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DIRECT SUMMANDS OF DIRECT PRODUCTS
OF SLENDER MODULES

JounN D. O’NEILL

Suppose P = [1, G, is a direct product of slender R-modules. If | I} is
non-measurable and 4 is a direct summand of P, then 4 =TI, 4, where
each 4, is isomorphic to a direct summand of a countable direct product
of G’s. f R = Z and P is a torsion-free reduced abelian group, then, if
each G, has rank one, 4 is a direct product of rank one groups.

1. Introduction. If R is a ring and M =[{" R, with each R, = R as
a R-module, then a R-module N is slender if: for any homomorphism f:
M — N, f(R,) = 0 for almost all n. In Theorem 3.7 we will show that, if
a R-module P equals I'l, G, with |I| non-measurable and each G, slender,
then any direct summand of P is isomorphic to IT;4; where each 4; is
isomorphic to a direct summand of a countable direct product of G,’s.
This theorem in a way does for direct products what Kaplansky’s theorem
does for direct sums of modules (ie., the theorem which states that
projective modules are direct sums of countably generated modules [6]). In
Theorem 4.3 we prove that if V'is a reduced vector group (a direct product
of rank one torsion-free abelian groups) of non-measurable cardinality,
then so is any direct summand of V. This answers Problem 74 in [4] for
the non-measurable case.

2. Preliminaries. In this paper all groups are abelian, rings are
associative with identity, modules are left unital, and homomorphisms are
written on the left. Discussions of slender modules may be found in [3, 4,
5, and 7). For example, any torsion-free abelian group is a slender
Z-module if it does not contain Q, Z' with I infinite, or the p-adic integers
for a prime p. This fact along with a good treatment of vector groups is
contained in Chapter XIII of [4]. Unexplained terminology may be
located in [4].

3. Slender modules. Throughout this section we shall consider the
following situation. Let R be a ring and let R-module P equal [1,G, =
A ® B where |I| is non-measurable and each G, is slender. By f;, a, 8 we
shall mean the projections of P to G,, A, B respectively and we let

a, = fa.
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Our first two lemmas are basic.

LeMMA 3.1.

(1) If i is fixed, a,(G,) = O for almost all j in I.

(2) If i is fixed and a (G;) = O for all jin J C I, then a,(I1,G)) = 0.

(3) If «(G) =0 forall jinJ and all i in I\ J, then11,G, = o(I1,G)
® BU1,G)).

Proof. (1) follows from the definition of slender and (2) follows from
Los’ argument as given in the proof of Theorem 94.4 in [4] (see also the
proof of Theorem 3 in [7] or Theorem 2.1 in [5]). The condition in (3)
implies a(I'1, G;) is contained in [, G, by (2). So B(I1,G,) c I1, G, and (3)
is true.

LEMMA 3.2. (1) Let D be any direct summand of P and suppose d, € D
for each j in a set J. If, for each fixed i in I, f(d,) = O for almost all j in J,
then the element d = ¥, (X,1,(d,)) isin D. We defined = ¥.,d,.

(2) Let A; be a submodule of A for each j in a set J such that, for each
i €1, f(A;) =0 for almost all j in J. We define Y;A, = {¥L,a,|a, € A}.
Then X;A; isin A and X;A, = 11,4, if, whenever ¥.,;a, = 0 witha, € 4,
then each a; = 0.

Proof. (1) We may suppose D = B and just show «,(d) =0 for
arbitrary i. By the previous lemma «;(I1; G,) = 0 for some K cofinite in
I. For some subset L cofiniteinJ, X, d,isin[1x G,. Sinced = ¥, , d, +
2, d, and the left sumisin B, a,(d) = 0. (2) By (1) X, 4, is in 4 and there
is a natural isomorphism [1,4, - X, 4.

Note. The ideas in the first two lemmas will be used repeatedly
without reference in the sequel.

PROPOSITION 3.3. Suppose J is a well-ordered set containing 1 and A
has submodules A, and A’ for each j in J such that:
()A=A"andA) = A; & A" (where AV*' = 0 if j is maximal in J),
(2) A* =N, A’ if k is a limit element in J,
(3) for eachiin 1 f,(A,) = 0O for almost all j in J,
@ N4t =0.
Then A =11,4,.

Proof. By (3) ;4 is a submodule of 4. We need to show 4 =}, 4,
and that, if X ;a, = 0 with a; € 4, then each a, = 0. By our suppositions



DIRECT PRODUCTS OF SLENDER MODULES 381

it will suffice to show:

(%) A=( ZAj)GBA’"+lforeachminJ.

J=m

Now (*) is true for m = 1 by (1) and we assume it is true for all m < k. If
k — 1 exists, () is true for k by (1). Suppose k is a limit element in J. Let
a € A. By our assumption and (1) and (2) we may inductively choose
a, € A, for each j < k so that a — (a; + -+~ +a,)€ A" Then a —
¥,.xa, is in A'*! for each i <k and it is in 4% by (2). By (1) then
a—X,_,a €A forsomea, € Ayand A =Y%,_, A, + A**. Suppose
Y,.ca;+x=0witha €4 ,x € A", and a; + 0 for a minimal i < k.If
i=k,a,= —x€ AL Ifi<k,a, € A" by () for m = i. Either case
implies a, = 0, a contradiction. So (*) is true for m = k and by induction
for all m.
Our next two lemmas deal with a particular ordering of I.

