
PACIFIC JOURNAL OF MATHEMATICS
Vol. 117, No. 2, 1985

PRODUCT FORMULAE FOR NIELSEN NUMBERS
OF FIBRE MAPS

PHILIP R. HEATH

This work simplifies proofs of a recent publication by You and gives
simple sufficient conditions for Brown's product formula for the Nielsen
number of a fibre map, as well as new product formulae in this context.
Product formulae are also given relating absolute and relative Nielsen
numbers, together with corresponding results for Reidemeister numbers.

Introduction. Let p: E -> B be a fibration in which E, B and all
fibres are compact connected ANR's, and let / : £ - > £ be a fibre
preserving map inducing self maps/on B and/fo on the fibre Fb over some
fixed point b in the base. Since Brown [1] introduced his multiplicative
formula N(f) = N(fb)N(f) for the Nielsen number N(f) of/, various
attempts have been made both to improve his results (cf. [4], [5]) and to
generalize his formula (cf. [6], [14], [18]). In a recent paper which super-
cedes most of what precedes it in both of the aspects mentioned above,
You [20] gives, among other things, necessary and sufficient conditions for
Brown's formula together with a new result relating the Nielsen numbers
of/, /and a relative Nielsen number Nκ(fb) oίfh. Here K is the kernel of
the inclusion induced homomorphism Π ^ -> TlλE.

In this work we consider the second of these two results and use it (1)
as a focus to give what we feel are more eccessible proofs of the results in
[20]; (2) as a springboard to give new product theorems for fibre maps.
Our results here include conditions under which N(f) = Nk(fb)N(f) and
also conditions under which Nκ(fb) = N(fb). By combining these we thus
obtain new sufficient conditions for Brown's formula. These conditions
are simpler to verify than You's. We investigate the hypotheses of You's
theorems giving conditions under which they hold. In the process we
develop product formulae relating relative and absolute Nielsen numbers,
together with corresponding results for Reidemeister numbers.

The unifying tool in this work is a certain exact sequence associated
with a self morphism of a short exact sequence of groups. This result is a
kind of non-abelian snake lemma and is a special case of a theorem (cf.
[9]) originally proved in connection with localization of orbit sets. All the
product theorems mentioned above ultimately derive from this sequence.
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We also make use of the concept of nilpotent homomoφhism, which gives
some of the new results mentioned above and simplifies further proofs in
this area.

Although our main interest is topological, we introduce our sequence
in section one, at the algebraic level in the category of groups. This
separation of algebraic from topological considerations allows a simple
formulation of the concepts involved. The role of nilpotent and eventually
commutative homomoφhisms is discussed here. In section two we intro-
duce consistent with the relative (or H) Reidemeister number RH(f), of a
self map / of a compact connected ANR X. This number, being an easy
generalization of the absolute case, is seen to be independent of various
choices and to be greater than the number of //-Nielsen fixed point
classes of/. For computational purposes RH(f) is also compared with
Reidemeister numbers of homomoφhisms induced on homology. In sec-
tion three the //-Nielsen number is defined following [16] and [20]. The
bijections of section two are then seen to preserve this number. The Jiang
subgroup is introduced at this point in order to give a condition which
allows product formulae comparing Rfj(f) or NH(f) with the ordinary
Reidemeister or Nielsen number. This condition was inspired by [12].
Section four gives the central theorem and our main results. Our method
of proof needs a result [10] on locally equiconnected spaces in order to
ensure we can choose translation functions to be base point preserving.
This is the key to our simplification.

At times our methods overlap with You's. At such places we either
sketch proofs or omit them, referring the reader to [20]. Jiang [12] has
redone much of You's work in the context of covering spaces, so our
results also overlap with Jiang's. Details and acknowledgements are given
in the text. Special thanks are due to R. F. Brown whose help and
encouragement interested me in this subject, and also to S. Wilson, P. J.
Higgins, M. A. Armstrong and other friends at Durham for much help
with exposition.

1. The algebra of Reidemeister operations. Let G be a (not neces-

sarily abelian) group and/: G -> G a homomoφhism. We write composi-
tion in G additively.

DEFINITION 1.1. The Reidemeister operation offon G is the left action
of G on itself given by

(gi>g2) -* gi + Si -/(gi)

Let 1 — /: G -> G denote the function defined by (1 — /)(g) = g ~ /(g);
then by a slight abuse we write the set of orbits of the operation as
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Coker(l - / ) with elements [g] for g ^ G. To motivate this somewhat

bizarre notation, we observe that if j : G -» Coker(l — / ) has j(g) = [g],

then jig^ = j(g2) if and only if there i s a g E G with gλ = g + g2 - /(g),

and there is then an exact sequence (with the obvious base points)

(1.2) 0 -> Fix / -> G ^ G >̂ Coker(l - / ) -> 0,

of groups and based sets, where Fix / is the subgroup of G consisting of

those g for which g = /(g) . We warn the reader that since 1 — /need not

be a homomorphism, Coker(l — / ) need not be the quotient of G by a

subgroup.

The order #Coker(l —/) of the orbit set is called the Reidemeister

number o f/and is written R(f). Dispite the fact that 1 — /need not be a

homomorphism, we still have, from the properties of the action in 1.1:

PROPOSITION 1.3. The function 1 — f in 1.2 is injectiυe if and only if

Fix f is trivial, and is surjective if and only if R(f) = 1. If G is abelian,

1 — f is a homomorphism and Coker(l - / ) has a canonical group structure

in which j is a homomorphism. D

For abelian G the group structure on Coker(l — / ) is well known.

The next Lemma is given by Jiang [12] for G the fundamental group of a

space.

LEMMA 1.4 {Jiang). For all gl9 g2 e G, [gx + g2] = [g2 + f(gλ)]. In

particular [g] = [f(g)]for allg e G.

