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THE COMPLETE ENUMERATION OF THE
4-POLYTOPES AND 3-SPHERES

WITH EIGHT VERTICES

AMOS ALTSHULER AND LEON STEINBERG

The enumeration of 4-poIytopes and 3-spheres with eight vertices
started in [1], is completed here. We show that there are precisely 624
4-polytopes and 22 non-polytopal 3-spheres with eight vertices that are
not quasisimplicial nor pyramidal. We find them all and give a detailed
description of the 22 non-polytopal spheres.

1. Introduction. Our purpose is to carry out a complete enumera-
tion of the combinatorial 3-spheres and 4-polytopes with eight vertices.
One part of this task has been carried out in [1], where all the quasisimpli-
cial 3-spheres and 4-polytopes were enumerated. As mentioned in [1], the
pyramidal cases are well known. Thus, to complete the enumeration, we
must find all non-pyramidal non-quasisimplicial 3-spheres and 4-poly-
topes with eight vertices. This is done in the present work. The main result
obtained here is:

THEOREM 1. There are precisely 624 4-poly topes and 22 non-polytopal
3-spheres with eight vertices that are not quasisimplicial nor pyramidal.

This theorem, combined with the results obtained in [1] and with
former results mentioned in [1, §1], yields:

THEOREM 2. There are precisely 1294 4-polytopes and 42 non-polytopal
3-spheres with eight vertices.

As a by-product of the methods used for the enumeration, we get (see
[6, §5.5]):

THEOREM 3. Every 4-polytope with up to eight vertices is rational. {That
is, it is combinatorially equivalent to a polytope in R4 all of whose coordi-
nates are rational.)

The present paper should be considered a continuation of [1]. Thus
the notation and terminology is that of [1]. In particular, one should
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consult [1, §1] for general background, [1, §2] for the definition of a
combinatorial sphere, and [1, §§4,5] for the methods used to prove the
non-polytopality of a sphere. All the spheres and 3-complexes in this work
are combinatorial, in the sense of [1, §2].

The first problem we face—which is perhaps the main problem— is
the enumeration of the spheres under consideration. The methods used are
completely different from those used in [1], and therefore they are
described in detail. The procedures used to determine if a sphere is a
poly tope are very similar to those implemented in [1] and are described
briefly with emphasis only on the differences. In particular, Theorems 3-5
of [1], which served there as the main tool for testing a given 3-sphere for
polytopality, are used here too, but in a different way. Here they are used
—together with an additional result, namely Theorem 6 in §4—for an
inductive construction of 4-polytopes with eight vertices. Unexpectedly,
this process yields all 1294 4-polytopes with 8 vertices. Thus Theorem 6, if
known when [1] was written, would have made superfluous the special
treatment given to three of the polytopal spheres in [1, §7]. For another
(slight) improvement of [1], see Remark 6 in §6.

As in [1], a detailed description of all 646 3-spheres found here is
beyond the scope of a single paper. Therefore, we give (in Table 2) a
detailed description of only the 22 non-polytopal spheres, and (in Table 3)
a brief description of all the 1260 nonpyramidal 4-polytopes with eight
vertices. The complete catalogue of 4-polytopes and 3-spheres with eight
vertices can be obtained upon request from the second author.

For a brief account of the history of the enumeration of polytopes
and spheres one should consult [1, §1]. As mentioned there, Schulz [7]
describes 27 non-polytopal 3-spheres with eight vertices, 15 of which are
non-quasisimplicial. These 15 spheres are, of course, among the non-poly-
topal spheres listed in Table 2, and their ordinal numbers in Schulz's
paper are given in Table 2 in parentheses.

Our initial goal is the construction of the family Λ^g3 of all non-
pyramidal non-quasisimplicial 3-spheres with eight vertices. Actually, we
first construct a family 01 of 3-complexes with eight vertices which
contains JfSf^ such that Λ ^ 8

3 is precisely the family of all spheres in ^ .
The construction of ^ , in turn, is based upon the construction of certain
subcomplexes, called cores, of the members of St. The core of R e 0t is the
subcomplex of R composed of the non-simplicial facets of R (and their
faces). The construction of the cores is described in §2, and that of 0t in
§3. Si turns out to be of cardinality 731. In §4 we present Theorem 6,
which we use together with Theorems 3-5 of [1] to construct many
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4-polytopes with 8 vertices from those with 7 vertices. Altogether we
obtain 1294 polytopes, among which are all 670 pyramidal and quasisim-
plicial 4-polytopes with 8 vertices. The boundary complexes of the remain-
ing 624 polytopes are in Λ ^ 8

3 c St. Thus there remain 107 members of έ%
which have to be tested for sphericity and polytopality. This is done in §5,
where we show that among these 107 complexes there are just 22 spheres
and none of them is polytopal, thus completing the proof of Theorem 1.
We conclude in §6 with some remarks.

2. Cores and 8-cores. Let Λ ^ 8

3 denote the family of all (combina-
torial types of) 3-spheres with 8 vertices which are not quasisimplicial nor
pyramidal. In this section we start the construction of the family JfZf^.
First we give an outline of this construction.