LEMMA 3.4. The set I can be ordered as an ordinal so that:

(1) for each jin I, if a,(G;) = O for all i < j, then a,(I1,.;G,) = 0 for
alli <j,

(2) if j is a limit ordinal in I, then a,(I1,.,G,) = 0 for all i < j.

Proof. Let 1 € I be arbitrary. Suppose the ordinals < m have been
identified with J a proper subset of I. Choose m from I\ J so that
a,(G,,) # 0 for minimal k in J if possible; otherwise let m from 1\ J be
arbitrary. Continue in this manner until / is totally ordered as an ordinal.
This ordering implies (1) and we now show (2). Since &,(G;) = 0 for all
i <jif j =1, assume it is true for all non-successor ordinals j less than
limit ordinal s. Suppose «,(G,) # 0 for some minimal n < s. Thenn — j is
finite for j = 1 or j a limit ordinal < s. Let K = {i > n| a,(G,) # 0 for
some k < nj. Since a,(Il,,;G;) =0 for all k < and since @G, is
slender, K is finite. But s is in K and s — n is finite by our ordering of I, a
contradiction. Therefore (2) is true for s and by induction for all limit
ordinals.

DEFINITION 3.5. Suppose [ is an ordinal and J is a subset of [
containing 1. For each j in J let j’ be the successor of j in J (if j is maximal
in J let j* = I). For eachjin J set [, = {i € I|j <i <j’}. Then {1},
J € J, partitions 1. Now let P, = H,} G, whence P =1, P,. Also let P/ =
I1,.,G,. Then P/ = P, ® P/ (if j is maximal in J set P/" = 0).

1>j
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LEMMA 3.6. Suppose I is an ordinal, 1 € J C I, and, for each j € J,
a,(P’) = 0 for alli in I less than j. Then P, = a(P)) ® B(P) for each j and
A =11,a(P).

Proof. Let j € J be arbitrary. By Lemma 3.1, P/ = a( P/) ® B(P’)
and P/ = a(P’)) ® B(P’). Therefore P, = a(P;) ® B(P,). We now let
A, = a(P;) and A’ = a( P’) and apply Proposition 3.3 to show 4 =T1,4,.
Since 1 € J and a(P’) = a(P)) ® a(P’’), (1) is true. Suppose k is in J
and a limit element therein. Then

Ak = a(P)C a(P/)= N 47 = a( N Af)
Jj<k Jj<k j<k
c a( N pf) = «(P*) = 4*.
<k
So (2) is true. Let i € I be fixed. From the map a;: P = [, P, — G, we see
that f,(4,) = a,(P;) = 0 for almost all j. Hence (3) is true. Since J is
unbounded or P/ = 0 for a maximal j in J, N4 € NP/ =0 and (4) is
true. Therefore 4 =I1,4,.

THEOREM 3.7. Suppose R-module P equals T1,G,= A ® B with |I|
non-measurable and each G, slender. Then A =11,A; where each A, is
isomorphic to a direct summand of a countable direct product of G,’s.

Proof. Let I be ordered as in 3.4 and let J consist of 1 and all limit
ordinals in I. For each j € J define P/ and P, as in Definition 3.5 and set
A; = a(P;). By 3.4, for each j in J, a,(P/) = 0 for all i in I less than j. The
theorem now follows from 3.6 and the fact that each P, is a countable
product of G,’s.

4. Vector groups. A vector group is an abelian group of the form
V =TI, R, where each R, is torsion-free of rank one. Some twenty years
ago (see [1]) it was shown that, if V is reduced, |/| is non-measurable, and
R, = R; or Hom(Hom(R,, R,), R;) = 0 for each i and j, then any direct
summand of V is a vector group. We now remove the restrictions on the
types of the R,’s. We thereby solve Problem 74 in [4] for the non-measura-
ble case.

If ¥V above is reduced, it is a direct product of slender Z-modules; so
the results in §3 apply to it. Since 2* is non-measurable for any non-mea-
surable cardinal p, V above has non-measurable cardinality if and only if
I has; so we equate these two properties henceforth.
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LEMMA 4.1. If V = A @ B is a reduced vector group and |V'| is non-mea-
surable, then there is a decomposition V = [1; R, where each R, has rank one
and type t, and, if f,, a are the projections to R;, A, respectively, and
a; = fa, then a,(R;) = 0 for each i and j unless i = jort, > t,.

