2) LEMMA. (i) There is a natural isomorphism T(X A £) = X A T(§).
(i1) T is a continuous functor, and induces a homeomorphisms

Bund,(£, £|4; X, #) > Map,((B, 4)¢, X).

This is a simple check.

If H is maximal in #, Y is an NH /H-space, and V is a sub-NH-space
of W, then (2V2"Y)}¥ is homeomorphic to the mapping space

Map(S¥, S ~ (V' 0 W)); SVY, %)

where J = NH/H. We will thus need to make some remarks about
mapping spaces of G-manifolds.

(4.3) REMARKS. Let (M,dM) be a compact smooth manifold with
boundary, on which NH acts such that M = M . Then J is a finite
group acting on M, so M /J is a manifold, and

wM->M/J
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is a principal G-bundle. Suppose that M is contained in a J-vector space V'
such that dim M = dim V. Then the natural projection

MXx,V->M/J
is equivalent to the Whitney sum of the tangent bundle 7 of M /J and the

bundle
a: M X,L—>M/J

where L is the Lie algebra of J.

Consider the mapping space Map,(M, dM; =Y, ) of J-maps from
M to VX taking 0M to x, where Y is a based J-space. This can be
identified with the space of sections of the bundle

nMX,Z'Y > M/J
taking the value * on dM /J. This is the space of bundle maps
Bund,(S°, S°|(0M /T ); 0, *).

From the note on M X, V, we see that n may be decomposed as
(4.4) =TATAE
where §: M X ,Y — M /J is the natural projection with section A[m] =
[m, *].

Choose some embedding i: M /J — R’ and let v be its normal bundle.
Then we have a Pontryagin-Thom map

C:8* > (M/J,oM/J)",
and a natural isomorphism of v & 7 to the trivial vector bundle with fiber
R’. Define a map &(M) as the composite
Map( M, dM; 3VY, +)’
R
Bund, (S, SC|(OM/J); 7 A 7 A&, +)
lo
Bund (9, 9[(0M/J): v ® TA T AE, *)
Il

(4.5) Bund (v, 0)(0M/J); S° A 7 AE, %)
T
Map,((M/J, dM /T )", =5(M/T)™"F)
lc*

Map, (S, 25(M/J)™")
I
QIS(M* A ZLY),
where o is suspension by .



APPROXIMATION THEOREM FOR EQUIVARIANT LOOP SPACES 39

The manifold we wish to study is a manifold M = M(V') constructed
by letting § > 0 be small enough that

M = [V - B;(V - V.0 W,,)| NB, ;(0)

is a deformation retract of V' N W, 4, where
B;(A4) = the §-neighborhood of 4.

Then
(QV=VY) Y = Map,(M/aM, ="Y)”,
because M /dM is homeomorphic to S¥/(SY — V' N W y,).

We cannot prove that ¢( M(V)) is an equivalence if V is finite-dimen-
sional. However, let W be a representation of G containing an orbit
isomorphic to G/H and a copy of R*. Then there is a sequence of
finite-dimensional sub-N H-spaces

(4.6) Vi<V,<--- <W¥H

such that WH = U, V,. Define M, = M(V,) forn = 1,2,3,..., and choose
8;s so that

(M,,0M,) c (M,,0M,) C ---

The union U, M, is a free J-space which can be shown to be contractible
and hence may be thought of as the total space EJ of the universal bundle
of J.

We may also choose the embeddings i ,: M, /J — R’ so thats, <, ,
and so that

M/] 5 R

n

(4.7) l Li

Inv1

M0 5 R

commutes, where i’(¢) = (t,0) is the standard inclusion. It follows that

Map( M,, M, ; =Y, x)” e Q= ( M A ,ZY)
(48) Ji lo

Map( M, 1, M, ; =Y, *)J e QT (M ALY
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commutes, where o is suspension composed with the inclusion induced
from M, = M, ,, and j is defined as making the following diagram
commute:

Map(M,,0M,; S%Y,5) =  (Q4shY)L
il Vo
Map(Mn+1’ aMn+1; ZVn+1Y, *)J ~ (QV"“ZV"“Y);-

(4.10) PROPOSITION. Let U = WH and Y = X". Taking the direct limit
over the sequence (4.6) via diagram (4.8), define ¢ to be the composite

(QUsvy) M L lim Map(M,, 3M,; T*Y, )

tim £(M,)
———> Im Q"3 (M A ,ZEY) = Q°Z=°(EJ* A ,31Y).
-—_>

Then ¢ is an equivalence of H-spaces.