Proof. [gl + g2] = [ - g l + ( g l + g 2) - / ( - g l ) ] = [g2 + / ( g l ) ] . D

We say that f:G-*G is nilpotent if for some positive integer n9f
n:

G -> G is the trivial homomorphism.

PROPOSITION 1.5. If f is nilpotent, then F i x / = 0. R(f) = 1 and the

function (1 — / ) : G -> G is a bijection.

Proof. Let g e Fix /, then g = /(g) = fn(g) = 0. Let g e G , then by

1A [gl = [/(g)l = [/π(g)l = [0] τ h e result follows from 1.3. D

We consider next the naturally of Reidemeister operations. Suppose
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we are given a commutative diagram

G L G

(1.6) a id

G ^ G

of groups and homomorphisms. Then q restricts to a homomorphism

q: Fix / —» Fix / also denoted by q: further, q induces a function

q*: Coker(l — / ) -> Coker(l - / ) in the obvious way.

In addition to the above, let the sequence

(1.7) Q^H^G^G->0

be exact, then/restricts to a homomorphism f\H: H —> H and we have

THEOREM 1.8. In the above situation there is an exact sequence

0 -> Fix(f\H) -> F i x / ^ Fix/Λ Coker(l - f\H)

^ Coker(l - / ) ^ Coker(l - / ) -> 0

of groups and based sets in which 8 is given by

δ(g)= [g~ f(g)] where q(g) = g:

Furthermore, if G is abelian, then the sequence can be regarded as an exact

sequence of groups.

Proof. The result can be proved by arranging sequences of the form of

1.2 for / 1 i / , / a n d / o n a grid and using those of type 1.7 to connect them.

The first and last three terms fall out easily. That the boundary is

well defined is an easy consequence of the definition of the orbit set

Coker(l — / ) . Alternatively, the theorem is a direct application of [9;

Theorem 2.5] from which it was inspired. •

The function q*: Coker(l - / ) -> Coker(l - / ) in 1.8 is surjective so

It would clearly be interesting to have a product formula involving

R(f \H)9 R(f) and R(f) (see 1.15). Let g e G, then the Reidemeister

operation of / on G induces an operation (on the left) of H on H + g by

restriction, let Orb(7/ + g) denote the orbits of this operation with
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elements [h + g] for h e H, then the inclusion of H into G induces a
function j * : Oτb(H + g) -> Coker(l — /) and an easy generalization of
1.8 shows

(1.9) y*(

(This type of exactness is treated in [9].)
Unfortunately, if G is not abelian, then Oτb{H) and Oτb(H + g) can

have different cardinality as can be seen by taking G = 53, the symmetric
group on 3 letters, H to be the cyclic subgroup of order 3 and / to be the
identity. (I am grateful to S. Wilson for this example.)

The following elementary observation from 1.8 forms the basis for
our product formulae.

Observation 1.10. If E(f) is a finite subset of Coker(l — /) in 1.6 with
the property that the order #{q*ι(q*[g]) Γι E(f)} is independent of
[g] e £ ( / ) , then

= {#{q*l(q*[g])nE(f)})(#q*(E(f))).

PROPOSITION 1.11. // in 1.8 the restriction f \H of f to H is nilpotent
then q*: Coker(l - / ) -» Coker(l - / ) is bijectiυe so R(f) = R(f). In
particular, this is so if q in 1.6 is an isomorphism.

Proof. Using 1.9, we need only show that for all h e H, and all g e G
that [h + g] = [g] in Coker(l - / ) . Now

[* + * ] - [/"(* + *)] = \{f\H)n{h) +/"(g)]

DEFINITION 1.12. Let/: G -> G be a homomorphism. Then/is said to
be eventually commutative ([13]) if for some positive integer n, fn(G) is
abelian.

The easy proof of the following proposition is left to the reader.

PROPOSITION 1.13. The homomorphism /: G —> G is eventually com-
mutative if and only if the restriction f \G' of f to the commutator subgroup,
G'ofG, is nilpotent. D

We are now ready to compare the Reidemeister number of a homo-
morphism/: G -> G with the Reidemeister number of H^f): Hλ(G) ->
HX{G) where Hλ = H^p is the first integral homology functor from groups
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to abelian groups. For any group G the sequence

(1.14) 0 -> G' -> G Λ #,(<?) -> 0

is exact (see for example [17]).

COROLLARY 1.15. If f: G -> G is eventually commutative, then

Coker(l —/) has a canonical group structure and R(f) =

#Coker(l — Hλ(f)). Furthermore iffis as in 1.6, then

[Fix/: q Fix /]*(/) = R(f\H)R(f).

Proof. For the first part we apply 1.11 and 1.13 to the obvious

morphism of 1.14 induced by/. For the second part we observe that if /is

eventually commutative, then so are/and/ |/ ί and the sequence of 1.8 is

an exact sequence of groups. The result follows easily. D

We conclude this section with a condition inspired by [5] which gives

DEFINITION 1.16. The short exact sequence (1.7) of groups is said to

have a normal splitting if there is a section σ: G —> G of q with σ(G)<G. A

homomorphism /: G -> G is said to preserve this normal splitting if /

induces a morphism of (1.7) with f(σ(G)) c o(G).

PROPOSITION 1.17. If (1.7) has a normal splitting which is preserved by

f: G -> G, ffew [Fix /: tf Fix /] = 1.

Proof. Let g e Fix /, then/(σ(g)) = σ(g'), for some g' e G. Now

r = «σ(g') = tf(σ(f)) =M(g) =/(g) = g

so/(σ(g)) = σ(g) andg G ̂ Fix/. D

We remark that the proof of 1.17 defines a section to q*\ Fix/->

Fix/.