Since each facet in a sphere S ^ Λ ^ 3 has at most 6 vertices, it is
either a 3-simρlex or one of the nine types A, B,...,! depicted in Figure 1.

A-12345

3 2

B-123456

5 1

C-123456

D-12345

3 3

4 4

2 2

E-l23456 F-l23456

3 2

G-123456 H-123456 1-123456

FIGURE 1

The nine 3-polytopes (other than the simplex) with up to six vertices,

and their canonic representation.
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Figure 1 also gives a standard representation for each of the nine 3-poly-
topes by means of the ordered set of its vertices. Note that of these nine
poly topes, only A9 B and C are simplicial.

Thus each S e JfZf£ is composed, in a natural sense, of "building
blocks" which are copies of these ten 3-polytopes. We must combine these
building blocks in all possible ways to yield all the spheres in JΓ5f£.
Unfortunately, this direct procedure is combinatorially prohibitive. We
therefore start by constructing some larger units which we call kernels.
Each kernel is composed only of copies of the non-simplicial 3-polytopes
with up to six vertices, that is, polytopes of types D, E,...J (depicted in
Figure 1). The kernels are then used as building blocks for still larger units
called cores. Each core is then completed, by means of 3-simplices only, to
yield a sphere-like complex. To each of these complexes we then apply the
operations A, B and C of [1, §3] in all possible ways and we obtain a
family 0ί of sphere-like complexes which is large enough to contain all of
JΓ6f£. Λ ^ 8

3 is exactly the family of all the members of 0t which are
spheres.

DEFINITION 1. An n-core is a 3-cell complex #(see [1, §2]) with at
most n vertices, each of whose 3-cells is a non-simplicial 3-polytope with
at most n — 2 vertices, such that bd #, the boundary complex of ^ , is
simplicial (possibly empty). An n-kernel is an «-core which is minimal
with respect to inclusion.

REMARK. Every «-core is clearly the union of pairwise disjoint n-
kernels, where "disjoint" means they have no common 3-cell. Thus an
w-kernel is a "prime" «-core.

DEFINITION 2. Let R be a 3-cell complex whose boundary complex,
bd i?, is empty. The core of R, core i?, is the subcomplex of R composed
of all the non-simplicial 3-cells (facets) in R and their faces. A kernel of R
is a non-empty subcomplex of R composed of non-simplicial facets of R
(and their faces) whose boundary complex is simplicial, and which is
minimal with repsect to inclusion.

Obviously, corei? is empty iff R is quasisimplicial; the boundary
complex of core R is a simplicial complex (possibly empty); each kernel of
R is contained in core R; no two kernels of R share a common 3-cell, and
core i?, if not empty, is precisely the union of the kernels of R.

If S is a 3-sphere with n vertices which is neither pyramidal nor quasi-
simplicial, then core S is an «-core and every kernel of S is an w-kernel. A
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priori it is not clear whether or not every «-core (w-kernel) is the core (a
kernel) of some 3-sphere. We say that an n-core (w-kernel) is genuine if it
is combinatorially equivalent to the core (a kernel) of some 3-sphere with
n vertices, otherwise it is spurious. One should notice that an w-core
(w-kernel) is at the same time also an (m-kernel) for every m > n, but it
may be genuine as an «-core (^-kernel) and spurious as an m-core
(m-kernel). However, a genuine «-core (w-kernel) with a non-empty
boundary is genuine also as an m-core (ra-kernel) for every m > n. For
w-cores it follows from the fact that if S is a 3-sphere with n vertices whose
core has a non-empty boundary, then S has at least one simplicial facet,
and by a repeated subdivision of that facet one obtains, for every m > n,
a 3-sphere S' with m vertices such that core S" = core S. The reasoning for
H-kernels is similar. Since in the present work our interest lies merely in
8-cores, and, as we shall see later, each 8-core has a non-empty boundary,
no confusion is likely to arise.

For every S e JΓSf£, core S is an 8-core. Thus we would like to
construct all the 8-cores. Since every 8-core is a union of 8-kernels, we
would like to first construct the family Jf of all the 8-kernels. Each
8-kernel is composed of 3-cells of the types D, is, i7, G, if, / in Figure 1.
Note that the 3-polytope E can be considered as the union, in a natural
sense, of a 3-simplex and a 3-polytope of type D. Thus if we know the
subset JΓ' of JΓconsisting of all membbers of Jfnot containing a 3-cell of
type is, then the rest of JΓcan be obtained by attaching 3-simplices in all
possible ways to all members of JΓ' containing a 3-cell D and whose
boundary contains a 2-simplex of bd D—at most one 3-simplex to each
such D.

Thus, in the construction of Jf' we use 3-polytopes of types Z>, i% G,
if, I only. Each member of Jf' is obtained by starting with one of these
five 3-cells, attaching to a non-simplicial 2-face in its boundary another
3-cell of one of these five types, and repeating the process on the newly
generated complexes until we get a 3-complex with a simplicial boundary
having 8 or less vertices. We carried out this procedure both by hand and
with a computer and obtained 23 8-kernels. They are listed in Table 1 as
nos. 1-23. From this family X' we constructed the members of X\Jf' as
mentioned above. They are listed in Table 1 as nos. 24-34. Thus X
consists of 34 8-kernels which are the "prime" 8-cores. The vertex-set of
each of these 8-cores, and of the "composite" 8-cores to be constructed in
the next stage, is a subset of {1,2,... ,8}. For each i we denote by ci the
8-core no. i listed in Table 1. Thus the 8-kernels are cλ-c34.

