DIRECT SUMMANDS OF DIRECT PRODUCTS OF SLENDER MODULES

John D. O'Neill

Abstract

Suppose $P=\Pi_{I} G_{l}$ is a direct product of slender R-modules. If $|I|$ is non-measurable and A is a direct summand of P, then $A \cong \prod_{J} A_{j}$ where each A, is isomorphic to a direct summand of a countable direct product of G_{i} 's. If $R=Z$ and P is a torsion-free reduced abelian group, then, if each G_{l} has rank one, A is a direct product of rank one groups.

1. Introduction. If R is a ring and $M=\prod_{1}^{\infty} R_{n}$ with each $R_{n} \cong R$ as a R-module, then a R-module N is slender if: for any homomorphism f : $M \rightarrow N, f\left(R_{n}\right)=0$ for almost all n. In Theorem 3.7 we will show that, if a R-module P equals $\Pi_{I} G_{i}$ with $|I|$ non-measurable and each G_{i} slender, then any direct summand of P is isomorphic to $\Pi_{j} A_{j}$ where each A_{j} is isomorphic to a direct summand of a countable direct product of G_{i} 's. This theorem in a way does for direct products what Kaplansky's theorem does for direct sums of modules (i.e., the theorem which states that projective modules are direct sums of countably generated modules [6]). In Theorem 4.3 we prove that if V is a reduced vector group (a direct product of rank one torsion-free abelian groups) of non-measurable cardinality, then so is any direct summand of V. This answers Problem 74 in [4] for the non-measurable case.
2. Preliminaries. In this paper all groups are abelian, rings are associative with identity, modules are left unital, and homomorphisms are written on the left. Discussions of slender modules may be found in $[\mathbf{3}, 4$, 5, and 7]. For example, any torsion-free abelian group is a slender Z-module if it does not contain Q, Z^{I} with I infinite, or the p-adic integers for a prime p. This fact along with a good treatment of vector groups is contained in Chapter XIII of [4]. Unexplained terminology may be located in [4].
3. Slender modules. Throughout this section we shall consider the following situation. Let R be a ring and let R-module P equal $\Pi_{I} G_{i}=$ $A \oplus B$ where $|I|$ is non-measurable and each G_{i} is slender. By f_{i}, α, β we shall mean the projections of P to G_{i}, A, B respectively and we let $\alpha_{t}=f_{i} \boldsymbol{\alpha}$.

Our first two lemmas are basic.
Lemma 3.1.
(1) If i is fixed, $\alpha_{t}\left(G_{j}\right)=0$ for almost all j in I.
(2) If i is fixed and $\alpha_{i}\left(G_{j}\right)=0$ for all j in $J \subseteq I$, then $\alpha_{i}\left(\Pi_{J} G_{j}\right)=0$.
(3) If $\alpha_{i}\left(G_{j}\right)=0$ for all j in J and all i in $I \backslash J$, then $\Pi_{J} G_{J}=\alpha\left(\Pi_{J} G_{J}\right)$ $\oplus \beta\left(\Pi_{J} G_{j}\right)$.

Proof. (1) follows from the definition of slender and (2) follows from Los' argument as given in the proof of Theorem 94.4 in [4] (see also the proof of Theorem 3 in [7] or Theorem 2.1 in [5]). The condition in (3) implies $\alpha\left(\Pi_{J} G_{j}\right)$ is contained in $\Pi_{J} G_{J}$ by (2). So $\beta\left(\Pi_{J} G_{j}\right) \subseteq \Pi_{J} G_{j}$ and (3) is true.

Lemma 3.2. (1) Let D be any direct summand of P and suppose $d_{j} \in D$ for each j in a set J. If, for each fixed i in $I, f_{1}\left(d_{j}\right)=0$ for almost all j in J, then the element $d=\Sigma_{I}\left(\sum_{J} f_{i}\left(d_{j}\right)\right)$ is in D. We define $d=\Sigma_{J} d_{J}$.
(2) Let A_{j} be a submodule of A for each j in a set J such that, for each $i \in I, f_{i}\left(A_{j}\right)=0$ for almost all j in J. We define $\Sigma_{J} A_{J}=\left\{\Sigma_{J} a_{j} \mid a_{J} \in A_{j}\right\}$. Then $\sum_{J} A_{j}$ is in A and $\sum_{J} A_{J} \cong \prod_{J} A_{j}$ if, whenever $\sum_{J} a_{J}=0$ with $a_{J} \in A_{J}$, then each $a_{j}=0$.

