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BINOMIAL COEFFICIENTS WHOSE PRODUCTS
ARE PERFECT kTH POWERS

BASIL GORDON, DAIHACHIRO SATO AND ERNST STRAUS

In memory of Ernst Straus

A Pk-set is a finite set of positions in Pascal's triangle which, when
translated anywhere within the triangle, covers entries whose product is a
perfect kth power. A characterization of such sets is obtained, and the
minimum cardinality/(A) of all Pk-sets is determined.

1. Introduction. In 1971, V. Hoggatt and W. Hansell [4] proved
that the product of the 6 neighbors of any interior entry of the Pascal
triangle is a perfect square. A corollary of this appeared as a problem on
the Putnam Examination [9]. In Figure 1, for example, the product of the
6 entries enclosed in circles or squares is 360,000 = 6002.

The usual proof of this theorem consists in showing that the product
of the circled entries is equal to the product of the entries enclosed in
squares, i.e.

Because of the positions in Figure 1 of the factors on the 2 sides of (1),
this identity has been called the Star of David property of Pascal's triangle.

To reformulate the star of David Theorem, we consider the following
hexagon:

(n- 1 n- ί

( r ϊ l )

("V)
The theorem says that if this hexagon is translated in such a way that its
vertices lie on entries of the Pascal triangle, the product of these entries is
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FIGURE 1

always a perfect square. Subsequently, many other configurations with

this so-called "translatable perfect-square property" were found [2], [5],

[6], 17], [8]. These examples lead naturally to the following problems.

Problem 1. Given an integer k > 2, are there configurations of points

which, when translated so that they lie on entries of the Pascal triangle,

always make the product of these entries a perfect kth power?

Problem 2. Characterize all sets S with this translatable perfect λ th

power property. (We call them P^-sets.)

Problem 3. Determine the smallest possible cardinality f(k) of a

PΛ-set.

Problem 2 was raised by Hoggatt [6] and Uisiskin [8] for the special

case k = 2.

In this paper we will present solutions to these problems.

2. Characterization of i^-sets. In this paper the symbol (n

r) denotes

both the value n\/r\{n — r)\ of the binomial coefficient, and its position

in the Pascal triangle. Hopefully this abuse of notation will cause no

confusion. The usual inequalities 0 < r < n are assumed throughout.

In order to determine all i^-sets, we first consider the entries of

Pascal's triangle modulo a prime p. We denote by Ap the set of entries (?)

with n < /?, by Bp the set of entries with/7 < n <2p — 1, 0 < r < n — p,

by Cp the set of entries with/? < n < 2p — 1,p < r < n, and by Tp the set

of entries with p < n <2p — 1, n-p + l<r<p — 1. The following

figure shows these sets in the case/? = 5.
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FIGURE 2

LEMMA 1. Let p be a prime. The binomial coefficient (?) is not divisible

bypif(n

r)isinAp,BporCp.

Proof. Clearly (?) is not divisible byp if n < /?, i.e. iί(n

r) ^ Ap.

Next suppose that (?) e Bp. Since/? < n < 2p — 1, the numerator of

(?) = n\/r\{n - r)\ is divisible by p but not by /?2. If 0 < r < n - /?,

then (n — r)\ is divisible by/?, while if /? < r < n, then r! is divisible by p.

In either case (?) is not divisible by p. Finally the symmetry

implies that (?) is not divisible byp if it lies in Cp.

LEMMA 2. //(?) is in Tp, it is divisible by p but not by p2.

Proof. The numerator of (?) = n\/r\(n — r)\ is divisible by p but not

by/?2, since/? < n < 2/? — 1. The denominator is not divisible by/?, since

r < p — 1 and n — r < p — 1.

Using these lemmas, we can obtain the following characterization of

P^-sets.

THEOREM 1. S is a Pk-set if and only if the number of points of S on each

line n = c, r = c, and n — r = c (c any constant) is a multiple of k.
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r = c n-r=c
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FIGURE 3
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FIGURE 4

For example, the sets in Figure 3 have the perfect cube property,
while the set in Figure 4 has the perfect 4th power property

Proof of Theorem 1. (i) Suppose first that the number of points of S
on each line n = c, r = c and n — r = c is divisible by k. Then the
product of the binomial coefficients covered by any translate of S is of the
form

< 2> ΠTΛΪT
i = l ri\ni ~ ri)'

where for each integer N9 the numbers of factors «,!, rt\9 {nt— r-)! equal
to N are multiples of k. Therefore (2) is a perfect kth power.

(ii) Conversely, suppose that S is a P^-set. Let p be a prime so large
that S can be translated into each of the sets A 9B 9 C and 71. When S is
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translated into T 9 the product of the binomial coefficients covered by it is
exactly divisible by /?|lS|. When S is then translated vertically so that its
topmost elements go into the set Ap9 this power of p decreases to p^~"9

where v is the number of elements of S on its top row. Therefore both \S\
and \S\ — v are divisible by k, from which we conclude that v = 0
(mod k). We now continue to translate S upwards; the same reasoning
shows that the number of points on each horizontal row of S is divisible
by k. Similarly, by translating S in the direction of Bp or Cp9 we find that
the number of points of S on each line r = c and n — r = c is a multiple
oik.

COROLLARY. If S is a Pk-set, then \S\is divisible by k.

3. P^-sets of minimal cardinality. Let f(k) be the smallest cardinal-
ity of all i^-sets. In this section we will prove that f(k) = k(2k — 1). In
particular /(2) = 6, which shows that the original Hoggatt-Hansell exam-
ple of a perfect square set [4] is minimal. Moreover /(3) = 15 and
/(4) = 28, so Figures 3b and 4 are respectively minimal P3- and P4-sets.