For the construction of the "composite" 8-cores, the following lemma
is very useful.
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TABLE 1

The 62 8-cores and the number of polytopes, non-polytopal spheres
and other members of & generated from them

No.

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16

17

18

19

20
21

22

23
24

25

26
27

28

29

30

31

Facets

Dι,D2

Hi, H 2

Fl9 2) 3, 2)4

Fl9D39D5

Fltll9D4

F l 5 I 2 , 2)4

Fι,F2, Gi,
F i , F 3 , F4

F 1 ? F 3 , F5

G2,D7,DS

G2,D7,D9

G 2 ,I 3 ,2) 8 ,

I 2 , 1 4

I4.I5

Fλ,F6, 2)5,

Fl9 FΊ, D4,

G3, G 4, G5,

G7, Gs, Ds,

GS,FS,DS,

F 8, F 9 , 2) 8,

^8» ^10» 0 8
F8, F n ,2) 8 ,

Fi,2)2

Fi,F 2

F I ! F 4

Fx, £5,2)4

Fι,Eβ9D4

FX,E7,D4

F^E^D,

D6

,D9

D9

Du

Dn

> G 6

,D9,Dί2,Du

2 ) 1 2 , 2 ) 1 3

2) 1 3

, D13

2) 1 2

*

317

11
14

23

3

1
1

1

6
1

1

1

3
48

1

1

1
1

1

3

1
1

76
1

3

3
1

3

3
1

** v
16 71

1

1

1

1

No.

32

33
34

35

36

37

38

39

40
41

42

43
44

45

46

47

48

49

50

51
52

53

54

55

56

57

58

59

60

61

62

Facets

G 2 ,£ 9 ,2) 7 ,2) 8

G2, E10, D7, Ό10

I 4,2s 7

2) l 5 2) 2 ,2)i 4 ,2)i 5

2)i,2) 2 ,2) 1 4 ,2) 1 6

2)i,2) 2,2) 1 7,2) 1 8

2)x,2)2,2)1 7,2)1 9

2)i, 2)2,2)20,2)2i

2)x,2)2,2)1 2,2)43

2)^2)2,2)27,2)44

H!,H 2 ,2) 2 2 ,2)23
Fi,2) 3,2) 5,2) 24,i[ ) 2 5

F l 52)3,2)5,2)2 2,2)23

I 4 ,I 5 ,2) 2 6 ,2) 2 7

I 4 , I 5 , 2)6,2)28

I 4 ,2)3,2) 2 5 ,2) 2 9

I 4 , 2 ) 3 , 2)3O,2)3i

I4,2)3,2)26,2)27
ElyD2,D32, D33

E\, D2, D34, 2)35

£ x ,2) 2 ,2) 1 7 ,2) 1 8

E1,D2,D22,D23

Elt 2) 2, 2)6, 2) 3 6

El9E3,D17,Dw

El9 E3,D6,D36

2) 1,2) 2,2) 1 4,2) 15,

2)i,2)2,2)i4,2)1 6,

2)1,2)2,2)1 4,2)1 6,
2) l 52)2,2)2o,2)2 1,

2)i,2)2,2)2 O,2)2 1,

14,2)3,2)30,2)31,

Total

^ 3 7 ,

^ 3 9 ,

2) 4 1,

^ 3 9 ,

J>41,

£45,

2) 3 8

^ 4 0

2) 4 2

^ 4 0

042

046

* **

1

1

3
8

13
1

1

19 6

10
2
1

1

3
1

3

5
1

1

3
1

5
1

1

1

1

3

1

624 22

8

1

1

85

The columns *, **, *** indicate the number of polytopal spheres, non polytopal spheres
and other members of ̂ , respectively, generated from the indicated 8-core. The facets are
denoted according to the following chart, where the letter indicates the type of facet
(according to Figure 1).

Dλ - 12345, 2)2 - 12346, 2)3 - 12347, 2)4 - 23567, D5 - 23568, 2)6 - 57861, 2)7 - 12547,

Ds - 23658, D9 - 14637, 2)10 - 23657, Dn - 14785, D12 - 45876, 2)13 - 78213,

D14 - 15762, 2)15 - 15764, D16 - 15768, 2)17 - 58671, D1S - 58672, D19 - 58673,

2)2O - 12785, 2)21 - 12786, D22 - 16872, 2)23 - 16875, 2)24 - 15874, D25 - 15876,

D26 - 56781, D2Ί - 56783, 2)28 - 56873, D29 - 15872, 2)30 - 25871, 2)31 - 25873,

D32 - 15864, D33 - 15867, 2)34 - 35862, D35 - 35864, 2)36 - 56872, 2)37 - 23875,

2)38 - 23876, 2)39 - 34875, Dm - 34876, 2)41 - 34785, 2)42 - 34786, 2)43 - 45873,