Proof. (1) We may suppose $D=B$ and just show $\alpha_{l}(d)=0$ for arbitrary i. By the previous lemma $\alpha_{i}\left(\Pi_{K} G_{k}\right)=0$ for some K cofinite in I. For some subset L cofinite in $J, \Sigma_{L} d_{J}$ is in $\Pi_{K} G_{k}$. Since $d=\Sigma_{J \backslash L} d_{J}+$ $\sum_{L} d_{J}$ and the left sum is in $B, \alpha_{i}(d)=0$. (2) By (1) $\sum_{J} A_{J}$ is in A and there is a natural isomorphism $\prod_{J} A_{j} \rightarrow \sum_{J} A_{J}$.

Note. The ideas in the first two lemmas will be used repeatedly without reference in the sequel.

Proposition 3.3. Suppose J is a well-ordered set containing 1 and A has submodules $A_{,}$and A^{J} for each j in J such that:
(1) $A=A^{1}$ and $A^{j}=A_{j} \oplus A^{J+1}\left(\right.$ where $A^{J+1}=0$ if j is maximal in $\left.J\right)$,
(2) $A^{k}=\bigcap_{j<k} A^{j}$ if k is a limit element in J,
(3) for each i in $I f_{i}\left(A_{j}\right)=0$ for almost all j in J,
(4) $\cap_{J} A^{j+1}=0$.

Then $A \cong \Pi_{J} A_{J}$.
Proof. By (3) $\sum_{J} A_{J}$ is a submodule of A. We need to show $A=\sum_{J} A_{j}$ and that, if $\sum_{J} a_{j}=0$ with $a_{j} \in A_{j}$, then each $a_{j}=0$. By our suppositions
it will suffice to show:

$$
\begin{equation*}
A=\left(\sum_{J \leq m} A_{j}\right) \oplus A^{m+1} \text { for each } m \text { in } J \tag{*}
\end{equation*}
$$

Now (*) is true for $m=1$ by (1) and we assume it is true for all $m<k$. If $k-1$ exists, $(*)$ is true for k by (1). Suppose k is a limit element in J. Let $a \in A$. By our assumption and (1) and (2) we may inductively choose $a_{j} \in A_{j}$ for each $j<k$ so that $a-\left(a_{1}+\cdots+a_{j}\right) \in A^{j+1}$. Then $a-$ $\sum_{j<k} a$ is in A^{t+1} for each $i<k$ and it is in A^{k} by (2). By (1) then $a-\sum_{j \leq k} a_{j} \in A^{k+1}$ for some $a_{k} \in A_{k}$ and $A=\sum_{j \leq k} A_{j}+A^{k+1}$. Suppose $\sum_{j \leq k} a_{j}+x=0$ with $a_{j} \in A_{j}, x \in A^{k+1}$, and $a_{i} \neq 0$ for a minimal $i \leq k$. If $i=k, a_{i}=-x \in A^{i+1}$. If $i<k, a_{i} \in A^{i+1}$ by (*) for $m=i$. Either case implies $a_{t}=0$, a contradiction. So ($*$) is true for $m=k$ and by induction for all m.

Our next two lemmas deal with a particular ordering of I.

Lemma 3.4. The set I can be ordered as an ordinal so that:
(1) for each j in I, if $\alpha_{l}\left(G_{j}\right)=0$ for all $i<j$, then $\alpha_{i}\left(\Pi_{k \geq j} G_{k}\right)=0$ for all $i<j$,
(2) if j is a limit ordinal in I, then $\alpha_{i}\left(\Pi_{k \geq J} G_{k}\right)=0$ for all $i<j$.