THEOREM 2. f(k) = k(2k - 1).

Proof, (i) We first show that if S is any Prset, then \S\ > k(2k - 1).
For this purpose, we translate S within the Pascal triangle so that at least
one of its elements lies on the "left side" r = 0 of the triangle (cf. Figure
5, where k = 3).

\
r - 0 \ n — r — N

FIGURE 5
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In this position, let (^) be the element (Q) of S with the greatest value of

n. By the characterization given in Theorem 1, S contains at least k points

on the line r = 0, and at least k points on the line n — r = N. This gives a

total of 2k — 1 points (?) of S, all having different values of n. The

horizontal lines through these points are therefore distinct, and each such

line contains at least k points of S. Hence \S\ > k(2k - 1).

(ii) To complete the proof of Theorem 2, we must construct a P^-set

Sk with cardinality k(2k — 1). Many such constructions are possible; the

one presented here is motivated by a consideration of the continuous

analogue (k -> oc) of the problem. In this analogue, we seek a subset S^

of a regular hexagon H of unit side such that every straight line parallel to

a side of H is either disjoint from S^, or intersects S^ in a set of linear

Lebesgue measure 1.

FIGURE 6

The shaded region S^ in Figure 6 (where solid lines are part of S^, but

dotted lines are not) is easily seen to have this property. The sets Sk

described below can be regarded as suitably normalized discrete ap-

proximations to S^. Examples for k = 3 and k = 4 are provided by

Figures 3b and 4 respectively.

The technical details are as follows.

Let Sk consist of all entries (?) of the Pascal triangle satisfying one of

the 4 following conditions:

(a) k-l<n<2k-2, 0<r<2k-2-n

(β) k-\<n<2k-2, k < r < n

(γ) 2λ:-l<H<3fc-3, n-2k + 2<r<k-\

(δ) 2k - 1 < n < 3k - 3, Ak - 3 - n < r < 2k - 2

The Greek letters here have been chosen to correspond to the four shaded

triangles in Figure 6.

We assert that for any integer c, the number of points of Sk on the

line n = c is k if k — 1 < c < 3k — 3, and is 0 otherwise. The second
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assertion is clear. To prove the first one, we suppose first that k — 1 < c

< 2k - 2. From (a) and (β) we find that the number of points of Sk on

the line n — c is

(2k - 2 - c + 1) + (c - k + 1) = fc.

On the other hand, if 2k - 1 < c < 3k - 3, we find from (γ) and (δ)

that the number of points of Sk on the line n = c is

[ ( * - l ) - ( c - 2 J f c + 2) + l] + [(2k-2)-(4k- 3- c) + l] = * .

It follows in particular that

| ^ | = [(3fc_ 3) -(jfc- 1) + l]& = (2k- \)k.

Next, we note that the inequalities defining Sk can be rewritten in the

form

(a) 0 <r < k- 1, k-l<n<2k-2-r

(β) k<r<2k-2, r<n<2k-2

(γ) 0 <r <k-l, 2k-l<n<2k-2 + r

(δ) k < r < 2k - 2, 4k - 3 - r < n < 3k - 3.

From this we can compute the number of points of Sk on each line r = c,

where c is an integer. This number is clearly 0 unless 0 < c < 2k — 2. If

0 < c < k — 1, then (a) and (γ) show that the number of points of Sk on

the line r = c is

[ ( 2 * - 2 - c) - ( & - 1) + 1] +[(2k- 2 + c) -(2k- 1) + l] = k.

On the other hand, it k < c <2k - 2, then (/?) and (δ) show that this

number is

[(2k - 2) - c + 1] +[(3Jfc - 3) -(4k - 3 - c) + l] = k.

In the same way it can be shown that the number of points of Sk on

the line n — r = c is k if 0 < c < 2k — 2, and 0 otherwise. The verifica-

tion of this is rather tedious, since the portions of Sk defined by (α) and

(δ) must be divided into two parts. We therefore omit the details.

4. Concluding remarks. In the preceding section, we determined

i^-sets of minimal cardinality. There are, of course, other ways of measur-

ing minimality of a set. For example, suppose that the location of the

Pascal triangle in the plane is normalized so that the distance between

nearest neighbors of the triangle is 1. We can then ask for a P^-set of

minimal diameter, or for one whose convex hull has minimal area. The set

Sk constructed above has diameter 2(k — 1), and its convex hull has area

3(k — I ) 2 ^3~/2. These values are minimal, since the convex hull of any
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P^-set S contains a regular hexagon of side k — 1. This is easily seen by
allowing lines parallel to the sides of a regular hexagon (in the obvious
orientation) to approach S from outside its convex hull until they first
intersect S. The convex hulls of these intersections have length > k — 1,
from which the desired property follows.

Among many generalizations and analogues of the above results, we
mention those where binomial coefficients are replaced by multinomial
coefficients, and where (especially in the Star of David property) products
of binomial coefficients are replaced by g.c.d.'s or l.c.m.'s. These exten-
sions lead to some very curious arithmetic and geometric theorems which,
for reasons of space, cannot be dealt with here.

Finally, in connection with the continuous analogue discussed in §3,
we pose the following problem:

Does there exist a non-empty plane set whose intersection with each
line in any of 4 given directions is either empty or of linear Lebesgue
measure 1? This problem also has natural extensions to sets in Euclidean
space R".
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