2)^ - 56784, D45 - 46871, 2)^ - 46873, E1 - 123457, E2 - 341268, £ 3 - 123468,

EΛ - 234168, £ 5 - 341278, E6 - 143278, EΊ - 123478, £ 8 - 235687, E9 - 364178,

£Ίo - 136478, Fλ - 562341, F2 - 143287, F3 - 412378, F4 - 653287, F5 - 562378,

F6 - 321478, FΊ - 234187, F8 - 365214, F9 - 452178, Fi0 - 541287, Fu - 214587,

Gλ - 265378, G2 - 136452, G3 - 235641, G4 - 135487, G5 - 235687, G6 - 126487,

G7 - 236541, G8 - 145287, Hx - 123456, H2 - 123457, Iλ - 123487, 22 - 214378,

23 - 254178, 24 - 123465, 25 - 123478
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LEMMA 4. Each %-core contains at most one %-kernel which is not

combinatorially equivalent to cv

Proof. First, we observe that no two 8-kernels, each of which contains
a 3-cell with 6 vertices, can be in the same 8-core. If Kl9 K2 are two such
8-kernels in the same 8-core L, let Φi be a 3-cell with 6 vertices in Ki9

i = 1,2. Since L has at most 8 vertices, Φx and Φ2 must share at least 4
common vertices. These common vertices lie in a 2-face Φ3 which is a
2-face of both Φx and Φ2. Hence Φ3 lies in the intersection of the
boundary complexes of Kλ and K2. Since those boundaries are simplicial,
Φ3 has just 3 vertices—a contradiction.

Now, of all the 3-cells that occur in our 34 8-kernels, D is the only
one with less than 6 vertices, and cx is the only 8-kernel composed of
copies of D only. D

In view of Lemma 4, the 8-cores composed of two 8-kernels will be
obtained by attaching to each of the 34 8-kernels a compatible copy of cx

in all possible ways. The 8-cores composed of three 8-kernels will be
obtained by again attaching to each of these new 8-cores a copy of cλ in all
possible ways, and so on. One should bear in mind that the resulting
complex in each step should have no more than eight vertices.

This procedure was also carried out both by hand and with a
computer and yielded 28 "composite" 8-cores, listed in Table 1 as nos.
35-62. Of these, the first 22 are a composites of two 8-kernels, and the
remaining six of three 8-kernels. The 8-kernels which comprise each of
these 8-cores can be easily read from Table 1.

In the sequel we will see that c8, c46, c55, c59, and c61 are spurious
while all the others are genuine. That is, there are just 57 8-cores, each of
which is the core of some S

3. The construction of ^ . Let S e Jί^. Each facet of S that is
not in core S is either a simplex or of type A9 2?, C of Figure 1. As in [1,
§3], each A-9 B- and C-cell can be simplicially subdivided without adding
any new vertices. Carrying out this operation on all the A-, B- and C-cells
of S we obtain from S a 3-sphere S' on the same set of vertices such that
core S'= coreS1, and all the facets of S' that are not in core S' are
simplices. S' is semisimplicial.

DEFINITION 3. A 3-sphere S is semisimplicial if all the facets of S that
are not in core S (that is, all the simplicial facets of S) are simplexes.
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The next stage in the construction of Λ ^ 8

3 is the generation—from
the 62 8-cores—of a family 91' of 3-complexes on eight vertices which
contain all the semisimplicial members of Jfέf^. Each member of Si' is
obtained by attaching 3-simplexes to an 8-core via a procedure resembling
that described in more detail in [2].

Let V= {1,2,...,8}, and note that none of the 62 8-cores has an
empty boundary. Let L be some 8-core, and let abc (a, b, c e V) be a
2-face in bd L. We look for a vertex d in V\ {α, 6, c) such that the union
of the 3-simplex Δ = abed (and its faces) and L is a 3-complex Lv If
bd Lλ is empty, Lx becomes a member of Si'. Otherwise we choose a
2-face a1b1c1 in bd Lx and look for a vertex dx in V\{ av bv cx} such that
the 3-simplex Δx = ^ιbϊc1dι is not in Lλ and the union of Lx and Δx is a
3-complex L2. If bd L2 is empty, L2 becomes a member of Si'. Otherwise,
we proceed in the same manner. This procedure may fail. A failure occurs
if we get a 3-complex Lt with non-empty boundary, and there is in bd Li a
2-face aibici which cannot be completed in the above manner—that is,
there is no dt in V\ {α,, b(, ct} such that the 3-simplex Δf = aibicidi is
not in L and the union of Lέ and Δ, (and its faces) is a 3-complex. Si' is
defined to be the family of all the 3-complexes with eight vertices and
empty boundary obtainable in this manner from the 62 8-cores. Si'
obviously contains all the semisimplicial members of Λ^ 8

3 , and it is also
clear that every 3-sphere in Si' is in JfSf^.