Proof. Let $1 \in I$ be arbitrary. Suppose the ordinals $<m$ have been identified with J a proper subset of I. Choose m from $I \backslash J$ so that $\alpha_{k}\left(G_{m}\right) \neq 0$ for minimal k in J if possible; otherwise let m from $I \backslash J$ be arbitrary. Continue in this manner until I is totally ordered as an ordinal. This ordering implies (1) and we now show (2). Since $\alpha_{i}\left(G_{j}\right)=0$ for all $i<j$ if $j=1$, assume it is true for all non-successor ordinals j less than limit ordinal s. Suppose $\alpha_{n}\left(G_{s}\right) \neq 0$ for some minimal $n<s$. Then $n-j$ is finite for $j=1$ or j a limit ordinal $<s$. Let $K=\left\{i>n \mid \alpha_{k}\left(G_{i}\right) \neq 0\right.$ for some $k \leq n\}$. Since $\alpha_{k}\left(\Pi_{i \geq j} G_{i}\right)=0$ for all $k<j$ and since $\oplus_{j}^{n} G_{i}$ is slender, K is finite. But s is in K and $s-n$ is finite by our ordering of I, a contradiction. Therefore (2) is true for s and by induction for all limit ordinals.

Definition 3.5. Suppose I is an ordinal and J is a subset of I containing 1. For each j in J let j^{\prime} be the successor of j in J (if j is maximal in J let $j^{\prime}=I$). For each j in J set $I_{j}=\left\{i \in I \mid j \leq i<j^{\prime}\right\}$. Then $\left\{I_{j}\right\}$, $j \in J$, partitions I. Now let $P_{j}=\Pi_{I_{j}} G_{i}$ whence $P=\Pi_{J} P_{j}$. Also let $P^{j}=$ $\Pi_{l \geq j} G_{i}$. Then $P^{J}=P_{j} \oplus P^{j^{\prime}}$ (if j is maximal in J set $P^{J^{\prime}}=0$).

Lemma 3.6. Suppose I is an ordinal, $1 \in J \subseteq I$, and, for each $j \in J$, $\alpha_{i}\left(P^{j}\right)=0$ for all i in I less than j. Then $P_{j}=\alpha\left(P_{j}\right) \oplus \beta\left(P_{j}\right)$ for each j and $A \cong \Pi_{J} \alpha\left(P_{j}\right)$.

Proof. Let $j \in J$ be arbitrary. By Lemma 3.1, $P^{j}=\alpha\left(P^{j}\right) \oplus \beta\left(P^{j}\right)$ and $P^{j^{\prime}}=\alpha\left(P^{j^{\prime}}\right) \oplus \beta\left(P^{j^{\prime}}\right)$. Therefore $P_{j}=\alpha\left(P_{j}\right) \oplus \beta\left(P_{j}\right)$. We now let $A_{j}=\alpha\left(P_{j}\right)$ and $A^{j}=\alpha\left(P^{j}\right)$ and apply Proposition 3.3 to show $A \cong \Pi_{J} A_{j}$. Since $1 \in J$ and $\alpha\left(P^{j}\right)=\alpha\left(P_{j}\right) \oplus \alpha\left(P^{j^{\prime}}\right),(1)$ is true. Suppose k is in J and a limit element therein. Then

$$
\begin{aligned}
A^{k} & =\alpha\left(P^{k}\right) \subseteq \bigcap_{j<k} \alpha\left(P^{j}\right)=\bigcap_{j<k} A^{j}=\alpha\left(\bigcap_{j<k} A^{j}\right) \\
& \subseteq \alpha\left(\bigcap_{j<k} P^{j}\right)=\alpha\left(P^{k}\right)=A^{k}
\end{aligned}
$$

So (2) is true. Let $i \in I$ be fixed. From the map $\alpha_{i}: P=\Pi_{J} P_{J} \rightarrow G_{i}$ we see that $f_{i}\left(A_{j}\right)=\alpha_{i}\left(P_{j}\right)=0$ for almost all j. Hence (3) is true. Since J is unbounded or $P^{j^{\prime}}=0$ for a maximal j in $J, \cap A^{j^{\prime}} \subseteq \cap P^{j^{\prime}}=0$ and (4) is true. Therefore $A \cong \Pi_{J} A_{J}$.