Proof. The H-structure on (2VZYY )2 comes from the loop multipli-
cation, since R® < W¥, and this is carried over to the mapping spaces
since if V, ® Rc V,,,, then M, X R Cc M, ,. The map ¢ is an H-map
since we may choose the V,’s to have the form ¥, & R, where U = (U, V)
® R, and we can choose i,: M, /J — R’ to have the form

inx1
(4.11) M/J=MWV)/J]XI—> R""XI—>R"
where I = [0,1] C R.

The proof that ¢ is an equivalence occupies the remainder of this
section.

Some of the maps we will use are duality maps from a fiberwise
duality involving 7 A §. We recall some facts of equivariant topology.

(4.12) LEMMA. Let (X, A) be a pair of finite G-CW complexes. Then X

embeds in the unit ball of a representation V such that
(1) X is a G-Euclidean neighborhood retract (G-ENR) of some in-

variant neighborhood U,

(ii) there is a G-deformation U — X — dU, and

(iii) A embeds in a hemisphere E* of the unit sphere with (i) and (ii)
restricting appropriately.
In this case, an argument similar to that of Atiyah in [A1] shows that U/3U
is S-dual to X/A, and U/(3U U U N E™) is S-dual to X.
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A fiberwise duality is a map y A ¥ — S’ of bundles which restricts to
a duality on fibers. The above lemma proves the existence of a fiberwise
dual for a bundle y whose fibers are finite G-CW complexes. Hence
assume from now on that Y is finite, and let ¥ be the dual to the bundle
y=a AE and i M X,2LY - M/J X R’ the inclusion as a fiberwise
ENR.

In this case, we may define an embedding

i’ X1
(4.13) Ji M X,SEY S M/ X RS R X R = R
Then we can prove

(4.14) PROPOSITION. The Thom space (M /J, 9M /J)*"" is S-dual to
M™* A ,ZLY, where v is normal bundle of i.

Proof. Let B=M/J, E = M X ,3%Y; thus dB = (dM)/G. Let y:
E — B be the bundle, i: B — R’, and i": £ — B X R’. Finally let y”:
U — B be the projection to B of the neighborhood U of im(i’) in B X R/,
and define 9: U/9U — B to be the fiberwise collapse of 0U. Now
BY = E/A (B). Define i and i’ so that the embedding (i X 1)< i’ sends E
into I°** € R*"* with A(B) embedded in I° X 0. By Atiyah’s argument,
E/A(B) is dual to I*** — E, which is equivalent to I'*'/ I°** — U’, U’
being a regular neighborhood of E in I***. This is the same as collapsing
out y~"Y(dB), and collapsing the boundary of (y")"}(b) X v7(b) to a point
for all b € B.

But this is just the Thom space of (y'/9y’) A (v/dv) =¥ A v over
(B, 9B). Hence

BYis S-dual to (B, dB)*"". O

In the above proposition, the duality map
(M*A SEY) A(M/T,OM/T)NY — §5t

comes from the embedding j in (4.13). This and the fiberwise duality
Y A 4 = S’ induce maps

(4.15) Bund(p, p’ A v) = Bund,(p A 9, 1" A S)
and
Map, (Y, M* A ;2EY) — Mapy(Y A(M/J,0M/T)""7, §5+)

which will be generically denoted by D. We now use these maps to
complete the proof that ¢ is an equivalence.
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By construction ¢ = 111_11 C¥oT, o0(v,). The connectivity of the fiber

of v, tends to infinity with n, and a suspension theorem [J1] applies to
prove that li_r’n o(v,) is an equivalence

To show that limC* T, is a equivalence, we note that the following
—
diagram commutes for M = M, :

(4.16)

Bund, (v, 3|(3M/J); T @ vA y,%) P 2 Bund, (o A%, AF|(IM/T); 21, %)
Map, ((M/J,3M/7)", = (M* A ,2'Y))  Map,((M/J,3M/0)" Y 2 (M/TY))
il Lp
Map, (§*, 2 (M* A ,2Y)) Map, ((M/J,3M/T)""7, 55*1)

No D A
ol M* ALY lo

Mapo(SN,EN(M"/\JE"Y)) —D-> Mapo(zN(M/J’aM/J)G/\?,Ss+r+N)

where the o’s are suspensions, N is any number > s, and p: Z**/(M/J ™)
— S collapses M/J to a point. By (4.2) (ii), the composite pT is a
homeomorphism since 7 ® v = $**"is trivial.

Passing to the limit over M,, the suspensions and duality maps
become equivalences, and hence so does l_i{)n CIT,.