2. Estimation of //-Reidemeister numbers. Let X be a compact

connected ANR, Π I the fundamental groupoid of X (cf. for example

[19]) and H^X, x) the fundamental group of X at x, i.e. the vertex group

of Π I at x G X Composition in ΠX will be written as addition, λ + μ

meaning first λ then μ. We say that H is a normal subgroupoid of TίX



PRODUCT FORMULAE FOR NIELSEN NUMBERS 273

written H<TίX if H is a subgroupoid of ΠX, with a vertex group
H = H(x) for each x G l , such that for each path ω: x -* y9 we have
ω + H(y) - ω = #(x). We call Ob ΠX, the objects of Π I , the trivial
normal subgroupoid of Π X The reader should be warned that the
condition of being a normal subgroupoid is slightly more general than
requiring that H(x) is a normal subgroup of Π1X for each x e X

A map /: X -> X is said to preserve /f <3ΠX if for each x e X /*:
ΠX(X, JC) -> ΠX(X,/(*)) restricts to a homomorphism f*\H: H(x) -»
H(f(x)). Choose x e l a s a base point and ω: x -> f(x) an element of
Π X (We shall frequently not distinguish between a.path ω: x -» f(x) and
its path class in ΠX)

We start this section by defining the //-Reidemeister number of/and
showing it is independent of various choices made. Some of the bijections
involved here are seen to be special cases of ones found in [20]. These
simplifications are used later in our approach.

DEFINITION 2.1. Given X, //, /, x and ω as above, an H-Reidemeister
operation of / on X is the Reidemeister operation of the induced homo-
morphism

f%/H: n x (X, x)/H -> Ut(X9 x)/H

where f%/H is given by f%/H(H + λ) = H + ω + /*(λ) - ω. The #-
Reidemeister number of /, written R #(/), is the Reidemeister num-
ber of /*///, i.e. the order of the orbit set Coker(l — f%/H) of the i/-
Reidemeister operation of / on X described above. This definition is
equivalent to one given in [12].

To show RH(f) is well defined, we exhibit two bijections, one
associated with the choice of path class μ from x tof(x) in ΠX, the other
associated with change of base point x e X Proofs are left to the reader.

LEMMA 2.2. For ω, μ: x -> f(x) in ΠX, ί/zere w α bijection

r = rωiμ: Coker(l - / S / H ) - Coker(l -f%/H)

given by r[H 4- a] — [H -f a -f ω — μ]. Hence, RH(f) is independent ofω:
x -*f(x)inΠX. Π

LEMMA 2.3. i w ω: x -> /(x) β5 above, x' e Xand u\ x -* x' there is a
bijection

u* = «„,„: Coker(l - / ϊ / f f ) -> Coker(l - Γ*%u+ί iu))

given by u*[H + a] — [H — u + a + u]. Hence RH(f) is independent of
the base point x e X D
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Let Φ(/) = {x G X\ f(x) = x] denote the set of fixed points of/:
X -> X, and let x e Φ(/). By abuse of notation, we denote the constant
path class Ox by x. Composing u* and r in 2.3 and 2.2 we have:

LEMMA 2.4. Gtoe« ω: x -> /(JC) IΛ Π I tf«d JC' G Φ(/), ίAe/i for any u:
x -> x' in IIX there is a bijection

: Coker(l -f%/H) -> Coker(l -fϊ/H)

given by uζ[H 4- a] = [if — w + α + ω 4- /*(w)]. /« particular if ω is the
constant path x at x then uζ[H + a] = [H — u + a + /*(#)]. •

Following McCord [16] and You [20] we define an equivalence
relation on Φ(/).

Let x, y e Φ(/), then x is said to be H-Nielsen-equiυalent to >\ If
there is a path λ: x -* y in Π I with λ - /(λ) G i/(x). We write Φ#(/)
for the set of //-Nielsen equivalence classes with elements F = F^. If H is
trivial, we write Φ'(/) for Φ^(/), the usual Nielsen classes of/. It is clear
that each iZ-Nielsen class is a union of (ordinary) Nielsen classes and it
follows ([1]) that Φ^(/) is finite.

Let ω: x ->/(x) in Π I be given and c: x -> x' be a path where
jcr e F in Φ'H(f). Define p(JF) G Coker(l - f%/H) to be [H + c - /^(c)
— ω]. We see that the definition of p = ρ(ω, c) involves choices.

LEMMA 2.5 (7ow). The relation p is an injective function', moreover, for
μ andu as in 2.2, 2.3 and2.4, we have r <> p = p, u*° p = p anduζ ° p = p.

Proof. (See also [20: 1.1 and 1.2].) To see that p is well defined, let c':
x -> x' be another path. We need a δ G i/(x) such that H + c' - f*{c')
-ω = H + 8 + c- f*(c) - ω - f%/H(8). The path δ = c' - c does the
trick. If x" is another representative of the class of x\ and d\ x' -> xr/ has
d -

- f * ( c + d)-ω = H + c+(d + f * ( d ) ) -f*(c) - ω

since 7/ is a normal subgroupoid of Π X
To see that p is injective, let x' G F, xr/ G F 7 and p(F) = ρ(F0, then

for any c: x -> x', and cr: JC -> JC" there is a δ G H(X) with H + c —
f*(c) -ω = H + δ + c' - / # ( O ~/*(δ) - ω. Now - c + δ + c' -
f*(-c + δ + c')<ΞHby the normality of H in Π X This shows that
F = F'.
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If ω and μ are as in 2.2, and x' e F, and c: x -> x' are given then

r o p(F) = r [Jϊ + c - /*(c) - ω] = [ # + c - /*(c) - μ] = p(F).