Proof. Write V =[], S, with each S; of rank one and type ¢,. Let ¢ be a
type and set V, =11, _,S;and V' =TI, ., S;. By Lemma 96.1 in [4] V"' and
V, ® V' are fully invariant subgroups of V. So V' = A’ ® B with A" in A4
and B'in B. Also V,® V'=A4,® B,® V' with4,=A N (V,® B') and
B, = BN (V,® A"). If ¢ is the projection I'l,S; = V,, then V, = ¢(4,) &
¢(B,) and each summand is a vector group by Theorem 1 in [1] (also
exercise 10, p. 171, Vol. II of [4]). Thus, if I, = {i € I|t; = ¢}, then V, has
a decomposition I'I; R;, each R, of rank one, where, for each / in J, and x;
in R,, there is a y, in V'’ such that x; = (x; — y;) + y; with one term in 4
and the other in B. Now, for some set T of distinct types ¢, V =11V, =
IT,(I1; R,) =TI;R,. By full invariance II,.,R, = V" for each 7. The
conclusion of the lemma follows.

Our next lemma deals with a countable set of types.

LEMMA 4.2. Let I be the natural numbers and let T, = {t,},i € I, be a
set of types (not necessarily distinct). Let I, = {i € I|t,; is maximal in T,}.
For each n > 1 let T,= {¢t;|i¢ LU ---UI,_ .} and I, = {i € I|t, is
maximal in T,}. Either (1) I contains an infinite chain i; < i, < --- such
that, for each n, t; # t;, whenever iy < i <i,or(2)I=Uy1I, and each I, is
finite.

Proof. Suppose (2) is not true. Then, for some least k, I, is finite for
n < k and either I, is infinite or 7, contains a chain of types not bounded
above by an element in T,. Let i; be an element in I such that i < i; for all
i in I,, n < k. Now i, satisfies the requirement in (1) and we assume
iy,...,i,, satisfy it. By our choice of k and i, there is a j > i, such that
t; # t; whenever i; <i <i,. Leti,,, be the least such j. Then 7, # 7, |

fori, <i <i,,,. Induction completes the proof.

1

THEOREM 4.3. If V=A ® B is a reduced vector group and |V| is
non-measurable, then A and B are vector groups.

Proof. A proof for A will suffice. Write V' =I1,R; as in Lemma 4.1
and let ¢, a, a; be as defined there. Let I be ordered as in 3.4 for P = V
and G, = R,. Thus for each j in 7, if a;(R;) =0 for all i <j, then



384 JOHN D. O’NEILL

a,(IT,.,R,) =0 for all i <j and, by the proof of Theorem 3.7, we may
assume / is the natural numbers. We now let I, and T, be as defined in 4.2
and treat the cases given there.

Case 1. There is an infinite sequence i; < i, < --- in [ such that, for
each n, 1, # ¢, for iy <i<i, Since @ _, R, is slender, for some m,
a1, R, = = 0 for all i < i;. By our choice of i,’s and by 4.1 we must
have, for each n > m, a,(R;)=0foralli <i, Therefore, from the way 7
was ordered, for each n > m, a;(Il;,; R,) =0 for all i <i, Let J =
{1,i,i,41...} and define P/ and P, (with G, = R,) as in 3.5. By 3.6 then
A =11,a(P)) and each a(P)) is a direct summand of P,. Since each P, is a
finite rank vector group, so is each a( P ). Therefore V'is a vector group.

Case 2. I = Uy I, and each I, is finite. We may assume [ is infinite.
For each n set K, =L U ---UI, and let V,= &, R, and V"=
Il I\K, R,. V, is fully invariant in V and equals 4, ® B, w1th A, in A and
B,in B. Also A = A, ® A" where A" =4 N (B ® V"). We now find
subgroups C, and C’ inA forj € J = (1,2,...) such that:

()4 =Cland C/ = C, & C/*,

b o - --aC = A forsomem

(c) C/ 2 c Vi,

Let C! = 4, C, = 4,, and C? = A'. The conditions are satisfied for
J = 1 by these C’s and we assume they are satisfied for j < k£ by the C’s
up to C, and C**. Now 4 =4, & C*"'and V=V, ® V*. Since 4,,
and V, are slender, from a consideration of projections: V' — 4 — 4,
and V — A — V, we see that, for some large n, a(V") isin C**! and V*.
For thisn then4 = 4, ® A" where 4, 2 4,, and

A"=AN(B,® V") C a(V") C Ck*1n vk,

Let C,,; =A,N C**Y Ck*2 = 4" and m;,, = n. Now C**' = C,,
®Ck*? 4, ®C =4, ,and C**?C V¥ as desired. Induction
completes the sequences. Next we apply Proposition 3.3 to the subgroups
C, and C’ with j € J. Conditions (1) and (2) are clearly satisfied. Since
C; € C/, (3) follows from (c) as does (4). So 4 =1, C,. Since each C; is a
finite rank vector group, A4 is a vector group.

REMARK. This theorem cannot be improved. That is: a countably
infinite direct product of rank two torsion-free groups can equal the direct
sum of two indecomposable subgroups. An example of such a group can
be constructed by modifying an infinite direct “sum” example of Corner
(as found in [2] or Theorem 91.1 in [4]). This is explained more fully in [8].
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