This was all done assuming X finite, but now a simple colimit
argument allows us to deduce the same result when X is a countable
G-CW complex as in the hypotheses to (1.15). O

5. Duality and configuration spaces. This is parallel to §4; we will
exhibit homotopy-equivalences

(5.1) p: Cou(U, Y) 5> C(R®, EJ* A ,ALY)

where U, Y, and L are as in (4.10).

Let V; <V,<--- <U be as in (4.6), and M, = M(V,) for n =
1,2,.... Now define C,,(M|0M,Y) as the space of configurations in
Cyy(V,Y) 4 whose V-coordinates all lie in M — dM. This suggestive
notation is to indicate that they may be thought of as approximations to
Map,,,(M/dM, 2VY), though this will not be developed here. Note that
the natural homeomorphism M — oM = V' N W, induces a homeomor-
phism
(5.2) Cyu(V,Y) g= Cyy(MIOM, Y).
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Recall the embedding i: M /G — R’ and define
(5.3) ¢: Cyyy(MIM, Y) - C(R*, M A ,Z1Y)
by sending
(my,eooomy [x, 0], [x 1]) to
(i[m],....i[m.]; [my, xis L)oo [ms X 1)

and

Y: C(R, M*A ,S5Y) - Cypy(RE X (M — M), Y) &

= Cyy(MREX V)|IM(R X V), Y)
by
(p.[m, x,1]) > (p, j(m); [x,1])

where j: M — M is a self-embedding with j(M) C M — oM.
We may choose V7, V,,. .. so that

V,eR" <V, .,
and so that
(]‘Jn>< RS,,)/J Ll-) Mn+1/J
134
M /J X R Lyt
(5.4) %
i x 1l
R* X R i, R+
commutes.

Then the following diagram commutes:

(5.5)
Cyu(V,,Y) e = Cviy(M,[3M,,Y)
N N &,
C(io) C(R, M A, ZHY)
W,
Cyn( M, X R"|aM, X R",Y)
C(Rn+1, My A ,ZLY)
\[ (c1,i,)

i

Cyn(Vi1:Y) & Crnu( M, 1|8M,,,,Y) = C(Rw M A SERY).
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We pass to limits and obtain the composite

F CNH(Ua Y)ﬂ'
Il

lﬂ)n CNH(V;:’ Y)f
lI2

(5'6) I h_r_)nCNH(MnlaMn’ Y)

limg, { T limy,

: S, + L
lim C(R*, M, A ,2"Y)
Il
L C(R®, EJ* A ,ZLY)

which is an equivalence of H-spaces.

A similar theorem is provable for 5NH( U,Y); in fact there is an
equivalence g such that
N

Cyu(U,Y) « ENH(U’ Y)
ri VE
C(R*, EJ*A SEY) &  C(EJ*A ,ZY)

commutes, where y’ is the map replacing each little cube with its center-
point.

6. Proof of the main theorem. This section contains the proof of
(1.15); in fact, we will prove the following general statement:

(6.1) If R® < W, then the restriction of a,

ag: Co(W, X) 5=~ (QV27X) g,

is a group completion for any orbit-type family # of closed subgroups of
G.

The proof of (6.1) consists of a series of lemmas.

(6.2) LEMMA. If H is maximal in & , then the induced map

oM Co(WH, XT) g (Q7"ZW"XH) 57
is a group-completion.
Proof. Assembling the results of §§4—5, we see that there is a diagram
of H-spaces and H-maps:
Cu(WH, XM e & G xMe S (@¥Ex)
Lo B le
(R, BT A, 3tx7) L (Erta,six?) S @ese(EItA,ShXT)
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which commutes up to homotopy, where o’ is the nonequivariant ap-
proximation, and v, Y/, p, i, and e are equivalences. Thus (6.2) follows
from the fact that o’ is a group-completion ([C1], [C4], [S1)). O

(6.3) LEMMA. Let A, C be H-spaces. Let F, E, B be grouplike H-spaces
(i.e., application of the functor my(-) yields a group), and F S>ESBa
fiber sequence such that the following diagram is homotopy-commutative:

E S (mE) X E,
rl L m(p) X(plEy)
B - (m,B) X B,
Then if

4 5 F

i Li

AXC > E

mi Ip

c 5 B

is a commutative diagram of H-spaces and H-maps, and ., B are group-com-
pletions, then vy is a group-completion and E = F X B.

Proof. Clearly it suffices to show this for the case where B is
connected (B = B,) or discrete (B = m,B). The discrete case is easy
algebra, and we consider only the connected case.