Similarly w* o p = p etc.. D
Given X, H, /, x and ω: x -* f(x) as in this section we say / is

nilpotent mod H\ respectively, / is eventually commutative mod H if f%:

Π1(Jf, x)/H -> Hλ(X, x)/H is nilpotent, respectively eventually com-
mutative. If H is trivial, we simply drop "mod H" and say/is nilpotent,
etc. It is clear that nilpotent mod H, respectively eventually commutative
mod H, is more general than nilpotent, respectively eventually commuta-
tive, as can be seen by taking H = Π X It is also easy to see that nilpotent
mod H and eventually commutative mod H are independent of JC and ω.
From 1.5 we have:

COROLLARY 2.6. Iff is nilpotent mod H, then

= 0 and Rff(f) = 1. D

Let Hλ = Hf denote the singular homology functor from topological
spaces to abelian groups. It is well known that H? and H^p Hλ are
naturally equivalent as functors: thus, if θ: Π1(X, x) -> Hγ(X) is the
Hurecwiz homomorphism we have induced homomorphisms

HXU)MH): Hξ{X)/θ{H) - H?{X)/Θ{H)

and

X, x)/H)

PROPOSITION 2.7. There is a natural isomorphism

Coker(l - Hλ{f)/Θ{H)) = Cokerfl - Hλ{f%/H)). D

The first part of the next corollary is essentially the first part of [12;
Theorem 3.2.8].

COROLLARY 2.8. For X, f and H as in this section RH(f) >
R(Hι(f%/H)). If f is eventually commutative mod H, then by 1.15 equality
holds and Coker(l — f%/H) has the structure of an abelian group which is
natural in the obvious sense. D

Our methods allow us to prove that if the induced homomorphism
from H/(H Π ( Π ^ ) ' ) to itself is nilpotent, then R(Hι(f%/H)) =
RiH^f)). Clearly, this is the case if H a {H^)', the commutator
subgroup of Π 1 X



276 PHILIP R. HEATH

Let X and X be topological spaces, H<ΐlX, H<HX normal sub-
groupoids, /: X -> X, f: X-> X and h: X -> X maps with /*(//) c H,
/ * ( # ) c # and h*{H)aΉ such that the diagram

X ^ X

(2.9) * 4 4 *

X I X

is commutative. Let x ^ X, ω: x ->/(*), 3c = Λ(x), and ω = h(ω). We
write h* = h% for both the induced homomorphism H1(X9 x)/H -^

, x)/H, and the induced function

Coker(l - / S / J y ) -> Cokerfl -

PROPOSITION 2.10. // Λ#: Π^X, x)/i ϊ -> Iίi(X, x)/H is surjectiυe
andf* |Ker h * is nilpotent, then

*«,: Coker(l - / Ϊ / H ) -* Cokerfl -

is bijectiυe and RH(f) = Rjj(f). In particular this is so if h*: Π1(JSf, x)/H
—> Π1( X, x)/H is an isomorphism. D

REMARK 2.11. If x' e Φ(/), then x' = Λ(x') G Φ(/) and for any u:
x -* x\ there is a commutative diagram

Coker(l - f% /H) ίS Coker(l - /$ /

(2.11) uί i uί i

Cokerfl - fi/H) hX Cokerfl - f%/Ή)

in which uζp(F) = [i/] where I ' E F E Φ^(/) This diagram is useful in
that it induces a bijection

(nί)•: A HA I ^ + « - /•(«)]) s KerAί

under which [H + u — /*(w)] is taken to [H],

3. Nielsen numbers. //-Nielsen numbers and their relationship. If

F c Φ(/) is such that there is an open U in X with U Π Φ(/) = F and
δU Π Φ(/) empty, where δU denotes the boundary of U9 then one can
define the fixed point index ind(F) of F to be /(/, U) for any such U9

where i here is the usual fix point index on compact ANR's (cf. [3]). Any
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Nielsen class F e Φ'(/) has this property, so any //-Nielsen class does;
and the index of an //-Nielsen class in Φ(/) is well defined. Let ^H{f)
denote the subset of Φ#(/) of these fixed point classes whose index is
non-zero. These are called the essential fixed point classes. The cardinality
#ΈH(f) of EH(f) is called the H-Nielsen number and is written NH(f).
Note that NH(f) < N(f), the usual Nielsen number, and thus that NH(f)
is finite. Note also that NH(f) < RH(f) by 2.5.

Now ρ(ω)(Φ^(/)) is a subset of Coker(l — f%/H) for any ω: x ->
f(x) in ΠX, so we can define the index of elements [// + x] in
Coker(l - f%/H) as follows

(3.1) / ( [ # + «]) = / i n d ( F )«]) /
10 otherwise.

PROPOSITION 3.2. The functions p, r, w* <2«d w{ of section two are index

preserving.

Proof. This essentially boils down to the compatibility of p with r, w*,
and uζ (see 2.5). D

Let G: f ^ g: X -» X, where /*(//) c //. Let G(x) denote the path
class given by G(x)(t) = G(x, t).

PROPOSITION 3.3. There is an index preserving bijection

G#: Coker(l -f%/H) - Cokerfl - g

given by G#[H + a] = [H + a]; hence, RH(f) = RH{g) and NH(f) =

NH(g).

Proof. Let q: XH —> X be the covering space of X associated with
H(x). Then XH has elements H + λ for λ: x -> y in Π I . Let \λί\Hf
denote the set of continuous lifts of/to XH. lί ω: x —> f(x) is in Π I , then
there is a unique lift/ω of/determined by fω (H) = H + ω. Thus a choice
of ω gives a "base point" to LiίtHf. Identifying Π^X, x)/H with the
group of deck transformations of q, we see that the set {(// + a)° fω\H +
α e Π^X, x)/H) exhausts Lift^/and that the set Lift^/of conjugacy
classes (under conjugation by elements of Tlλ(X, x)/H) is in bijective
correspondence with Coker(l — f * / H ) . This bijection takes the class of
(// + α)o/ω to [// + α]. We note that if F 7 e Φ^ί/) and if p(F) =
[// + α] then q(Φ({H + α)°/ω)) = F. In this way the index of 3.1
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can be redefined as i[H + α] = i(qΦ((H + α)°/ω)). It is now easy to

see that the homotopy G lifts at (H + a)°fω to a unique homotopy

G: (H + α)°/ω = (H + α)° gω + G ( x ) and the result follows from stan-

dard techniques (cf. for example [12, Theorem 1.4.5]). D

The proof of 3.3 is useful in that it indicates a formal way to tie

together the fundamental group and the covering space approaches to

Nielsen Theory.