Using a computer, we constructed the family^'. It turned out t h a t ^ '
consists of 240 combinatorially distinct 3-complexes. Thus, the number of
semisimplicial spheres in JΓ^ is at most 240. The procedure failed
completely for c8, c46, c55 and c59, so these four 8-cores are definitely
spurious.

The next stage is the construction of a family £% of 3-complexes with
the vertex-set V9 which contains $%' and is large enough to contain all of
JfSf*. Each member of 9t\9t' is obtained from a member of &' by
reversing the procedure described in the first paragraph of the present
section, that is, by "gluing" together 3-simplices in a member of Si' to
yield 3-cells of types A, B and C. More precisely, Si is defined to be the
union of 3&' and the set of all the 3-complexes obtainable from members
of Si' by a repeated application of the operations A, B and C of [1, §3]. It
is clear that

{coreR:R &St} = {coreR: R e SI'} D {coreS: S

c Si and Λ ^ 8

3 is composed of all the members of Si which are
spheres.
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The construction of ^ i s much simplified by the following:

LEMMA 5. No member of 8i contains two 6-vertex facets, at least one of

which is simplicial.

Proof. Let R e 8% and let M, N be two 6-vertex facets of R such that

N is simplicial (that is, of type B or C). Since R has 8 vertices, M and N

must share at least four common vertices, and these must lie in a 2-face of

both M and N. But this is impossible, since N is simplicial. D

Using a computer we constructed the family 8? as follows. First, we

applied Operation B to all the members of 9tr in all possible ways. This

yielded 13 combinatorially distinct members of 8% whose only simplicial

facets are a unique type B cell and simplices. Of these 13 complexes, 12

have cγ as a core, and one has c 3 9 as a core. Denote by 3%x the family of

these 13 complexes. Next we applied Operation C to all the members of

8%' in all possible ways and obtained just 3 combinatorially distinct

members of ^ , whose only simplicial facets are a unique type C cell and

simplices. Of these three complexes, two have cλ as a core and one has c39

as a core. Denote by 8H2 the family of these 3-complexes. Finally we

repeatedly applied Operation A to the 256 members of R' U 8?λ U 8%2 in

all possible ways and obtained the remaining members of ^ . Altogether, 8&

consists of 731 combinatorially distinct members.

We now have to determine which of the 731 members of 8% axe

spheres. However, we prefer to delay this task to §5, since in the next

section we will construct, in a completely different way, a certain subset of

J^^i consisting of polytopal spheres, so that in §5 we need only check

the remaining members of 8% for sphericity.

4. Classification: 624 polytopal spheres. In [1, §6] we quoted from

[5] three theorems that played a crucial part in proving that 596 of the 599

polytopal quasisimplicial 3-spheres with eight vertices are indeed poly-

topal. To these three theorems we now add a fourth, discovered after [1]
was sent for publication. This theorem, if used in [1], would have made

superfluous the special treatment given in [1, §7] to the remaining three

polytopal spheres, since their polytopality follows immediately from this

new theorem. This theorem is a particular case of a more general theorem

stated and proved in [5].

THEOREM 6. Let Q c R4 be α 4-polytope and let Φo be a facet of Q

which is a simplex, all of whose vertices are of valence > 4. Let Φ1 ? Φ 2, Φ3,
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Φ4 be the facets Q adjacent to Φo {that is, each of them shares a 2-face with
Φo), and let F = {1,2,3,4}. Then for every Γ c V there is a 4-polytope
P c i?4, a projectiυe equivalence φ: Q -> P, and a point X G Λ 4 such that x
lies beyond the facets φ(Φ;) ofP, i e (V\ T) U {0}, in Π ί e Γaff ψ(φt) and
beneath all the other facets of P, with respect to P, and vert(conv(P U { x}))
= vertP U {x}.

This theorem together with the Theorems 3-5 of [1, §6] mentioned
above, yield an inductive construction of 4-polytopes (though this is not
the way they have been used in [1]): from a 4-polytope with n vertices they
yield 4-polytopes with n + 1 vertices. Thus we programmed these four
theorems (the programming was done by I. Shemer, to whom we wish to
express our thanks) and applied them to the 31 4-polytopes with 7
vertices. After checking the resulting polytopes for isomorphism, we
remained with 1294 combinatorially distinct 4-polytopes with eight
vertices. They include the 34 pyramids, the 37 simphcial polytopes and the
599 quasisimplicial 4-polytopes with eight vertices, which were discussed
in detail in [1]. There remain 624 4-polytopes with eight vertices. The
boundary complexes of these 624 polytopes are of course members of
Λ ^ 8

3 and hence also of the set 0t of §3. Thus we need only investigate the
107 remaining members of & for sphericity and for polytopality.

In the next section we will see that just 22 of those 107 remaining
members of 0t are spheres, and that none of these spheres is polytopal,
thus completing the proof of Theorem 1.

We return to Theorem 6 and to Theorems 3-5 of [1] which yielded the
1294 4-polytopes with eight vertices. From the proofs of those theorems in
[5] it can be seen that they are also correct if we replace the Euclidean
space JR4 by the rational space Q4. (See [5, Remark 5.2].) Thus, using the
notation of these theorems, if Q is a rational polytope, then the polytope
P too can be made to be rational. Since the 31 4-polytopes with seven
vertices are known to be rational (see [6, Exercise 6.5.3]), it follows that
the 1294 4-polytopes with eight vertices are rational too, thus proving
Theorem 3.