Theorem 3.7. Suppose R-module P equals $\Pi_{I} G_{i}=A \oplus B$ with $|I|$ non-measurable and each G_{i} slender. Then $A \cong \Pi_{J} A_{j}$ where each A_{j} is isomorphic to a direct summand of a countable direct product of G_{i} 's.

Proof. Let I be ordered as in 3.4 and let J consist of 1 and all limit ordinals in I. For each $j \in J$ define P^{j} and P_{j} as in Definition 3.5 and set $A_{j}=\alpha\left(P_{j}\right)$. By 3.4, for each j in $J, \alpha_{i}\left(P^{j}\right)=0$ for all i in I less than j. The theorem now follows from 3.6 and the fact that each P_{j} is a countable product of G_{i} 's.
4. Vector groups. A vector group is an abelian group of the form $V=\Pi_{I} R_{i}$ where each R_{i} is torsion-free of rank one. Some twenty years ago (see [1]) it was shown that, if V is reduced, $|I|$ is non-measurable, and $R_{i} \cong R_{j}$ or $\operatorname{Hom}\left(\operatorname{Hom}\left(R_{i}, R_{i}\right), R_{j}\right)=0$ for each i and j, then any direct summand of V is a vector group. We now remove the restrictions on the types of the R_{i} 's. We thereby solve Problem 74 in [4] for the non-measurable case.

If V above is reduced, it is a direct product of slender Z-modules; so the results in $\S 3$ apply to it. Since 2^{μ} is non-measurable for any non-measurable cardinal μ, V above has non-measurable cardinality if and only if I has; so we equate these two properties henceforth.

Lemma 4.1. If $V=A \oplus B$ is a reduced vector group and $|V|$ is non-measurable, then there is a decomposition $V=\Pi_{I} R_{i}$ where each R_{i} has rank one and type t_{i} and, if f_{i}, α are the projections to R_{i}, A, respectively, and $\alpha_{i}=f_{i} \alpha$, then $\alpha_{i}\left(R_{j}\right)=0$ for each i and j unless $i=j$ or $t_{i}>t_{j}$.

Proof. Write $V=\Pi_{I} S_{i}$ with each S_{i} of rank one and type t_{i}. Let t be a type and set $V_{t}=\Pi_{t_{i}=t} S_{i}$ and $V^{t}=\Pi_{t_{i}>t} S_{i}$. By Lemma 96.1 in [4] V^{t} and $V_{t} \oplus V^{t}$ are fully invariant subgroups of V. So $V^{t}=A^{t} \oplus B^{t}$ with A^{t} in A and B^{t} in B. Also $V_{t} \oplus V^{t}=A_{t} \oplus B_{t} \oplus V^{t}$ with $A_{t}=A \cap\left(V_{t} \oplus B^{t}\right)$ and $B_{t}=B \cap\left(V_{t} \oplus A^{t}\right)$. If ϕ is the projection $\Pi_{I} S_{i} \rightarrow V_{t}$, then $V_{t}=\phi\left(A_{t}\right) \oplus$ $\phi\left(B_{t}\right)$ and each summand is a vector group by Theorem 1 in [1] (also exercise 10, p. 171, Vol. II of [4]). Thus, if $I_{t}=\left\{i \in I \mid t_{i}=t\right\}$, then V_{t} has a decomposition $\prod_{I_{t}} R_{i}$, each R_{i} of rank one, where, for each i in I_{t} and x_{i} in R_{i}, there is a y_{i} in V^{t} such that $x_{i}=\left(x_{i}-y_{i}\right)+y_{i}$ with one term in A and the other in B. Now, for some set T of distinct types $t, V=\Pi_{T} V_{t}=$ $\Pi_{T}\left(\Pi_{I_{t}} R_{i}\right)=\Pi_{I} R_{i}$. By full invariance $\Pi_{t_{i}>t} R_{i}=V^{t}$ for each t. The conclusion of the lemma follows.

