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THE DIOPHANTINE EQUATION ax + by = ¢ IN Q(Y/5)
AND OTHER NUMBER FIELDS

DAviD ROSEN

Solving in rational integers the linear diophantine equation

(1) ax + by =c, (a,b)lc,a,b,c, € Z

is very well known. Letd = (a, b),andput4 = a/d,B = b/d,C = ¢/d,
then equation (1) becomes

1) Ax + By + C, (A,B)=1,4,B,C, € Z.

The purpose of this note is to discuss the solutions of this equation when
A, B, C are integers in Q(\/g ) and the solutions are integers in Q(\/g ).
What makes the discussion interesting is that an algorithm which mimics
the continued fraction algorithm that solves the rational integer case can
be implemented.

A brief summary of the continued fraction algorithm for the rational
case is as follows: To solve (1’): find the regular simple continued fraction
for A/B; i.e.
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which we write as A/B = (ry; ry,...,1,). Since A/B is rational, the
continued fraction is finite. The (m + 1)th convergent of a continued
fraction is denoted by P, /Q,, = (ro; 1y -+~ r,). If A/B = P, /Q, then the
penultimate convergent P,_;/Q,_, provides a solution to Ax + By = 1
because of the well-known relation.

(2) PnQn—l - QnPn—l = (-1)"+1'

It suffices therefore to take x = (-1)"*'Q,_,, y = (-1)"P,_,. To solve (1)
we take x = (-1)"*1dCQ,_, andy = (-1)"*1dCP,_,.

It is well known that the integers in Q(V5) have the form s + rA,
where s, t € Z and A = (1 + V/5)/2. (See Hardy and Wright [1] or Niven
and Zuckerman [3] for a complete discussion of this algebraic number
field.) The elements in Q(v/5 ) are of course the quotients of integers in the
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field. In order to mimic the solution procedure above we would require a
continued fraction development that essentially parallels the ordinary
continued fraction representation of real numbers, that is the elements of
Q(V5) should have a unique finite continued fraction representation and
every other real number has a unique infinite continued fraction represen-
tation. Such a representation exists and the continued fractions will be
referred to as A s-fractions [4].

These continued fractions were presented by the author in connection
with studies on the Hecke groups [4], and are one example of the more
general A -fractions where A = 2 cos(7/q). It was shown in [4], that every
finite A -fraction is an element in the algebraic number field Q(A ), and
Leutbecher [2] showed that only in the case g = 5, every element in
Q(/5) = Q(A;5) has a finite Afraction. Hence a real number is an
element of Q(\/g ) if and only if it has a finite As-continued fraction
representation and every real number has a unique A s~fraction representa-
tion. Thus we will show that the algorithm that solves the rational integer
case (which is the case g = 3) will work in the Q(V5) case.

What are the A -fractions? These are continued fractions of the form

where, in general, for fixed ¢, A = 2cos(7/q),q € Z"andq > 3,¢, = +1,
and r,€ Z*, i > 1, r, € Z. The continued fraction is developed by a
nearest integer algorithm. If £ is a real number we seek the nearest integral
multiple of A. This means, if { } denotes the nearest integer, then we write
{£/A\} = r,, where we specify -1/2 < r, — §/\ < 1/2; i.e. r, is uniquely
determined by the inequality.

A A
(3) I‘0>\——2‘<§Sr07\+5.

Hence £ = ryA + ¢ /£,, where it is seen that §, = ¢, /(§ — r,A) > 0, since
g>0ifrdA<fandg <O0if r A>E IfE=nA+A/2=(n+ 1A -
A/2, then because of inequality (3) r, = n and ¢, = 1. Then r,A — /2 <
§<r,A+ A/2 implies §;, >2/XA > 1> A/2 and hence r, = {£,/A} > 1.
Continuing in this way we find that £,, > A /2 which implies that r,, > 1
(m = 1). Henceforth, A-fraction will refer to A ;-fraction. The A-fraction is
unique provided that the following few simple rules indicated in [4] are
obeyed.
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(i) If A — 1/rX occurs, then r > 2.
(ii) If

AL
2 -1
A+,
occurs, then g, = ¢, = 1.
We point out that in 0(/5),
1 2
Mo T
A
(iii) If the A-fraction terminates as
&€
A-17
A
thene = 1. In Q(V5), A — 1/A = 1, which yields the equation
(4) AM—A-1=0.