The following Lemma is analogous to [12, Theorem 3.2.6].

LEMMA 3.4. Let H<UX, ΪΪ<UX, let f: X -> X, g: X -* X be continu-

ous functions with f*(H) c H and g*(H) c H. Then for ω: x -» gf(x) in

Π I , the function / * : Coker(l - gf%/H) -> Coker(l - fgζ%]) given by

f*[H + a] = [H + /*(«)], is an index preserving bijection, hence RH(gf)

Proof. Since f(gf) = (fg)f we see as in 2.9 that / * above is well

defined. Since [H + a] = [H + g*/*(«)] in Coker(l - gf%/H)9 the in-

verse of / * is g*. It is also easy to see that / induces bijections / * :

Φ(gf) -> *(/g) and / * : Φ'H(gf) -+ Φ'H(fg); so if Φ(gf) = 0 then / *

above is clearly index preserving. Assume Φ(gf) Φ 0 and let F e Φ'H{gf),

then

/(F) = i(X9gf,U) for suitable £/

= ί(y, /g, g"^?/)) by the commutative property of index

= i(f(F)) •

Let Λ' and Γ be compact connected ANR's, H<ΐlX, K<ΠY and let

/: X -» X, g: y -» 7 and A: X -» 7 be such that f*(H)<H, g,( A") c #,

f*(H) c A" further let A be a homotopy equivalence with homotopy

inverse k such that k*{K) c // and such that the diagram

X 1* X

(3.5) hi ih

Y Λ y

is homotopy commutative.

The next proposition is a relative version of the analogue of [12;

Theorem 1.5.4]. Let L: f = kgh X ->- Y and G: hkg = g: Y^Y be

homotopies.
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PROPOSITION 3.6. There is an index preserving bijection

hΏ: Coker(l -f%/H) -> Coker(l - g*Λ«+£<*))+<7<*(*)>)

given by.

hD[H + a] = [K+h*(a)];

hence RH(f) = Rκ(g) andNH(f) = Nκ(g).

Proof. hΏis the composite

C o k e r ( l - f % / H ) L-X Cokerfl - kgh%+/H^)

^ Cokerfl - hkgi%+LM)) ^ Cokerfl - g M«^W)^w), π

For the rest of this section we investigate the relationships between

RH(f) and R(f) on the one hand, and between NH(f) and N(f) on the

other. Here/: X ^ X,H<UX, and/preserves H.

Let x e Φ(/), then we have by hypothesis, an exact sequence

(3.7) 0 -> H(x) £ Uλ(X, x) £ nx(X, x)/H -> 0

where jx is the inclusion and qx the projection. Furthermore, / induces a

homomorphism of 3.7; so by 1.8, there is for each x e Φ(/) an exact

sequence

(3.8) 0 -> Fix(/ί|ff) -> Fix/ί ^ Fix/£//7Λ Coker(l -

^ Coker(l - / J ) 5 Coker(l - / ί / H ) -> 0.

COROLLARY 3.9. 7/"/w eventually commutative, then by (1.15)

: 4rFix/ί]Λ(/) = R(f*\H)RH(f). D

The Jiang subgroup /(/) plays a useful role. Recall that /(/) consists

of those elements β of Hτ(X, x) for which there is a homotopy G: f — f

withG(x) = β.

We translate a proposition of Jiang [12; Theorem 3.2.11] into our

context.

PROPOSITION 3.10. (Jiang). If f*(H) c / ( / ) , then any two ordinary

fixed point classes contained in an H-fixed point class have the same index.
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Proof. We refer to 3.8. Let [α], [a'] in Coker(l - / J ) be such that
#*[ α ] = #*[«']• This is true if and only if [α'] = [h + α] for some h ^ H.
Now [* + «] = [α + /*(/*)] by 1.4. Given G: f^f with <?(*) =/*(λ);
then the composite

Coker(l - / * ) ̂  Coker(l - /£<*>) -^ Coker(l - / * )

is index preserving and Kϊ#[α] = [α + /*(/*)] = [«'] as required. D

Note from 3.10 that for [λ] e Coker(l - /J) the set £ ( / ) Π
9* W*[λ]) is either empty, or is the whole of ( ^ ί J ' H ί ί ί

We need another result of Jiang ([12; Lemma 2.3.7]).

PROPOSITION 3.11 (Jiang). /(/) c Z ί / ^ Π ^ ) : I^X). Here
Z(H, G) = {g <Ξ G with g + h = h + gfor all h ^ H) is the centralizer of
H in G. Ώ

COROLLARY 3.12. If the quotient R(f*\H(x))/[Fixfl/H: qFixfl] is
independent of x in any essential fixed point class off, and iff^(H) c /(/)
then

[Fixfί/H: q(Fixfi)]N(f) = R(fm\H)NH(f).

Proof. If f*(H) c /(/) , then by 3.11 f*\H is eventually commutative
and R(f*\H) has a group structure with δ of 3.8 a homomorphism (to
prove this compare 3.8 with the corresponding sequence deduced from Hx

of 3.7); so Kerql has order R(f*\H)/[Fixfl/H; qFixfi]. By the
independence condition, it is enough to show that for any [λ] e E(/)
there is a bijection (qi)~ι(qi[λ]) = Ker^i' for some x' in an essential
fixed point class of/. Now i[λ] Φ 0 means [λ] = [u — /*(w)] for some u:
x -> x\ with jcr G Φ(/) and the result follows from 2.11. D

COROLLARY 3.13. Letf*(H) c / ( / ) , then
(i) Iffis eventually commutative, the formula in 3.12 holds.