Our next lemma deals with a countable set of types.
Lemma 4.2. Let I be the natural numbers and let $T_{1}=\left\{t_{i}\right\}, i \in I$, be a set of types (not necessarily distinct). Let $I_{1}=\left\{i \in I \mid t_{i}\right.$ is maximal in $\left.T_{1}\right\}$. For each $n>1$ let $T_{n}=\left\{t_{i} \mid i \notin I_{1} \cup \cdots \cup I_{n-1}\right\}$ and $I_{n}=\left\{i \in I \mid t_{i}\right.$ is maximal in $\left.T_{n}\right\}$. Either (1) I contains an infinite chain $i_{1}<i_{2}<\cdots$ such that, for each $n, t_{i} \ngtr t_{i_{n}}$ whenever $i_{1} \leq i \leq i_{n}$ or (2) $I=\bigcup_{1}^{\infty} I_{n}$ and each I_{n} is finite.

Proof. Suppose (2) is not true. Then, for some least k, I_{n} is finite for $n<k$ and either I_{k} is infinite or T_{k} contains a chain of types not bounded above by an element in T_{k}. Let i_{1} be an element in I such that $i<i_{1}$ for all i in $I_{n}, n<k$. Now i_{1} satisfies the requirement in (1) and we assume i_{1}, \ldots, i_{m} satisfy it. By our choice of k and i_{1} there is a $j>i_{m}$ such that $t_{i} \ngtr t_{j}$ whenever $i_{1} \leq i \leq i_{m}$. Let i_{m+1} be the least such j. Then $t_{i} \ngtr t_{i_{m+1}}$ for $i_{1} \leq i \leq i_{m+1}$. Induction completes the proof.

Theorem 4.3. If $V=A \oplus B$ is a reduced vector group and $|V|$ is non-measurable, then A and B are vector groups.

Proof. A proof for A will suffice. Write $V=\Pi_{I} R_{i}$ as in Lemma 4.1 and let $t_{i}, \alpha, \alpha_{i}$ be as defined there. Let I be ordered as in 3.4 for $P=V$ and $G_{i}=R_{i}$. Thus for each j in I, if $\alpha_{i}\left(R_{j}\right)=0$ for all $i<j$, then
$\alpha_{i}\left(\Pi_{k \geq j} R_{k}\right)=0$ for all $i<j$ and, by the proof of Theorem 3.7, we may assume I is the natural numbers. We now let I_{n} and T_{n} be as defined in 4.2 and treat the cases given there.

Case 1. There is an infinite sequence $i_{1}<i_{2}<\cdots$ in I such that, for each $n, t_{i} \ngtr t_{i_{n}}$ for $i_{1} \leq i \leq i_{n}$. Since $\oplus_{i<i_{1}} R_{i}$ is slender, for some m, $\alpha_{i}\left(\Pi_{k \geq 1_{m}} R_{k}\right)=0$ for all $i<i_{1}$. By our choice of i_{n} 's and by 4.1 we must have, for each $n \geq m, \alpha_{i}\left(R_{i_{n}}\right)=0$ for all $i<i_{n}$. Therefore, from the way I was ordered, for each $n \geq m, \alpha_{i}\left(\prod_{k \geq i_{n}} R_{k}\right)=0$ for all $i<i_{n}$. Let $J=$ $\left\{1, i_{m} i_{m+1}, \ldots\right\}$ and define P^{j} and P_{j} (with $G_{i}=R_{i}$) as in 3.5. By 3.6 then $A \cong \Pi_{J} \alpha\left(P_{J}\right)$ and each $\alpha\left(P_{j}\right)$ is a direct summand of P_{j}. Since each P_{j} is a finite rank vector group, so is each $\alpha\left(P_{j}\right)$. Therefore V is a vector group.