5. The final classification. We still have 107 complexes in 9t which
have to be tested for sphericity and polytopality. Generally speaking, it is
not easy to check whether or not a given 3-complex is a sphere. The
unsolved 3-dimensional Poincare Conjecture stands in the way. However,
in our case, where each member of Si has just eight vertices, the problem
can be settled rather easily.
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From [2, Theorem 2] it follows that every simplicial 3-manifold with
eight vertices is a 3-sphere. It can be easily checked that each of the
8-cores can be simplicially subdivided to yield a simplicial complex
without any additional vertices. Thus, from the construction of 0t it is
clear that each member of 0t can be simplicially subdivided, without any
additional vertices, to yield a simplicial complex. Hence, it follows that
every member of ^ , which is a 3-manifold, is a 3-sphere. Therefore, one
way to check a member of 0t for sphericity is to check if it is a 3-manifold.
Each of our 8-cores is a connected complex. Thus it follows from the
construction of 3% that each member of Si is a connected complex. Also,
each member of ^ has an empty boundary. Thus, to check each member R
of 3% for being a 3-manifold, all we have to do is to check that the link of
every vertex in ̂  is a 2-sphere. This is easy to do.

Another way to check the sphericity of a member of @t is to triangu-
late it without adding any new vertices, and then see if the resulting
complex is combinatorially equivalent to one of the 39 simplicial 3-spheres
with eight vertices (see [2]). This, too, is easy to do.

It turned out that of the 107 complexes under consideration precisely
22 are spheres. They are listed in Table 2, where the cores of these 22
spheres are also stated. (The cores of the 85 non-spheres can be read from
Table 1.) Thus, Λ^g3 has 646 members, as asserted in Theorem 1.

As reflected in Table 1, the only member of ^resulting from c61 is not
a 3-sphere. Thus c61 is spurious. (See also Remark 4 in §6.) Hence, with
the four spurious 8-cores found in §3 there are altogether five spurious
8-cores, namely c8, c46, c55, c59, and c61.

Each of our 22 spheres now has to be checked for polytopality. This is
done by means of the method developed and described in detail in [1, §5].
In particular, we use Theorem 2 of [1], which asserts that if a 3-sphere has
a vertex at which it is not contractible, then it is not polytopal. There are,
however, certain differences in the implementation of this method in [1]
and here. The differences stem from the fact that the 3-spheres dealt with
in [1] had only simplicial facets, while now our spheres also have non-sim-
plicial facets.

Actually, the only non-simplicial facets in the 22 spheres under
consideration are 3-cells of type D (that is, quadrangular pyramids). Thus,
if S is one of our 22 spheres and x is a vertex in S which is the apex of a
type-Z> cell, then hnk(x, S) is not a simplicial complex, as was always the
case in [1], since beside triangles it has also quadrangular 2-faces. Thus we
can no longer assume, as we did in [1], that if S is polytopal, then it must
have a simplicial refill at x.
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TABLE 2

The non-polytopal non-quasisimplicial 3-spheres with 8 vertices

No.

1(10)

2(1)

3(12)

4

5

6(3)

7

8(11)

9(19)

10(2)

11

12(13)

13(21)

14

15

16(4)

17(20)

18(14)

19(22)

20

21(5)

22(23)

Det.

108

32

449

1152

1280

121

320

3600

7944

4000

12294

12598

16666

21824

24264

12763

48952

85456

107058

109354

100800

447372

Core

39

39

1

1

1

1

1

39

39

39

1

1

1

1

1

1

39

1

1

1

1

1

14856

45738

12756

12756

45718

25718

45718

14856

45738

1458

12756

45718

15748

45718

15748

45718

1456

12756

15748

45718

1257 1267

1256 1457

45837

36728

2357

1456

1468

45718

34856

35827

36728

26738

1257

1568

1457

1256

1256

1457

1468

45738

1458

45718

45718

36728

1267

1257

2367

1568

2357

1467

1257

1256

1256

1256

1267

2357

1468

1467

1467

Additional facets

2357 2367

1468 2357

25837 1467

36728 1467

34856 1257

1457 1467 2358

1267 1467 2357

3457 3468 4578

2357 2367 3467

2367 3457 3468

2357 2368 3458

1267 1467 2357

1467 2368 3457

1467 2357 3458

1467 2357 3457

1467 2357 2368

2367 3457 3468

2358 2367 3458

2357 2368 3457

2357 2368 3458

3467

2367

2368

2357

1267

2368

3458

3678

4678

4578

3468

2368

3467

3468

3467

3458

4578

3468

3467

3468

1468 2358 2367 3458 3468 2578

2358 2367 3457 3467 1568 2568

4678

3467

3458

3458

1467

3468

3468

3478

4568

3678

2678

2678

1568

1567

1568

3468

3678

2578

1568

1567

1678 ]

1478 ]

4678

3468

3468

2357

2678

4678

3478

4678

4678

2568

2567

2568

2678

4568

1678

2568

2567

2678 4678

4678 3578

4678 3578

4678

3578

2378 3578

2378 3578

1678 3678

4678 3578

1678 2578

4678 2378 3578

3478

1478 4578 2378 3678

1678 2378 2578 3678

4678 2378 3578 2678

L478 4578 2378 3678

L578 4678 2378 3578 2678

The number in parentheses in the first column is the number of the sphere in Schulz's
paper [7]. Det. is the determinant of the edge-valence matrix. In "Additional facets" every
5-vertex facet is of type A. "Core" is the no. of the core of the sphere, as stated in Table 1.