(ii) Iff+\H is nilpotent, then N(f) = NH(f).

Proof. If /is eventually commutative, g£, can be regarded as a group
homomorphism so each of the fibres of q% in 3.8 has the same cardinality.
As in 3.12, KQTq% has cardinality R(f *\H(x))/[Fix f%/H; q Fix/*] and
the first result follows. If f*\His nilpotent, then by 3.8 for each x G Φ(/),
we have R(f4t\H(x)) = 1 = [Fix/£ / / 7; # Fix/*], and the second result
follows from 3.12. D
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If for each x e Φ(/), 3.7 has a normal splitting preserved by /*:
Π^X, x) -> Π^AΓ, x) (cf. 1.15) we say/splits normally over H.

COROLLARY 3.14. // /*(//) c / (/) , / splits normally over H and
R(f*\H(x)) is independent of x in any essential fixed point class off, then

N(f) = R(f*\H)NH(f).

Proof. By 1.17, [Fix f%/H\ qxFix f%] = 1 for all appropriate x. D

We remark again that /eventually commutative will yield i?(/* \H(x))
independent of x e Φ(/) If X is the total space of a fibration q: X -» B
with H = ΠλFh where Fb is the fibre, then by Gottlieb [7], / * ( # ) c /(/)
(see also the proof of 4.7). The condition JV(//>) =£ 0 then implies that
N(fh) = R(f*\H) and 3.14 gives some well known result. One condition
which ensures that/splits normally over H is that Π^ X)/H is all torsion
and H is torsion free. There is no fibration assumption needed in this
latter situation. Corollary 3.14 was, of course, inspired by [5] from which
other conditions for/to split normally over H can be deduced.

4. Nielsen numbers of fibre maps. In 3.12 we deduced a product
theorem relating the //-Nielsen number with the ordinary Nielsen num-
ber. The central results of this section use the same techniques to deduce
product theorems for fibre maps.

Throughout this section let p: E -> B, /: E -> E, /: B -> B and K be
as in the introduction; thus, the diagram

E -4 E

(4.1) Pi iP

B I B

is commutative. Let x e Φ(/), b = p(x) and fb = f\Fh: Fh -» Fb; then
there is an exact sequence

(4.2) 0 -> Ylγ{F, χ)/K -* U^E, x) - Π x ( 5 , />(*)) -* 0

a morphism of 4.2 induced by/, and from 1.8 an exact sequence

(4.3) 0 -> Fix fo/κ^ Fix / ί ^ Fix/* Λ Coker(l - /£ / A : )

^ Coker(l - / ί ) ^ Coker(l -}%)-* 0.
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By analogy with the results of section three, we will want to know

when the number [Fix /*;/?* Fix / J ] is independent of x, when Nκ(fh) is

independent of b, and in view of You's Theorem ([20; Theorem 5.6]), we

will want to know when the former number is one and the latter number

equal to N(fb). This is because these are the necessary and sufficient

conditions for Brown's formula to hold.

We shall need the following.

PROPOSITION 4.4 {Heath-Norton [10]). Ifλ: e -> e' is a path in E with

λ = p(λ), then ifλ is not a constant path, there is a regular lifting function

Γ for p with the property that Γ(λ, e) = λ, and Γ( —λ, e') = — λ. D

For any lifting function Γ and path μ: b -> d in B the translation

function τ-\ Fh -» Fb is defined by τ-(x) = Γ(μ, x)(l). We note that 4.4

essentially allows us to choose base points in the fibres in advance with T-

base point preserving.

LEMMA 4.5 (see [8]). // μ ~ σ: b -> d in B, then r- ^ τδ: Fh -» Fd. If

b, d e Φ ( / ) andμ: b -> d in B, then the diagram

J7

Fh

TR i

F -> F
rd ^ rd

is homotopy commutative. D

COROLLARY 4.6. For H = K or H trivial, the following conditions are

independent of b G Φ ( / ) :

(i) fh\Fh—> Fh is nilpotent mod H.

(ii) fh: Fh -» Fh is eventually commutative mod H.

Moreover, f nilpotent respectively eventually commutative implies fh is nilpo-

tent mod H, respectively eventually commutative mod H. The latter state-

ments are implied by /^|Ker q* is nilpotent respectively eventually commuta-

tive.

Proof. The independence conditions follow from iterations of the

diagram in 4.5. D

The fibration p is said to be orientable if, for any two paths λ, μ:

b -> d in B, τ λ — τμ: Fb -> Fd. This condition is easily seen to be equiva-

lent to: for any loop λ: b -> b in B, τ λ — 1: Fb -> Fh (see [12; Definition

2.1]).
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Part (i) of the next corollary is due to You [20; p. 235].

COROLLARY 4.7. For H = K or H trivial NH(fh) is independent of b in

any essential fixed point class of f if one of the following holds:

(i) If p is orientable

(ii) If fh is nilpotent mod H and N(fb) Φ 0 for any b in any essential

fixed point class off. In this case NH(fb) = 1.

(iii) IfR(f) = 1, in particular iffis nilpotent.

(iv)//#(/) = 1.

Proof. If p is orientable, we can replace τy=(ji) by T- in diagram 4.5, then
apply 3.6. Gottlieb in [6] shows that the image of δ: H2B -> Π^i7 in the
exact sequence of p is contained in J(lx). But δ(Π2i?) = K and J(lx) c
/ ( / ) (cf. [1]), so (ii) follows from 3.12. For (iii), either N(f) = 0 in which
case the proposition is trivial or (iii) reduces to (iv). For (iv), we need only
consider b, d e Φ(/) for which there is a λ: b -> d in B with λ ~ /(λ).
The result in this case follows from 3.6 and 4.5. D

From 1.3 we see that if HXB is finite and Fix/ 6 = 0 for some
b G Φ(/), then (iii) holds. This is also true if /is eventually commutative
and Hλ(f) is nilpotent. The number N(fh) Φ 0 for all b in any essential
fixed point class if the natural projection E(/) -> E(/) is surjective (this
follows from 4.8 below); this will happen, for example, if /(/) = HλE and
N(f) Φ0.