Case 2. $I=\bigcup_{1}^{\infty} I_{n}$ and each I_{n} is finite. We may assume I is infinite. For each n set $K_{n}=I_{1} \cup \cdots \cup I_{n}$ and let $V_{n}=\oplus_{K_{n}} R_{1}$ and $V^{n}=$ $\prod_{I \backslash K_{n}} R_{i} . V_{n}$ is fully invariant in V and equals $A_{n} \oplus B_{n}$ with A_{n} in A and B_{n} in B. Also $A=A_{n} \oplus A^{n}$ where $A^{n}=A \cap\left(B_{n} \oplus V^{n}\right)$. We now find subgroups C_{J} and C^{j} in A for $j \in J=(1,2, \ldots)$ such that:
(a) $A=C^{1}$ and $C^{j}=C_{j} \oplus C^{j+1}$,
(b) $C_{1} \oplus \cdots \oplus C_{j}=A_{m_{j}}$ for some m_{j},
(c) $C^{j+2} \subseteq V^{j}$.

Let $C^{1}=A, C_{1}=A_{1}$, and $C^{2}=A^{1}$. The conditions are satisfied for $j=1$ by these C 's and we assume they are satisfied for $j \leq k$ by the C 's up to C_{k} and C^{k+1}. Now $A=A_{m_{k}} \oplus C^{k+1}$ and $V=V_{k} \oplus V^{k}$. Since $A_{m_{k}}$ and V_{k} are slender, from a consideration of projections: $V \rightarrow A \rightarrow A_{m_{k}}$ and $V \rightarrow A \rightarrow V_{k}$ we see that, for some large $n, \alpha\left(V^{n}\right)$ is in C^{k+1} and V^{k}. For this n then $A=A_{n} \oplus A^{n}$ where $A_{n} \supseteq A_{m_{k}}$ and

$$
A^{n}=A \cap\left(B_{n} \oplus V^{n}\right) \subseteq \alpha\left(V^{n}\right) \subseteq C^{k+1} \cap V^{k}
$$

Let $C_{k+1}=A_{n} \cap C^{k+1}, C^{k+2}=A^{n}$, and $m_{k+1}=n$. Now $C^{k+1}=C_{k+1}$ $\oplus C^{k+2}, A_{m_{k}} \oplus C_{k+1}=A_{m_{k+1}}$, and $C^{k+2} \subseteq V^{k}$, as desired. Induction completes the sequences. Next we apply Proposition 3.3 to the subgroups C_{j} and C^{J} with $j \in J$. Conditions (1) and (2) are clearly satisfied. Since $C_{j} \subseteq C^{J}$, (3) follows from (c) as does (4). So $A \cong \Pi_{J} C_{j}$. Since each C_{j} is a finite rank vector group, A is a vector group.

Remark. This theorem cannot be improved. That is: a countably infinite direct product of rank two torsion-free groups can equal the direct sum of two indecomposable subgroups. An example of such a group can be constructed by modifying an infinite direct "sum" example of Corner (as found in [2] or Theorem 91.1 in [4]). This is explained more fully in [8].

References

[1] S. Balcerzyk, A. Bialynicki-Birula and J. Los, On direct decompositions of complete direct sums of groups of rank 1, Bulletin de L'Academie Polonaise des Sciences, Vol. IX, No. 6, (1961), 451-454.
[2] A. L. S. Corner, A note on rank and direct decompositions of torsion-free abelian groups, II, Proc. Cambridge Philos. Soc., 66 (1969), 239-240.
[3] M. Dugas, and R. Gobel, Quotients of reflexive modules, Fundamenta Mathematicae, 114 (1981), 17-28.
[4] L. Fuchs, Infinite Abelian Groups, Vol. I (1970), Vol. II (1973), Academic Press, N. Y.
[5] M. Huber, On reflexive modules and abelian groups, J. Algebra, 82 (1983), 469-487.
[6] I. Kaplansky, Projective modules, Ann. Math., 68 (1958), 372-377.
[7] E. Lady, Slender rings and modules, Pacific J. Math., 49 (1973), 397-406.
[8] J. D. O'Neill, On summands of Direct Products of Abelian Groups, Comment. Math. Univ. Carolinae, 24.3 (1983), 407-413.

Received April 14, 1983 and in revised form September 13, 1983.
University of Detroit
Detroit, MI 48221