There is, however, an important feature common to our 22 spheres
and the 520 3-spheres dealt with in [1, §5]. That is, all the simplicial facets
of our 22 spheres are just simplexes and double tetrahedra (type^l cells).

Note that the cores of our 22 spheres are just cx and c39. Thus the only
vertices x such that link(x, S) is not simplicial, where S is any of our 22
spheres, are just 5 and 6. In the case that core S = cl9 link(x, S) (for
x = 5,6) contains a unique quadrangular 2-face, while in the case where
core S = c39, linkO, S) contains just two quadrangular 2-faces, and they
share a common edge. Thus it is clear that if S is polytopal, then in the
first case (where core S = cλ and x = 5, 6) there must be a refill for S at x
whose 3-cells consist of a unique type D cell ("covering" the quadrangular
2-face in link(x, S)) and simplexes, while in the second case there must be
a refill for S at x whose 3-cells consist of either a unique type F cell
("covering" the two quadrangles in link(x, S)) and simplexes, or a unique
type G cell ("covering" the two quadrangles in link(x, S)), a unique type
D cell ("covering" the remaining quadrangle in the type G cell) and
simplices.
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As examples, we study two cases in detail.
First, let S be the third 3-sρhere of Table 2. Then the 2-faces in

link(5, S) are the quadrangle 1234 and the triangles 126, 167, 267, 147,
148, 348, 278, 238. The simplexes 1267, 1478 and 2378 must be in the
refill for S at 5 (they form the set #, in the notation of the paragraphs
following Theorem 2 in [1]). Thus the boundary complex of ast(5, S) U <€'
consists of the quadrangle 1234 and the triangles 127, 237, 178, 148, 348,
378 (and their faces). The apex of the type D cell that is to cover the
quadrangle 1234 is therefore either 7 or 8. But none of them is possible,
since the edges 28 and 47 are interior to ast(5, S) U #". Thus S has no
refill at the vertex 5. That is, S is not contractible at its vertex 5, and
therefore S is not polytopal.

Secondly, let S be the first 3-sphere of Table 2. The 2-faces in
link(5, S) are the quadrangles 1234, 1278 and the triangles 146, 168, 468,
237, 347, 478. The set ^here consists of the 3-simplexes 1468, 3478. Thus
the boundary complex of ast(5, S) U <€' is precisely the boundary com-
plex of the type F cell 872143. This type F cell cannot be in the refill for S
at 5 since edge 47 is interior to ast(5, S) U W. Thus S is not contractible
at its vertex 5, and hence it is not polytopal.

In a similar manner we studied all 22 3-spheres of Table 2 and found
that none of them is contractible at vertex 5 nor at vertex 6. Thus all 22 of
these 3-spheres are not polytopal. This completes the proof of Theorem 1.

15 of the 22 non-polytopal spheres have already been discovered by
Schulz [7], and in Table 2 we give in parentheses their ordinal numbers in
Schulz's paper.

6. Remarks.
1. Table 3 gives a brief description of the structures of the 1260

nonpyramidal 4-polytopes with 8 vertices. For example, it gives the
number of facets of each type that occur in our polytopes.

2. Eighty five members of 9t turned out to be non-spheres. Each of
them has exactly two vertices whose link is not a 2-sphere. In some cases,
the links are 2-manifolds other than 2-spheres (a torus or a projective
plane), so these complexes are 3-pseudomanifolds in the sense of [3]. In
other cases, the link is a union of two disjoint circuits.

3. It is interesting that in each of the 22 non-poly topal spheres found
here, as in each of the other non-polytopal spheres with 8 vertices, there
are precisely two vertices at which the sphere is not contractible. (Com-
pare [1, Remark 8.3].)

4. As mentioned in §5, c61 is a spurious 8-core. In fact, c61 cannot be a
subcomplex of any 4-polytope. The three quadrangular 2-faces, 1234,
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1278, 3478 of c61 form a Mobius strip which obviously cannot be geomet-
rically realized in i?3, while every 2-dimensional subcomplex of the
boundary complex of a 4-polytope P is geometrically realizable in R3 via a
Schlegel diagram of P.