We saw in the proof of 4.7 that if μ ~ f(μ) in B, then we can replace

τ / (- } in 4.5 by T-. In this case τ Λ _ μ ) is a homotopy inverse of τμ. Let

x e Φ(fh), x' e Φ(/fr); then without changing the class of jΰ in TIB, we

can lift μ to a path μ: x -> x' in E. If jΰ is not the constant path, there is,

by 4.4, a lifting function Γ with Γ(μ, x) = μ and Γ( — jΰ, x) = - μ . Let
h = τ/(-μ) ofcioτμ>h'==τμ° τf(-μ) °Λ/' t h e n ' u s i n § t h e a b o v e Γ

? f20' Lemma
2.2] specializes to give explicit homotopies L: fh — h and G: h' — fd with

τ-(L(x)) + G(x') ~ -μ+f*(μ)inE.

LEMMA 4.8. // [K + μ] e Coker(l - /£ / A . ) ^«rf [μ] = Λ * [ ^ + μ] G

Coker(l — / J ) , then if either i[K + μ] Φ 0 or ι[μ] # 0, Λere w ίz commuta-

tive diagram

Coker(l - /^/AΓ) y4 Coker(l - / J )

Coker(l - / ^ v ^ ) J$ Coker(l - /ί ')
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for some x' e Φ ( / ) with ^([μ]) = [Ox>] the class of the constant path, and

Ξ and Ψ index preserving bijections.

Proof. If i[K + μ] Φ 0, then [K + μ] = [K + M - //?*(w)] for some u:

x -» x ' in ΠF / ? with x ' (= Φ(Λ). Then Ξ = uf£ and Ψ = uζ are the

required bijections. If i[μ] Φ 0, then [μ] = [u — /*(w)] for some w: x -> x '

in Π ^ with x ' e Φ ( / ) . If w (and therefore x r) is contained in Fh, then

proceed as above; otherwise let ΰ = p{u) as a path in 5, then by 4.4, there

is a regular lifting function Γ for/? with Γ(δ, x) = u. Using this Γ, the left

hand square of 4.9

Coker(l - fo/κ) - Coker(l - / ^ » + <;< ^ ) - Coker(l - / Λ ^ )

*̂ 4 9 ) //,*! /,/*! ///*!

Coker(l-/;) ^ Coker(l - f*wf/*(w)) ^ Coker(l-/i)

is commutative where ( τ 5 ) D is defined as in 3.6 using the explicit homo-

topies mentioned above. To see this, we merely observe that properties of

our lifting functions ensure that for any loop d at x in Fh, and any loop u:

x -> x in E, if u = q{u), then τ-(d) = —u Λ- d + u (compare 4.4 and[20;

Lemma 2.1]). Clearly, Ξ = r(τϊι)u and Ψ = uζ do the job. D

The reader will note that ( τ β ) D is a simplified form of the transforma-

tion 7^ of [20]; we have developed sufficient machinery to indicate below

the proofs of the following two propositions (4.10 is part of [20; Corollary

3.4]) in our notation.

PROPOSITION 4.10. // in the situation of 4.3, [σ] =jh*[K + σ] =

jh*[K + θ] = [θ]9 then i([K + σ]) = i([K + 0]), /or [ # + σ], [K+Θ]*Ξ

. Since [σ] = [θ] in Coker(l - f % ) , there i s a w e Π ^ ^ , x) with

β = - K + σ + / # ( M ) . If M C F/? as a path, then [tf + σ] = [K + θ\.

Otherwise, let Γ be a regular lifting function for/? with Γ(w, x) = u (where

ΰ ~ p(u)). Then as in the proof of the second part of 4.8, we have

r(τ-u)π([K+ σ]) = [K + τ-u(σ) + τ-u{L(x)) + G ( x ) ] .

Now, τ-(σ) 4- T S (L(X)) + G(x) - (-u + σ + u) + ( - M + / * ( M ) ) in £,

so we have

r(τ-X([K+o])=[K + θ]
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since ΐlλ(F, x)/K -» ΐlx(E, x) is injective. Because r(τ-)π is index pre-

serving, we are done. •

PROPOSITION 4.11 {You). If in 4.3 [K + μ] G Coker(l - / £ / A Γ ) , [μ] =

^[AΓ + /x] G Coker(l — / * ) and [μ] = q*[μ] G Coker(l - / * ) , ί/zeft /[/x]

Φ 0, i/am/ o«(y //ίwtfλ i[K + ju] ^ 0 am/ z[jΰ] # 0.

Proof. Transformations of the type shown in 4.8 used in combination

with fibre homotopies can be used to reduce 4.11 to the case where

[μ] = 0 and B is a finite polyhedron with / having only isolated fixed

points. The result then follows from a known result (cf. [3]) involving the

index in the total space being the product of indices in the fibre and base.

This is exactly the technique of You. D

THEOREM 4.12 (You). If Nκ(fh) is independent of b in any essential

fixed point class off, and if [Fix / * ; p*Fix f*] is independent of x in any

essential fixed point class off, then

[Fix fϊ:p*Fixfl]N(f) = Nκ(fb)N(f).

Proof. If N(f) = 0, then by 4.10 and 4.11 Nκ(fh) = 0 for any b in an

essential fixed point class of/, or N(f) = 0. So we assume N(f), and

hence, Nκ(fh) and N(f) are non-zero. Let x G Φ(/) be our base point.