A A-fraction satisfying these criteria is called a reduced A-fraction.
Similar criteria will yield unique A -fractions. Because of (4) the rolled up
finite continued fraction produces the quotient of two polynomials in A
which can be reduced to the form

(5) (a+bX)/(c+dN\), a,b,c,deZ.

This in turn can be put in the form

(6) (a"+bN)/c

by multiplying numerator and denominator by the conjugate of ¢ + dA,
which is (¢ + d) — dA. One finds that a’ = ac + ad — bc, b’ = bc — ad,
¢’ = c?+ cd — d*—the norm of ¢ + dA.

As observed on p. 550 of [4] consecutive convergents P,_,/Q,_, and
P./Q, of a A-fraction satisfy a determinant relation similar to (2):

(7) PO, . —PQ,= ("l)n_lelsz g, = 1L

Finally we remark that the units in Q(V/5) are A" which can be written
in terms of consecutive Fibonnaci numbers. If F, is the nth Fibonnaci
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number, then A" = F,_; + F,A. This can be proved as follows:
Let F, =0, F, =1, F,=1then N =0+ AN =F + FA=\+1,
which is a consequence of (4). By induction then if \* = F, _; + F,A, then

N+tl—F XN+ FN=F +(F_, +F)A=F + F_ A,

as desired. If n < 0 one determines first from (4) that 1/A = A — 1; hence
A2 = (A — 1)2 = 2 — A. By induction, one determines that X" = —-F,
+ FAif nisodd and X" = F, |, — F,\ if n is even. To show that A" is a
unit, we observe that the norm of F, + F,, A is F? + F,F, ., — FZ,,. But
the last expression is precisely the determinant relation (2) for the con-
secutive convergents. F,/F, ., F,.,/F,., of the regular continued frac-
tion (1;1,1 --- )= A. Thus each \", n > 0, is indeed a unit. For n
negative = —m, the norm N(1/A™) = 1/N(A™) = *1 too, so A" is a unit
for all integers n. We now state and prove the main theorem.

THEOREM 1. Let p, q, r € Z(VS), and suppose that, except for units,
P, q, r are relatively prime. Then the diophantine equation px + qy = r has
integer solutions in Q(V5). If x,, y, is a particular solution, then any other
solution has the form x = x, + qt,y =y, — pt. If (p, q) = d and d|r, then

4 q

a* T’ a
is solvable in Q(\/§ ).

Proof. As in the rational integer case, we first solve px + gy = 1. This
is done by expanding p/q in its unique A-fraction. The penultimate
convergent will supply the values for x and y. To sove px + gy =r
multiply the x and y values by r.

As in the rational case we note that if a particular solution is x,, y,
then an infinity of solutions is obtained using the usual trick namely
putting x = x, + qt, y =y, — pt, which satisfies the equation for all
t € Z(\). Moreover if a and b is any solution € Z(V5), i.e., pa + gb = r
then a = x, + gt, b =y, — pt, for some . This is clear because from
pa+gb=r and px,+ gy, =r we obtain p(x,—a)+q(y,—b)=
0. Hence p(x —a)= —q(y, — b). Since (p,q)=1, it follows that
pl(y — b). Thus pl = y, — b. But now p(x — a) = —gpl, hence x — a =
—gl. This result has a bearing on the Hecke group I'(A) in determining
which solutions to px + gy = 1 provide a substitution that belongs to
L'(A).

Finally, the last statement of the theorem follows easily from the first
statement since p/d, q/d, r/d are relatively prime.
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There is one wrinkle in this method which does not arise in the
rational case. The A-fraction when rolled up and reduced to the form (5)
may not be identical with the original fraction unless a suitable unit is
factored out from numerator and denominator.

Consider the following example: Solve

(8) B+ 7A)x+(5—-2\)y =6+ 5\.

One can verify that

34+ 7A 1
s M o1
-1
3A
The right side, when rolled up and reduced using (4), becomes
487 + 788\
97A + 60 -

The numerator is (34 + 55A)(3 + 7A) and the denominator is
(34 + 550)(5 — 2X), (55X + 34 = N9,

The penultimate convergent is

L1 196A+100
200-1  20A+19 °
A

Hence x = (20A + 19) and y = —(196A + 100) solves (487 + 788A)x +
(97X + 60)y = 1. It follows that x’ = (20 + 19)(5A + 6) = 214 +
315A and y’ = —(196\ + 100)(SA + 6) = —(2656\ + 1580) solves
(487 + 788N\)x’ + (97A + 60)y" = 6 + SA. Thus to solve (8) we incorpo-
rate the common unit factor (34 + 55A) with x” and y’. Then (3 + 7A)x”
+(5 — 2X)y” = 6 + 5\ has as solution

SA

x" = (214 + 3151)(34 + 55A) = 24601 + 39805\

©) y” = —(1580 + 2656X)(34 + 55X) = —(199800 + 3223284A).
Knowing one solution thus gives all solutions; x = x” + gt, y =
y” — pt wheret € Z(V5) and we assume that (p, q) = 1.