The product of group-completions is a group-completion [C2], [M4],
so that there is an H-map y: F X B — E such that

homotopy-commutes. Hence ¥ is an equivalence, and Y is a group-comple-
tion. O
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Now partially order the conjugacy classes of subgroups of G by
defining
(H) < (K)
if H is subconjugate to K. Then an orbit-type family is precisely the union
of the classes in an initial segment of this partial order.
By letting % run through some cofinal sequence of initial segments,
one obtains the following by induction (see, for example, McClure [M5]):

(6.4) LEMMA. The statement (6.1) is true for all Fif
(1) (6.1) is true for F= {1}.
(ii) whenever #, and %, = %, U (H) are a successive pair of families,
and (6.1) is true for %, then it is true for #,, and
(iii) whenever #, C #, C -+ CF#, C -+ is a chain of families and
F=U, £, then if (6.1) is true for all the %,, it is true for F .

We use this last lemma to prove (6.1). Hypothesis (i) is just the special
case #= {1}, H =1, NH = G of Lemma (6.2). Hypothesis (iii) is easily
verified by looking at the homology of

Co(W, X) o= lim C(W, X) 5, and (QVE"X) S = li_n)l(QWZWX)g—".
Finally, to verify hypothesis (ii), we take together the results of §§2—3 and

note that the following diagram commutes:

G

W, X)s - (9"=¥X)S
il L

o, . o

C(;(W,X)gz2 - (Q ZWX)y2
rl lp

Can(WH, XM 5 = (QW'zWx) T

By hypothesis a% is a group-completion, and by (6.2), aQ%H is a group-
completion. Hence by (6.3), a% is a group completion. O

Hence (6.1) is true for all #and (1.15) follows.

7. Other results. We offer a proof of Corollary (1.16). Recall that
A(G) is additively the free abelian group generated by elements [G/H ] for
which |NH: H| < oo. If A%(G) is the submonoid of elements with non-
negative coefficients [D1], then A(G) is the universal enveloping group of
AY(G).
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A consequence of (1.15) is that
mo(ay ™)z mo(Co(W, 8°)) = mo((275%)¢) = [8¥, s¥] ¢
is the inclusion of my(C.(W, S°)) into its universal enveloping group.
Hence (1.16) can be shown by constructing an isomorphism
®: 47(G) > mo(Co(W, 5°))

of monoids.
To keep our notation clear, let S° = {x,a}. Then any point in
C,(W, S°) may be written in the form

z= [vl,...,vj; a,a,...,a; tl,...,tn]

where v, € W and ¢, € L(G,)%. If some v, has isotropy group G, with
ING,: G,| = oo, then L(G,)% +# 0, and so there is a path from z to the
point

z' = [vl,...,u a,...,a;t,... 1 = oo,...,tj]

i
= [vl,...,b,-,...,vj; a,...,a, tl,...,t,-,...,tj].

It follows that any element of m,(C;(W, S°)) may be represented by a
point of the form

[vl,...,vj; a,...,a; 0,...,0]

where G, has finite index in its normalizer.
Now let (H,),...,(H,),... be the conjugacy classes of subgroups of
G, and choose w;,. ..,w,,... such that

Wa € Win,-

Then define ® as above by letting

(I)([G/Hi]) = {[Wi; a; 0]}
and extending to 4 *(G) by additivity.
An inverse ¥: 7y(Cz(W, S§°)) » A"(G) to ® may be defined by
letting

J
‘I’{[Ul,...,vj; a,...,a; O,...,O]} = Z [G/le],
n=1

where G, ,...,G, are of finite index in their normalizers. Then it is easily
J

verified that ¢y ® = id and that
oy {z} = {2}

where z’ is in the same path-component as z.



48 J. CARUSO AND S. WANER

8. Other questions. The ambition highlighted in the introduction,
of finding a model for QYZVX which would serve as a basis for a
recognition principle, is still unsatisfied. Three basic and natural questions
spring up and need to be answered:
(i) To what do the natural inclusion maps

(Q7"s"x)¢ o (Qvsvx)"
correspond on the configuration-space level, for H < G?
(ii) Can we construct a manageable global model C(W, X) so that

(c(w, x))" = Cc,(W, X) forall H < G

(as for the case where G is finite)?

(iii) What can be said for the “unstable” case where R” < W but
R* &« W?

Related to these questions is that of the multiplicative structure in the
Burnside ring:

(iv) Is there a natural ring space structure C,(W, X) X Co(W, X) —
Cs(W, X) corresponding to multiplication in A(G) via (1.16)?

Finally, we are examining the following question along with (i)—(iv),
which are all work in progress.

(v) Recall the homotopical model C‘nX for Q"2"X [C3]. Is there a
similar model for (=" X)¢, and how does it relate to C;(W, X)?

This last question may need to be answered before we can approach
any of the others.
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