TABLE 3

Classification of the 1260 non-pyramidal 4-polytopes with 8 vertices

# of
facets # of cases classes of polytopes

_ _ _ _ „

7 0, 0, 3 7,19, 21/1

8 0, 0,19 2A2, 3/42, 5/4, 9,10/42,15/43,16, 20, 21, 24A3, 29/4, 30/4, 33, 39/42, 44/1, 45,

53/4, 56, 62

9 0, 5, 60 A5(2), A3B(2), A3Cy 1/13(3), l/44(2), 1/45(3), 2Λ, 2Λ2, 3/1(3), 3Λ2, 4/ί2(4), 5,

10/4,11,12,14/4,15Λ2(3), 17, 21, 22, 23, 24/42(7), 26/4, 27Λ, 28, 29, 30, 32,

34/4, 35/42, 39/4, 39A2, 395, 39C, 40/4, 40/42, 44, 47/4, 48/4(2), 51/4, 53, 53/4,

54, 60/1

10 0, 23,106 /45(3), /44(10), /425(9), /42C, l/ i 2 ( l l ) , 1Λ3(12), 15(3), 1/15(4), 1/4C, 2, 2/4,

3(2), 3/4(2), 4/4(5), 5, 6,10,10/4,14,15Λ(4), 15/42(9), 24/4(10), 24A2(9), 25, 26,

27, 29, 30, 31, 34, 35/1, 36A2, 39, 39/4(2), 40, 40/1, 41, 42, 43, 44, 47, 48(2), 49,

51, 53, 57, 58, 60

11 0, 73,127 /44(23), A3(21), A2B(l3), A2C(4), AB(ll),ACy IA(1O), L42(28), 1/13(11),
15(5), 1C, 2, 2/4(2), 3(2), 3/4, 4(2), 4Λ(6), 10,13,14, 15(2), 15Λ(9), 24(5),

24/4(14), 26, 27, 34, 35, 35/1(2), 36/4(4), 39, 39/4(5), 40, 40/4, 47, 48, 50, 51,

52, 53, 60

12 0,100,125 /44(17),/43(42),/42(20),/45(14),/4C(2), 5(4), C, 1(4), 1Λ(21), l/42(42), 15(4),

1C, 2(2), 3, 4(3), 10,15(5), 15/4(8), 24(6), 24/4(13), 35(2), 36(3), 36/4(2), 37, 38,

39(3), 40, 40/4

13 0,128, 90 /13(56), /42(41), /4(9), AB(ll), AC(2), 5(7), C(2), 1(7), 1/1(40), 1/12(21), 2, 3,

4(3), 15(4), 24(7), 35, 36(2), 39(2), 40

14 3,109, 54 (3), /43(3O), Λ2(57), Λ(16), 5(5), C, 1(14), 1/4(30), 15(3), 24(4), 36, 40, 41

15 5, 85, 27 (5), /12(53), /ί(26), 5(4), C(2), 1(13), ]

16 8,49,8 (I

17 8,19,4 (8),/4(19), 1(4)

18 6,8,0 (6),,

19 4,0,0 (4)

20 3,0,0 (3)

Total: 37,599,624

x, y, z in " # of cases" indicates x simplicial polytopes, y quasisimplicial non-simplicial
non-pyramidal polytopes, z non-quasisimplicial non-pyramidal polytopes. The symbol
xAmBnCι{r) indicates r polytopes with core cx, m cells of type A, n of type B, I of type C;
a missing x indicates a quasisimplicial polytope, a missing (r) indicates a single polytope.
Thus 5 means a single polytope with core c5 and simplices, while (5) means five simplicial
polytopes.
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5. Although the boundary complex of an w-core need not be con-
nected, it is surprising that this occurs for n = 8. Indeed, the boundary
complex of c1 8 is composed of two disjoint 2-spheres, each of which is the
boundary complex of a 3-simplex.

6. In [1, §5] we used the easily checked assertion that every 3-polytope
with 7 vertices can be simplicially subdivided without the addition of
extra vertices. Meanwhile, in [4], it was proved that every polytope of any
dimension has a simplicial subdivision with no additional vertices.

7. In the process of constructing the 731 complexes which form the set
^ , as well as in the construction of the 1294 polytopes described in §4, we
obtained isomorphic copies of the same complex which had to be reduced
to a single representative. The determinant of the edge-valence matrix
(defined in [1]) proved to be a useful tool for discriminating between
non-isomorphic complexes. It proved useful also in the comparison of the
polytopes obtained in §4, and of the members of 3%. However, among the
1294 4-polytopes with 8 vertices, there are many polytopes which share
the same number of facets and the same determinant. Thus we used two
more determinants: one is obtained from the edge-valence matrix by
replacing all its main diagonal elements by 0, the other is obtained by
replacing them by 1. For our 1294 polytopes, these three determinants
were sufficient for discriminating between any two polytopes having the
same number of facets.

8. The 62 8-cores were constructed independently by each of the two
authors, one by hand and one by computer. Moreover, all the polytopes
constructed by means of Theorem 6 and Theorems 3-5 of [1] are in the
list of 3-spheres with 8 vertices constructed here and in [1]. It is hoped
these checks guarantee that both [1] and the present work are free of
major errors.

9. As previously mentioned, 27 of the 42 non-polytopal 3-spheres with
8 vertices are listed by Schulz in [7]. Schulz also proved these 27 spheres to
be geometric, in the sense of [1, §2]. We don't know if the remaining 15
spheres are also geometric.
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