It is interesting to observe here that solving one diophantine equation
automatically solves a class of equations. Recalling that the units A" can
be written as integers in Z(V5) and noting that

A"(= F;l—l + F;,A) timeS }\-n (= F'n+l - F;IA or —Er-l»l + 1;;1}\) = 1
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then a solution to px + gy = n provides a solution to (F,_; + F,A)px’ +
(F,_; + E,A) gy’ = n. Clearly, the solution is x’ = (F,.; — F,A)x, y’ =
(Fp1 = EA)y or X' = (=F,., + FA)x, y' = (-F,,, + EA)y, depend-

ing on the parity of n. As an example, the equation

(7 +10A)x" +(-2 + 3X)y’ =6 + 5A,
which is

AB+TX)x+A(5—-2A)y =6+ 5A,

is solved by x’ = 15204 + 24601A, y’ = —(123484 + 199800A). This solu-
tion is obtained from (9) by dividing x”” and y” by A, i.e., multiplying by
A—1

The above procedures could be extended to other number fields if a
suitable continued fraction representation were available. A continued
fraction representation for the number fields Q(2 cos(7/q)) similar to the
foregoing was developed in [4], but as Wolfart showed [5] the only
possible ¢’s for which all the rational elements in Q(A,) have a finite
A fraction are g = 3,5,9. It appears therefore that it is true only for the
fields ¢ = 3 and g = 5; while for ¢ = 9 the questions is still open. For
other values of g, equation (1) can be solved in Z(A ) provided a/b has a
finite A -fraction. The formal statement is:

THEOREM 2. If A, = 2cos(7/q), q an integer > 4,thenifa, b € Z(\ ),
then the diophantine equation az + by = 1 has solutions in Z(A ) if and
only if (a, b) = d and d|c, d is not a unit; and if a/b has a finite X -fraction
representation.

For g =4, A\, = V2, and for ¢ =6, A = V3. The finite A,- and
A (-fractions when rolled up have the form avr /b or a/bVr, r = 2,3. Thus
not all elements of Q(Vr) are realizable as finite A, or A, continued
fractions. However, consider

Tx+32y=4+9/2.

We find the A, continued fraction for 7/3y2 which turns out to be
7/3V2 = V2 + 1/3/2. Clearly

Py 7 P1_\/§

512_3\/5, q1 1’

and7-1—+v2 -3/2 =1sox=1andy = - V2 solves 7x + 3y2y = 1.
Hence x’ =4+ 92,y = —V2(4 + %2) = —(18 + 4/2) solves the
original equation and of course there are an infinite of solutions of the
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form x” =4+ 92 + (18 + 4/2)t, y” = —(18 + 4/2) + (4 + 9/2)1,
t € Z(Ay).

This same procedure will work for any of the algebraic fields
(2cos(m/q)). Examples can be easily found by first taking a finite
A fraction and using the numerator and denominator for the coefficients.
For example in A ,, compute

1 3\ 6N + A
27\+———)\__1— =2\ + w1 a1
3A
In A,
1
}\——X—l =1
A

so the rational elements will be of the form

alN? + b\ + ¢
dN> + e\ + [

The equation (6A° + A\)x + (BA> — 1)y =1 is solved by x =2A, y =
—(2A% + 1), since

(6 + AN +(BN° — 1) =N+ 1) =6A* + X2 —(6A* + M2 — 1) = 1.

We remark that there are other ways of solving the linear diophantine
equation in Q(VS), but the algorithm presented above bears such a
striking similarity to the usual algorithm for the rational case that it gives
O(V5) a special status. The author knows of no other algebraic field in
which a continued fraction can be similarly developed.

It seems that Pell’s equation (x> — dy? = 1) should also be solvable
in Q(V5) but there are still some difficulties in showing that Vd is a
periodic A --function. However, if Vd is periodic then Pell’s equations can
be solved as in the rational case
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