Using the technique of 2.11 and the fact (2.5) that ui\E(f) is the identity,

we see that for each [λ] G E(/)

(A) #[(plVlplM ΠE(/))= #(Ker/>ί'nE(/))

for some x' in the class represented by [λ]. Now 4.3, 4.10, and 4.11 show

that for each [μ] G Ker/?£ Π E(/), we have jj^lμ] c Έκ(fh) and so

The technique of 3.3 and the exactness of 4.3 shows for some x" in an

essential fixed point class of/ that #jh*[μ] = [Fix/(jf; p^Vixfζ]. The

independence hypothesis now yields

(B) Nκ(fh)= # ( K e r ^ Π E ( / ) ) [ F i x / i : / 7 5 ί ί F i x / ί ] .

The formulae (A) and (B) and our hypotheses together show that for any

[λ] G E(/), the order #((p%)~ιp%[λ] Π E(/)) is independent of x in any

essential fixed point class. To conclude the proof, we observe from 4.10

that/>*(£(/)) = E(/) and invoke 1.10. D



286 PHILIP R. HEATH

The hypotheses of 4.12 are fulfilled if p is orientable (4.7) and / is
eventually commutative; with these hypotheses 4.12 is then exactly
Corollary 5.9 of [20].

COROLLARY 4.13 (You). If p is orientable, then N(f) = N(fh)N(f) if
and only if

(ii) For each x e F e E(/), [Fix /£<*>; /?* Fix /* ] = 1. D

We shall investigate 4.13 (i) and (ii) separately.
The next definition and example generalize 2.1 and 2.9 of [5]. The

fibration p: E -> B admits a fibre splitting mod K with respect to f if for
each x e Φ(/), the sequence 4.2 has a normal splitting preserved by/*.

EXAMPLES 4.14. In each of the following situations/?: E -» B admits a
fibre splitting mod K with respect to /

(a) UλB = 0
(b)Λ* = 0 Πx( JF, X) -» Π1(£', x) for some x
(c) for each x e iJ, the sequence 4.2 has a normal splitting with Π î?

all torsion and Π^i 7, x)/K torsion free.

COROLLARY 4.15. If Nκ(fh) is independent of b in any essential fixed
point class off, then

provided one of the following hold:
(i) The fibration p: E -> B admits a fibre splitting mod K with respect

tof.
(iii) Fix f% = 0 for any b in any essential fixed point class of f.

Proof. Condition (ii) clearly implies [Fix/£; p*Yιxf%] = 1 for all
appropriate x as does (i) by 1.17. D

COROLLARY 4.16. Let p: E -> B be orientable; then N(f) = N(f)
provided one of the following hold:

(i) Rκ(A) = 1 for all b e Φ(/), and Nκ(fh) Φ 0 for some b e Φ(/)
or

e Φ(/).

Proof. For both cases N(f) = 0 if and only if iV(/) = 0 so as in 4.12,
we assume N(f) Φ 0. Now conditions (i) and (ii) imply condition (ii) for
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all /) G Φ(/). In this situation, by 4.10, Kery^* = 0 and so for any
x G Φ(/), [Fix/£:/?* Fix/*] = 1 by 4.3. D

Among the conditions that imply 4.16 (i) we have (a) fh nilpotent
mod K for some b G Φ(/), (b) the restriction of f% to Ker p* is nilpotent,
(c) Fix/ί /κ = 0 for all x G Φ(/) and Π^F, x)/X finite, (d)/is eventu-
ally commutative andy^Π^i71, x)/K c (Γ^i?)' the commutator subgroup
of Π ^ . For K = 0, 4.16 (ii) is [5; Theorem 6.2].

We note there is no orientability condition in the next result.

COROLLARY 4.17. ///*: Π ^ -> Π ^ is nilpotent, then

Proof. If /* is nilpotent, then R(f) = 1 by 1.5 so # ( / ) is zero or one
by 2.5. If N(f) = 0, then so is N(f) by 4.11. If N(f) - 1, then ^ ( Λ ) is
independent of b in the essential fixed point class of/by 4.7. The proof is
completed by using 1.5 and 4.15 (ii). •

The conclusion of 4.17 is valid under the assumptions that Fix /* = 0
for any b in an essential fixed point class of/and Π ^ is finite. Again we
do not need orientability.

PROPOSITION 4.18. Let x G Φ(/), b =/>(*), then Nκ{fh) = N(fh)
provided one of the following holds:

(i)p%: Coker(l - /£) -> Coker(l - f£*/κ) in injectiυe
(ii)/*: U2(B,b) -> Π 2 ( 5 , Z>) ώ nilpotent mod / ^Π^JS', jt).

(iii) fh*\K is nilpotent

(iv) /^ w eventually commutative and K c (Π 1 ? T
7)'

Proof. Statements (ii) through (iv) imply (i) and the results follow
from section three, as does (v). D

The condition that K is a subgroup of (Π^F)' can arise as follows. Let
M be a group for which Mf c Z(Af), the centre of M, then for any
K a M\ the realization of the crossed module M -> M/ίf gives a fibra-
tion JP -* Γ -* 5 with ΠXF = M, ΠX7 = M/K, Π2B = iίΓ and all other
groups zero (for further details see [14]). I am grateful to P. J. Higgins and
R. Brown (Bangor) for help with this example.
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Putting some of these results together, we have

COROLLARY 4.19. If p is orientable, admits a fibre splitting mod K with
respect to /, and if for all b in an essential fixed point class off, fh*\K or f\\
Π2B -> Π2B is nilpotent, then

N(f) = N(fh)N(f). D

A map is said to be homotopy nilpotent if / " is null homo topic for
some positive integer n. R. F. Brown has shown me the following example
of a homotopy nilpotent map: Let B be the wedge of a space with itself
thus B = A V A for some A. The map g: B -> B which takes a pair
(al9 a2) to the pair (a2, *) where * is a base point, is homotopy nilpotent.

Note that our final result does not require orientability.

COROLLARY 4.20. Iff is homotopy nilpotent then

= N(fh)N{f). D
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